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Abstract
Label distribution learning (LDL) is an effective
method to predict the relative label description de-
gree (a.k.a. label distribution) of a sample. How-
ever, the label distribution is not a complete rep-
resentation of an instance because it overlooks
the absolute intensity of each label. Specifically,
it’s impossible to obtain the total description de-
gree of hidden labels that not in the label space,
which leads to the loss of information and con-
fusion in instances. To solve the above problem,
we come up with a new concept named back-
ground concentration to serve as the absolute
description degree term of the label distribution
and introduce it into the LDL process, forming
the improved paradigm of concentration distri-
bution learning. Moreover, we propose a novel
model by probabilistic methods and neural net-
works to learn label distributions and background
concentrations from existing LDL datasets. Ex-
tensive experiments prove that the proposed ap-
proach is able to extract background concentra-
tions from label distributions while producing
more accurate prediction results than the state-
of-the-art LDL methods. The code is available in
https://github.com/seutjw/CDL-LD.

1. Introduction
Multi-label learning (MLL) (Tsoumakas & Katakis, 2007;
Zhang & Zhou, 2014; Peng et al., 2025; Li et al., 2025) is
a well-researched machine learning paradigm where a set
of labels is assigned to each sample. In MLL, a logical
value (0 or 1) is used to indicate whether a label is capable
of describing a sample. But each label’s relative impor-
tance to a sample cannot be accurately described by this
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Figure 1. The LD-CD diagrams of two pairs (a,b and c,d) of pic-
tures that share similar or same LDs. After introducing the back-
ground concentration, their CDs can be distinguished easily.

binary value. To this end, label distribution learning (LDL)
(Geng, 2016) was developed, which uses real numbers to
illustrate how important a label is to a particular sample.
All labels’ description degrees make up a label distribution
(LD). Specifically, let dlx stand for the description degree
of the label l to the instance x, which is governed by the
non-negative constraint dlx ∈ [0, 1] and the sum-to-one con-
straint

∑
l d

l
x = 1. Unlike traditional MLL, LDL is a more

general paradigm that attempts to predict the LD for unseen
samples.

In LDL, ground-truth LDs are considered complete repre-
sentations of the corresponding instances. However, there
exist some cases where we cannot describe an instance per-
fectly only with its label distribution. Fig. 1(a) and Fig. 1(b)
show two pictures of boating. Although there is a signif-
icant difference between the sizes of people and boats in
the two pictures, similar LDs are assigned to them due to
the similar relative proportions of the two labels (“Person”
and “Boat”), which goes strongly against our intuition. To
solve this problem, we introduce the concept of background
concentration, which represents the description degree of
the complementary set of all existing labels. In this case, it
can be regarded as the proportion of the background in the
two pictures, which differs a lot from each other. Append-
ing background concentration terms (Backgr. in Fig. 1(a)
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(b) Label distribution of beam
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(c) Concentration distribution of beam
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(e) Label distribution of laugh
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(f) Concentration distribution of laugh

Figure 2. Label and concentration distributions of the images in (a) and (d). The LDs and CDs are shown in bar charts for ease of
observation. By introducing the background concentration term, i.e., CON in (f) and (i), the two images that have identical label
distributions can be distinguished.

and (b)) to the original LDs, we get concentration distri-
butions (CDs). CDs contain more information than LDs,
helping better describe an instance. In this paper, we define
concentration distribution learning (CDL) as the process
of learning the background concentration µ and the label
distribution b simultaneously, which aims to learn concen-
tration distribution vectors cd = [b, µ] from concentration
distribution datasets.

In fact, the concept of background concentration is very
common and important in reality. For example, two pictures
of ilmenite and alien meteorite are shown in Fig. 1(c) and
Fig. 1(d). Ilmenite is a known mineral on earth, while me-
teorite contains 50% of unknown chemical elements (Unk.
in Fig. 1(c) and (d)). After detection in proportions of all
known chemical elements, they share the same chemical
formulas of FeTiO3(20% Fe, 20% Ti and 60% O), leading
to the same LD, which is obviously unreasonable. In this
case, we have no choice but to introduce the background
concentration for representing the proportion of unknown
elements because they cannot be detected yet. To give an-
other example, Fig. 2(a) and Fig 2(d) are two images of
human face. Despite they have significant difference in the
intensity of emotion, two identical LDs in Fig. 2(b) and
Fig. 2(e) are assigned to them due to the similarity of the
proportion of each emotions. In this case, each of the labels
describes a specific emotion (happiness, sadness, etc.), so

the background concentration term represents the descrip-
tion degree of “no emotion”, which is abstract and hard to
be measured. In other words, the stronger the emotion, the
lower the background concentration it should be assigned.
Appending background concentration terms to the LDs in
Fig. 2(b) and Fig. 2(e), they become concentration distribu-
tions in Fig. 2(c) and Fig. 2(f), which help us to distinguish
the two images in Fig. 2(a) and Fig. 2(d) very well.

