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Abstract001

Speculative decoding is a widely adopted tech-002
nique for accelerating inference in large lan-003
guage models (LLMs), but its performance de-004
grades on long inputs due to increased atten-005
tion cost and reduced draft accuracy. We in-006
troduce SpecExtend, a drop-in enhancement007
that improves the performance of speculative008
decoding on long sequences without any ad-009
ditional training. SpecExtend integrates effi-010
cient attention mechanisms such as FlashAt-011
tention and Hybrid Tree Attention into both012
the draft and target models, reducing latency013
across all stages. To improve draft accuracy, we014
propose Cross-model Retrieval, a novel cache015
update strategy that uses the target model’s at-016
tention scores to dynamically select relevant017
context for the draft model. Extensive eval-018
uations on three long-context understanding019
datasets show that SpecExtend accelerates stan-020
dard tree-based speculative decoding by up to021
2.22× for inputs up to 16K tokens, providing022
an effective solution for speculative decoding023
of long sequences.024

1 Introduction025

Large Language Models (LLMs) have achieved re-026

markable success across a wide range of natural027

language processing (NLP) tasks (Achiam et al.,028

2023; Grattafiori et al., 2024). However, their prac-029

tical deployment is often hindered by high infer-030

ence latency, which is primarily caused by the au-031

toregressive nature of decoding (Zhou et al., 2024).032

To address this issue, various optimization tech-033

niques have been proposed, with speculative de-034

coding emerging as an effective, lossless solution035

(Leviathan et al., 2023; Chen et al., 2023). Spec-036

ulative decoding consists of two phases: First, a037

smaller draft model is used to efficiently generate038

multiple candidate tokens. Then, the original tar-039

get model verifies these tokens in parallel. This040

allows generating multiple tokens within a single041

target model decoding step, accelerating inference 042

without altering the output distribution. 043

However, the performance of speculative decod- 044

ing frameworks drops significantly as input length 045

increases. We identify two primary causes: (1) 046

increased latency in both drafting and verification 047

steps due to the quadratic complexity of standard 048

attention, and (2) reduced draft accuracy, as the 049

draft model is typically smaller and trained only on 050

short sequences. Meanwhile, retraining draft mod- 051

els on long contexts is costly, highlighting the need 052

for a drop-in solution that improves long-input per- 053

formance while preserving the original benefits of 054

existing frameworks. 055

To this end, we propose SpecExtend, a drop-in 056

enhancement for speculative decoding on long in- 057

puts. SpecExtend accelerates the forward passes 058

of both the draft and target models by integrating 059

efficient attention mechanisms across all stages. In 060

order to improve drafting accuracy on long inputs 061

without additional training, we introduce Cross- 062

model Retrieval, a novel cache update strategy for 063

speculative decoding. We dynamically update the 064

draft model’s KV cache with globally relevant con- 065

text, guided by the target model’s attention scores. 066

SpecExtend is compatible with a wide range of 067

speculative decoding frameworks, including tree- 068

based structures, self-speculative draft models, and 069

dynamic tree expansion techniques. We adopt these 070

settings to evaluate SpecExtend’s effectiveness us- 071

ing both off-the-shelf LLMs and EAGLE (Li et al., 072

2024c) as draft models. On three long-context 073

understanding datasets, SpecExtend accelerates 074

standard tree-based speculative decoding by up to 075

2.22× for inputs up to 16K tokens, resulting in an 076

overall speedup of 2.87× over naive autoregressive 077

generation. SpecExtend preserves performance on 078

short inputs and does not require retraining, offer- 079

ing a robust drop-in solution for enhancing specu- 080

lative decoding on long inputs. 081
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Figure 1: Overview of SpecExtend. FlashAttention accelerates the prefill phases of both target and draft models,
and Hybrid Tree Attention accelerates the verification phase. The target model’s attention scores are obtained from
the verification step and used to select the most relevant input chunks to retain in the draft model’s KV cache.

2 SpecExtend082

2.1 Efficient Attention Mechanisms083

Prefill Acceleration The initial forward pass of084

a language model computes full self-attention over085

the entire input sequence, incurring quadratic mem-086

ory usage and latency. FlashAttention (Dao et al.,087

2022; Dao, 2023) mitigates this by avoiding materi-088

alization of large intermediate matrices in the GPU089

high-bandwidth memory. We apply FlashAtten-090

tion to the prefill stages of both the target and draft091

models, significantly reducing latency and memory092

usage during this phase (Figure 1).093

Target Model Decoding Unlike prefill, the de-094

coding phase uses cached key and value (KV)095

states and computes attention only with the newly096

generated tokens as query. FlashDecoding (Dao,097

2024) accelerates this step by parallelizing across098

the KV dimension, improving efficiency for short099

queries. However, it is incompatible with the tree100

masks required by tree-based speculative decoding101

frameworks (Miao et al., 2024). To resolve this,102

LongSpec (Yang et al., 2025) introduces Hybrid103

Tree Attention, which splits the KV cache into two104

parts: the cached segment that requires no mask-105

ing and the speculative segment that applies the106

tree mask. FlashDecoding is applied to the cached107

segment, while standard attention is applied to the108

speculative part. The outputs are then fused us-109

ing a log-sum-exp operation, allowing efficient tree110

attention computation for long inputs.111

We apply Hybrid Tree Attention to the target112

model to accelerate its decoding phase and speed113

up the verification step of speculative decoding.114

2.2 Cross-model Retrieval Cache 115

As input length increases, drafting speed degrades 116

due to the growing KV cache of the draft model, 117

leading to slower decoding. Meanwhile, drafting 118

accuracy also drops as the draft model has limited 119

capacity and is typically trained on short contexts. 120

To address this without retraining, we aim to (1) 121

truncate the draft model’s KV cache for more effi- 122

cient attention, (2) while preserving context that is 123

most relevant to the target model at the current de- 124

coding timestep. We achieve this via cross-model 125

retrieval, which uses the target model’s attention 126

scores to select the most relevant input segments to 127

retain in the draft model’s cache. 128

Concretely, we divide the input prefix into fixed- 129

size chunks and rank them by their average at- 130

tention scores, using the last accepted token as 131

the query. These scores reflect each chunk’s rele- 132

vance at the current timestep. We select the top- 133

k chunks, and the draft model uses this reduced, 134

context-aware cache to generate candidate tokens, 135

improving both speed and accuracy on long inputs. 136

Importantly, the target model’s attention scores 137

are obtained directly from the most recent verifica- 138

tion step, requiring no additional forward passes. 139

SpecExtend’s algorithm is provided in Appendix B. 140

One challenge is that the target model’s Hybrid 141

Tree Attention relies on FlashDecoding, which 142

avoids generating the full attention scores matrix 143

for efficiency. To address this, we compute stan- 144

dard attention and extract attention scores of the 145

final layer only, which we find sufficient for our 146

purposes. As shown in Table 4, this adds minimal 147

latency overhead to the target model’s forward pass, 148
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Cache Type
Full KV
Cache

StreamingLLM
Cross-model

Retrieval
(SpecExtend)

Retrieval
(TriForce)

Perplexity (↓) 8.311 2.435 2.237 2.191
Accuracy (↑) 0.081 0.166 0.823 0.976

Table 1: Perplexity and draft accuracy of needle tokens
in the Needle Retrieval task, using different draft model
settings. The first three methods use Vicuna 160M as
the draft model, while TriForce uses Vicuna 7B.