In this paper, we come up with a novel model, named CDL-
LD. With probabilistic methods and neural networks, it
can learn concentration distributions from the existing label
distribution dataset. The main contributions of our model
are summarized as follows:

• Based on real-world examples, we come up with a new
learning paradigm named concentration distribution
learning, which overcomes the ambiguity of LDs in
traditional LDL methods. In addition, excavating the
background concentration makes full use of the infor-
mation in the datasets and benefits the downstream
tasks.

• With the original version of an LDL dataset, we con-
struct the first real-world concentration distribution
dataset, which further proves the realistic significance
of background concentration and the effectiveness of
our method in concentration distribution learning.
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• Although concentration distribution learning is an ex-
cellent paradigm, there is no existing concentration
distribution dataset for learning. Our method learns
CDs directly from existing LDL datasets, which im-
proves the universality of CDL.

• We conduct extensive experiments to validate the ad-
vantages of our methods over the baseline algorithms
on concentration distribution learning on LDL datasets.
Furthermore, by using the Rademacher complexity, we
show the generalization bound of the proposed model
and theoretically prove that it is possible to directly
construct a CDL model from the LDL datasets for the
first time.

Extensive experiments on the benchmark datasets clearly
show that the LD predicted by our method is better than that
predicted by state-of-the-art LDL methods, and the recovery
results of our method on background concentrations also fit
well with reality.

2. Related Works
2.1. Label Distribution Learning

LDL (Kou et al., 2024; 2025; ?; Wang et al., 2025) is a
new machine learning paradigm that constructs a model to
predict the label distribution of samples. At first, LDL were
achieved through problem transformation that transforms
LDL into a set of single label learning problems such as PT-
SVM, PT-Bayes (Geng, 2016), or through algorithm adapta-
tion that adopts the existing machine learning algorithms to
LDL, such as AA-kNN and AA-BP (Geng, 2016). SA-IIS
(Geng, 2016) is the first model that specially designed for
LDL, whose objective function is a mixture of maximum en-
tropy loss (Berger et al., 1996) and KL-divergence. Based on
SA-IIS, SA-BFGS (Geng, 2016) adopts BFGS to optimize
the loss function, which is faster than SA-IIS. In addition,
LDLLC (Zheng et al., 2018) leverages local label correla-
tion to ensure that prediction distributions between similar
instances are as close as possible. LCLR (Ren et al., 2019)
first models the global label correlation using a low-rank
matrix and then updates the matrix on clusters of samples to
consider local label correlation. LDL forests (LDLFs) (Shen
et al., 2017) is based on differentiable decision trees and
may be combined with representation learning to provide an
end-to-end learning framework. LDLLDM (Wang & Geng,
2023) can handle incomplete label distribution learning and
learn the global and local label distribution manifolds to
take advantage of label correlations.

2.2. Concentration Distribution Learning

Although the above LDL methods have achieved great suc-
cess, none of them take the background concentration into

account. Our work is the first to introduce the concept of
background concentration to traditional label distribution
learning and to develop the novel paradigm of concentration
distribution learning. Further experiments on various real-
world datasets also prove the effectiveness of our method on
learning concentration distributions. If the proposed method
can precisely predict concentration distributions from la-
bel distribution datasets, it can better excavate the hidden
information in these datasets and benefit the downstream
tasks.