and the cache update step is also faster than a single149

draft model forward pass. Moreover, due to the lo-150

cality of context in long sequences, retrieval cache151

updates can be applied adaptively or less frequently,152

further minimizing overhead. Ablations on the re-153

trieval parameters are provided in Appendix E.1.154

Needle Retrieval Evaluation We assess the ef-155

fectiveness of cross-model retrieval using the Nee-156

dle Retrieval task (Li et al., 2024a; Contributors,157

2023). Specifically, we measure how well the draft158

model utilizes the retrieved context to locate and159

draft the tokens of a needle in long inputs. We com-160

pare its accuracy against three draft model cache161

types: (1) Full KV Cache, (2) StreamingLLM162

(Xiao et al., 2023), which retains only the initial163

and most recent tokens using a static cache policy,164

and (2) TriForce (Sun et al., 2024), which also uses165

the target model’s attention scores to retrieve top166

chunks, but employs the same large model for both167

drafting and verification. While accurate, drafting168

with the target model is slow due to its large model169

weights. TriForce serves as an upper bound on170

how well the retrieved context can be utilized by a171

smaller draft model.172

As shown in Table 1, while the StreamingLLM173

cache improves general coherence, it struggles to174

draft the needle tokens accurately due to loss of175

global context. In contrast, SpecExtend approaches176

TriForce’s performance despite using a smaller177

draft model, simultaneously enhancing draft speed178

and accuracy.179

3 Experiments180

3.1 Experiment Setting181

We evaluate SpecExtend’s performance on standard182

speculative decoding baselines using Vicuna-7B183

(Chiang et al., 2023) and LongChat-7B (Li et al.,184

2023) as target models. Draft models include both185

EAGLE (Li et al., 2024c) and off-the-shelf LLMs,186

Vicuna-68M (Yang et al., 2024) and LLaMA-68M187

(Miao et al., 2023). We adopt tree-based drafting188
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Figure 2: Latency breakdown of standard tree-based
speculative decoding with and without SpecExtend.
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Figure 3: Average accepted length across input lengths
with different draft model KV cache settings.

with dynamic tree expansion (Wang et al., 2025) 189

and use long summarization task, aiming to gener- 190

ate 256 tokens on GovReport (Huang et al., 2021), 191

PG-19 (Rae et al., 2019), and BookSum (Kryś- 192

ciński et al., 2021). All experiments are conducted 193

with a temperature of 0 on 2 A100 80GB GPUs. 194

Further details are provided in Appendix D. 195

3.2 Main Results 196

Figure 2 shows that SpecExtend effectively reduces 197

inference time across all stages of speculative de- 198

coding. Meanwhile, Figure 3 shows that the cross- 199

model retrieval cache significantly improves draft 200

accuracy on long inputs, outperforming the static 201

cache policy of StreamingLLM. These improve- 202

ments lead to consistent speedup gains across all 203

three datasets with both off-the-shelf LLMs and 204

EAGLE as draft models, as shown in Table 2. We 205

provide ablation studies on each component of 206

SpecExtend in Appendix E.2. 207

For 8K and 16K-token inputs from PG-19, 208

SpecExtend accelerates standard speculative de- 209

coding with LLM draft models by 2.37× and 210

2.22×, respectively, yielding overall speedups of 211

2.39× and 2.87× over naive autoregressive gener- 212

ation. For EAGLE-based frameworks, SpecEx- 213

tend achieves 2.02× and 2.09× speedups over 214

the standard EAGLE frameworks, yielding over- 215

all speedups of 2.67× and 3.09×. Importantly, 216
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Setting SpecExtend 1K 2K 4K 8K 16K

τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup

G
ov

R
ep

or
t

V
-7

B V-68M
No 1.73 100.31 1.78× 0.64 55.64 1.16× 0.60 41.91 1.14× 0.62 25.71 1.08× 0.59 16.56 1.38×
Yes 2.80 128.59 2.28× 2.52 109.58 2.29× 2.04 76.48 2.08× 2.06 55.16 2.33× 2.07 33.84 2.82×

EAGLE
No 3.61 144.77 2.57× 3.04 107.52 2.24× 2.27 66.62 1.81× 1.35 31.74 1.34× 1.00 19.35 1.61×
Yes 3.58 145.53 2.58× 3.08 113.47 2.37× 2.80 85.99 2.34× 2.82 62.90 2.66× 2.51 37.05 3.08×

L
C

-7
B LC-68M

No 1.73 100.31 1.78× 0.64 55.64 1.16× 0.60 41.91 1.15× 0.62 25.71 1.12× 0.59 16.56 1.51×
Yes 2.01 109.26 1.94× 1.82 90.27 1.89× 1.66 68.84 1.89× 1.81 52.17 2.30× 1.68 31.11 2.84×

EAGLE
No 3.10 131.06 2.33× 2.47 97.53 2.04× 1.75 60.17 1.65× 1.52 32.90 1.44× 1.18 19.84 1.81×
Yes 3.04 133.14 2.37× 2.56 103.39 2.17× 2.43 80.50 2.21× 2.53 60.14 2.63× 2.25 35.13 3.21×

PG
-1

9 V
-7

B V-68M
No 1.16 76.50 1.37× 0.52 51.00 1.09× 0.55 39.16 1.15× 0.55 21.80 1.01× 0.54 14.73 1.29×
Yes 1.75 96.74 1.74× 1.69 84.74 1.81× 1.61 63.94 1.88× 1.65 47.64 2.39× 1.70 32.88 2.87×

EAGLE
No 2.29 107.31 1.92× 2.18 88.92 1.89× 1.88 54.71 1.60× 1.18 26.43 1.32× 0.92 16.98 1.48×
Yes 2.29 107.53 1.93× 2.19 94.41 2.02× 2.04 69.92 2.06× 2.19 53.06 2.67× 2.05 35.43 3.09×

L
C

-7
B LC-68M

No 1.16 76.50 1.36× 0.52 51.00 1.07× 0.55 39.16 1.09× 0.55 21.80 1.00× 0.54 14.73 1.18×
Yes 1.22 80.25 1.43× 1.33 73.69 1.55× 1.42 62.27 1.74× 1.42 44.96 2.06× 1.45 30.67 2.46×

EAGLE
No 2.19 111.10 1.97× 2.00 86.80 1.82× 1.48 54.21 1.51× 1.28 26.85 1.23× 1.06 17.54 1.40×
Yes 2.11 110.31 1.96× 2.02 93.50 1.97× 1.97 71.84 2.01× 1.99 51.55 2.36× 1.82 33.07 2.66×

B
oo

kS
um

V
-7

B V-68M
No 1.36 88.12 1.57× 0.56 53.33 1.13× 0.51 39.30 1.08× 0.52 24.21 1.05× 0.58 15.63 1.30×
Yes 1.75 97.45 1.73× 1.66 81.37 1.73× 1.56 62.97 1.73× 1.70 50.21 2.18× 1.78 35.61 2.98×

EAGLE
No 2.33 111.70 1.99× 1.95 82.44 1.75× 1.87 58.01 1.59× 1.14 29.30 1.27× 0.94 18.76 1.57×
Yes 2.31 111.82 1.99× 1.99 88.64 1.89× 2.08 70.90 1.95× 2.15 54.53 2.37× 2.11 38.03 3.18×

L
C

-7
B LC-68M

No 1.36 88.12 1.57× 0.56 53.33 1.14× 0.51 39.30 1.11× 0.52 24.21 1.20× 0.58 15.63 1.28×
Yes 1.45 91.05 1.63× 1.55 83.60 1.80× 1.54 66.79 1.90× 1.61 49.47 2.45× 1.50 32.21 2.64×

EAGLE
No 2.10 107.67 1.92× 1.94 86.35 1.85× 1.37 53.42 1.51× 1.22 30.14 1.49× 1.06 18.39 1.50×
Yes 2.07 106.86 1.91× 1.97 90.48 1.94× 1.88 71.50 2.03× 1.92 52.35 2.59× 1.83 34.65 2.84×

Table 2: Average accepted length (τ ), decoding speed (tokens/s) and speedups of different frameworks with and
without SpecExtend. Speedup is measured relative to naive autoregressive generation.

Method GovReport PG-19 BookSum

1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K

FlashDecoding 1.06× 1.07× 1.12× 1.23× 1.51× 1.07× 1.08× 1.18× 1.38× 1.52× 1.06× 1.09× 1.10× 1.26× 1.58×
TriForce 1.25× 1.26× 1.22× 1.18× 1.02× 1.12× 1.19× 1.16× 1.15× 1.13× 1.18× 1.20× 1.18× 1.18× 1.11×

MagicDec 1.07× 1.08× 1.05× 1.13× 1.24× 1.03× 1.07× 1.06× 1.10× 1.19× 1.03× 1.04× 1.06× 1.18× 1.23×
Standard 1.78× 1.16× 1.14× 1.08× 1.38× 1.37× 1.09× 1.15× 1.09× 1.29× 1.57× 1.14× 1.08× 1.05× 1.30×

Standard + SpecExtend 2.28× 2.29× 2.08× 2.29× 2.65× 1.74× 1.81× 1.88× 2.34× 2.70× 1.74× 1.74× 1.73× 2.14× 2.81×

Table 3: Speedup comparison of off-the-shelf methods for long input generation with Vicuna 7B. Standard refers to
standard tree-based speculative decoding.

SpecExtend preserves baseline performance on217

shorter inputs across all settings, demonstrating218

robustness to input length.219

3.3 Comparison with Other Methods220

We apply SpecExtend to standard tree-based spec-221

ulative decoding and compare its performance on222

long inputs against other off-the-shelf acceleration223

methods, including FlashDecoding (Dao, 2024),224

TriForce (Sun et al., 2024), and MagicDec (Sad-225

hukhan et al., 2024). We use Vicuna-7B, 68M226

as the target and draft models, respectively. For227

MagicDec, we implement StreamingLLM-based228

drafting with self-speculation. As shown in Ta-229

ble 3, SpecExtend-enhanced speculative decod-230

ing outperforms all baselines across input lengths,231

achieving up to 2.81× speedup on 16K-token inputs232

from BookSum. In contrast, TriForce and Mag-233

icDec yield marginal speedups, as model weights234

remain the dominant bottleneck in moderately long235

regimes, yet both rely on drafting with the large 236

target model. 237

4 Conclusion 238

We present SpecExtend, a drop-in enhancement 239

that improves the performance of speculative de- 240

coding frameworks on long inputs. By integrating 241

efficient attention mechanisms and cross-model re- 242

trieval, SpecExtend accelerates all stages of specu- 243

lative decoding while improving draft quality with- 244

out retraining. Experiments across multiple set- 245

tings and datasets demonstrate that SpecExtend 246

achieves up to 2.22× speedup for sequences up to 247

16K tokens, while preserving baseline performance 248

on shorter inputs. Our approach is compatible with 249

a wide range of speculative decoding setups and of- 250

fers a practical solution to performance degradation 251

on long inputs. 252
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Limitations253

While SpecExtend significantly improves the254

speedup of speculative decoding frameworks, to-255

ken generation speed still degrades as input length256

increases. This is primarily due to the inherent257

growth in attention computation, even when us-258

ing efficient mechanisms. In particular, the target259

model’s prefill and decoding steps for verification260

remain a bottleneck for long inputs, as SpecExtend261

still operates on the full KV cache for the target262

model’s forward passes. Nevertheless, SpecExtend263

effectively extends the range over which specula-264

tive decoding frameworks maintain high perfor-265

mance. Additionally, our method does not acceler-266

ate existing frameworks to the point of outperform-267

ing those specifically trained for long inputs, such268

as LongSpec. Nevertheless, our proposed cross-269

model retrieval cache can be integrated into other270

solutions to provide further speedup, and SpecEx-271

tend provides substantial off-the-shelf acceleration272

when applied to tree-based frameworks.273

Ethical Considerations274

This study focuses solely on improving the infer-275

ence efficiency of LLMs through a drop-in enhance-276

ment to speculative decoding. Our work does not277

involve training new models, collecting or annotat-278

ing data, or interacting with human subjects. All279

experiments are conducted using publicly available280

models and datasets. We do not explore or enable281

any commercial applications or downstream use282

cases that raise ethical concerns. Therefore, we be-283

lieve this research does not introduce any notable284

ethical concerns.285
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A Related Work 425

A.1 Speculative Decoding 426

Speculative decoding accelerates LLM inference 427

by using a smaller draft model to generate multiple 428

candidate tokens, which the target model then veri- 429

fies in parallel (Xia et al., 2022, 2024). With proper 430

verification and correction, it guarantees the same 431

output distribution as standard decoding (Leviathan 432

et al., 2023; Chen et al., 2023). SpecInfer (Miao 433

et al., 2024) extends this approach by drafting and 434

verifying multiple sequences simultaneously using 435

tree attention, achieving further speedups. Several 436

work introduces effective draft models built from 437

subsets of the target model (Cai et al., 2024; Li 438

et al., 2024c), while EAGLE-2 (Li et al., 2024b) 439

and OPT-Tree (Wang et al., 2025) achieve further 440

speedup by dynamically adjusting the draft tree 441

structure during decoding. EAGLE-3 (Li et al., 442

2025) scales up draft model training by leveraging 443

multi-level features from the target model. 444

A.2 Long Sequence Generation 445

As input length increases, standard attention suffers 446

from quadratic compute and memory complexity, 447

causing high inference latency (Zhou et al., 2024). 448

FlashAttention (Dao et al., 2022; Dao, 2023) re- 449

duces this overhead by using tiling and online soft- 450

max, bringing memory complexity down to linear 451

and accelerating inference. FlashDecoding (Dao, 452

2024) builds on this by further parallelizing work- 453

ers across the Key Value dimension, speeding up 454

LLM decoding for long sequences. 455

Several works apply speculative decoding to 456

long sequence generation. TriForce (Sun et al., 457

2024) identifies that the memory bottleneck shifts 458

from model weights to the KV cache for extremely 459
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long inputs, and mitigates this with hierarchical460

speculation using smaller models and retrieval-461

based KV caches. MagicDec (Sadhukhan et al.,462

2024) uses a simpler StreamingLLM cache to re-463

duce the KV cache memory. However, the perfor-464

mance of speculative decoding frameworks drop465

well before the KV cache becomes the main bot-466

tleneck, and existing solutions are less effective in467

this regime of early degradation. Closest to our468

approach is LongSpec (Yang et al., 2025), which469

trains draft models specifically designed for long470

inputs. In contrast, our method provides a drop-in471

enhancement for existing frameworks, improving472

long-sequence performance without retraining and473

preserving their original benefits.474

B SpecExtend Algorithm475

Algorithm 1 Speculative Decoding with
Cross-model Retrieval Cache
Require: Target LM Mq , draft LM Mp, input x1, . . . , xt,

block size K, target length T , DRAFT, VERIFY, COR-
RECT, retrieval flag doRetrieval, attention scores s, top-
k chunks c1, . . . , ck

1: n← t
2: while n < T do

▷ Retrieve and update draft-model cache
3: if doRetrieval then
4: c1, . . . , ck ← SELECTCHUNKS(s)
5: UPDATEDRAFTCACHE(c1, . . . , ck)
6: end if
7: p1, . . . , pK ← DRAFT(x≤n,Mp)
8: Sample x̃i ∼ pi for i = 1, . . . ,K

▷ Obtain target model attention scores
9: (qi, s)←Mq

(
x | x≤n, x̃<i ; doRetrieval

)
for i = 1, . . . ,K + 1

10: if VERIFY(x̃i, pi, qi) then
11: xn+1 ← x̃i; n← n+ 1
12: else
13: xn+1 ← CORRECT(pi, qi)
14: break
15: end if
16: if all K drafted tokens accepted then
17: Sample xn+1 ∼ qK+1; n← n+ 1
18: end if
19: end while

C Latency Overhead of SpecExtend476

Table 4 shows the latency overhead of SpecEx-477

tend’s cross-model retrieval cache. When using478

16K inputs, the target model’s forward pass shows479

minimal overhead with and without retrieval, as we480

compute standard attention for the last layer only.481

In addition, a retrieval cache update step which482

requires computing the average attention scores483

of chunks, ranking them and updating the draft484

model’s KV cache with the top-k chunks, can be485

Target
Forward

Target Forward
w/ Retrieval

Draft
Forward

Retrieval Cache
Update

Latency (ms) 53.76 54.11 0.84 0.34

Table 4: Latency overhead of a single retrieval cache
update step on 16K token inputs.

done faster than a single forward pass of the draft 486

model. 487

D Experiment Details 488

The EAGLE models1 are trained on the ShareGPT 489

dataset using default training settings with 4 A100 490

40GB GPUs. For each input length from 1K to 491

16K tokens, we sample 20 inputs, run each input 492

twice, and report metrics averaged over all runs. 493

We set the temperature to 0 and the maximum gen- 494

eration length to 256 tokens. We apply OPT-Tree’s 495

dynamic tree expansion strategy with the default 496

settings of 50 total nodes, maximum depth 10, and 497

threshold 0.7. We use the optimal working KV 498

cache size and retrieval parameters described in 499

Appendix E.1. 500

E Ablation Studies 501

E.1 Retrieval Parameters 502

We conduct ablations on retrieval parameters us- 503

ing Vicuna-7B as the target model, with Vicuna- 504

68M and EAGLE as draft models, on 8K-token 505

inputs from GovReport (Table 5). When varying 506

the StreamingLLM cache size, the optimal working 507

cache size is around 1K for Vicuna-68M and 2K for 508

EAGLE. This difference is due to the disparity in 509

draft model scale (68M vs. 1B parameters). Based 510

on these cache sizes, we find that for Vicuna-68M 511

and EAGLE respectively, a chunk size of 32, top- 512

k values of 32 and 64, and a retrieval frequency 513

of 4 and 8 steps yield the best performance. We 514

note that these optimal settings can vary with the 515

architecture and capacity of the draft model. 516

E.2 SpecExtend Components 517

We evaluate the relative speedup of each com- 518

ponent of SpecExtend, applying them to a stan- 519

dard tree-based framework with Vicuna-7B and 520

Vicuna-68M. All speedups are measured relative to 521

the standard speculative decoding framework. As 522

shown in Table 6, applying FlashAttention to the 523

1EAGLE models are publicly available under the Apache
2.0 license.
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Working
Cache Size

Vicuna-68M EAGLE
Chunk
Size

Vicuna-68M EAGLE Top-k Vicuna-68M EAGLE
Retrieval

Frequency
Vicuna-68M EAGLE

64 32.52 39.10 1 31.05 48.05 2 30.72 38.22 1 33.05 47.78
128 32.91 39.95 2 32.27 49.49 4 32.65 40.36 2 33.54 46.78
256 33.65 41.53 4 32.97 49.55 8 32.76 41.49 4 33.59 48.17
512 33.53 42.77 8 33.39 49.18 16 33.19 43.90 8 33.11 48.52
1024 33.69 44.19 16 33.41 48.92 32 33.28 47.21 16 33.16 48.36
2048 32.36 45.33 32 33.52 49.68 64 32.50 48.09 32 33.28 48.11
4096 25.84 43.68 64 33.23 48.25 128 25.20 45.14 64 33.29 48.13
8192 24.32 33.10 128 33.20 47.48 256 23.95 32.48 128 33.21 48.20

Table 5: Decoding speed (tokens/s) for different working KV cache size and retrieval parameters. We use Vicuna-7B
as the target model and 8K inputs from GovReport.

Setting
1K 2K 4K 8K 16K

τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup

Standard 2.75 127.34 - 1.83 87.34 - 0.92 47.41 - 0.78 27.54 - 0.72 17.60 -
Standard + FA 2.71 131.02 1.03× 1.84 91.79 1.05× 0.97 52.74 1.11× 0.81 34.33 1.25× 0.75 22.07 1.25×

Standard + HTA 2.61 122.73 0.96× 1.74 85.57 0.98× 0.92 47.62 1.01× 0.76 31.08 1.14× 0.74 20.95 1.19×
Standard + StreamingLLM 2.75 128.62 1.01× 1.81 85.60 0.98× 1.53 59.11 1.25× 1.59 35.89 1.30× 1.60 22.39 1.27×

Standard + Retrieval 2.86 130.35 1.02× 2.57 104.12 1.19× 1.90 64.85 1.36× 1.78 37.11 1.47× 1.93 25.82 1.46×

Table 6: Ablation on the components of SpecExtend. Standard indicates the standard tree-based speculative decoding
with Vicuna 7B/68M. FA and HTA indicate FlashAttention for prefill and Hybrid Tree Attention, respectively.
Standard + Retrieval refers to using SpecExtend’s cross-model retrieval cache. Speedups are measured relative to
the standard framework.

prefill stages yields a 1.25× speedup for 16K in-524

puts. Hybrid Tree Attention introduces slight over-525

head at shorter lengths but achieves up to 1.19×526

speedup beyond 8K tokens. Therefore we enable527

Hybrid Tree Attention only for inputs beyond 4K528

tokens. The cross-model retrieval cache alone pro-529

vides up to a 1.46× speedup over the standard set-530

ting.531
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