3. Proposed Model
Notations: Let n, m and c represent the number of samples,
the dimension of features, and the number of labels. Let
x ∈ Rm denote a feature vector and y ∈ Rc denote its
corresponding ground-truth label distribution vector, which
satisfies ∀i ∈ [1, 2, ..., c] , yi ∈ [0, 1] and

∑c
i=1 yi = 1. The

feature matrix and the corresponding ground-truth label dis-
tribution matrix can be denoted by X = [x1;x2; . . . ;xn] ∈
Rn×m and Y = [y1;y2; . . . ;yn] ∈ Rn×c, respectively.
We aim to learn from the dataset D = [X;Y] and predict
concentration distribution vectors cd = [b, µ] ∈ Rc+1 for
unseen instances. It is composed of the real label distri-
bution vector b and the background concentration term µ,
in which b ∈ Rc, µ > 0, ∀i ∈ [1, 2, ..., c] , bi ∈ [0, 1] and∑c

i=1 bi + µ = 1.

First, to relate label distributions and concentration distribu-
tions, we define p ∈ Rc as the apparent label distribution
vector of the corresponding concentration distribution vec-
tor cd = [b, µ] ∈ Rc+1, where ∀i ∈ [1, 2, ..., c] , pi ∈ [0, 1]
and

∑c
i=1 pi = 1. The relationship between the apparent

label distribution vector and the concentration distribution
vector can be formulated as:

p = b+ µ∗, (1)

where µ∗ ∈ Rc, ∀i ∈ [1, 2, ..., c] ,µ∗
i ∈ [0, 1] and∑c

i=1 µ
∗
i = µ. Eq. (1) indicates that the distribution

of the background concentration µ on the real label distri-
bution vector b converts the concentration distributions to
the apparent label distributions. In other words, the appar-
ent label distribution is affected by both the dataset and the
background concentration.

From a perspective of probability, we assume that p obeys
the Dirichlet distribution, i.e., p ∼ Dir(α), where α ∈ Rc

is the vector of distribution parameters. According to the ex-
pectation formula of Dirichlet distribution, the expectation
on pi can be written as

Epi =
αi∑c
j=1 αj

. (2)

From the form of Eq. (2), the distribution parameter αi

can be regarded as the belief mass on the i-th class, i.e.,
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Figure 3. The framework of our method. The feature vector x and network parameter matrix Θ produce dataset-side confidence vector e
by forward propagation of the nerual network, and Θ is updated by backward propagation with the ground-truth label distribution vector
y and the apparent label distribution vector p. p is sampled in the Dirichlet distribution of parameters vector α = e+ 1c, where 1c is
all-ones vector of size c. With Eq. (8), the real label distribution vector b and the background concentration µ are generated from the
confidence vector e. Finally we get the predicted concentration distribution vector cd = [b, µ].

the degree of confidence that the corresponding instance
should be classified into the i-th class. This confidence
comes from two sources, one is the certain part extracted
from the dataset, and the other is the hidden part decided by
the background concentration, i.e.,

αi = ei + ui, (3)

where ei > 0 and ui > 0 represents the degree of confi-
dence on the i-th class from the dataset and the background
concentration respectively. Denote 0c,1c ∈ Rc as an all-
zeros vector and an all-ones vector. Based on reality, when
there is nothing in the dataset to provide confidence, i.e.,
∀i ∈ [1, 2, ..., c], e = [e1, e2, ..., ec] = 0c, p should be a
uniform distribution. In this case, the vector of distribution
parameters α = 1c and Dir(α) degrades to a flat Dirichlet
distribution. Substitute e = 0c and α = 1c in Eq. (3), we
have

1c = 0c + u

u = 1c,
(4)

where u = [u1, u2, ..., uc]. Substitute Eq. (4) in Eq. (3),
the relation between αi and ei is formulated as

αi = ei + 1. (5)

Finally, substitute αi of Eq. (5) in Eq. (2),

Epi =
ei + 1∑c

j=1(ej + 1)

=
ei + 1∑c
j=1 ej + c

.

(6)

In Eq. (1), assuming that the background concentration is
evenly spread on each class of the real label distribution
vector b in probability, i.e., ∀i ∈ [1, 2, ..., c],Eµ∗

i
= µ

c , then
another form of the expectation of pi can be expressed as

Epi = bi +
µ

c
. (7)

Combining Eq. (6) and Eq. (7), the expressions of bi and µ
can be obtained as

ei + 1∑
j(ei + 1)

= bi +
µ

c

bi =
ei∑c

j=1 ej + c
, µ =

c∑c
j=1 ej + c

(8)

To obtain the vector of dataset-side confidence e, we apply a
confidence network e = f(x|Θ) on the dataset D = [X;Y],
where x ∈ Rm is an instance from X, f is the network
function and Θ is its parameters. Specifically, the softmax
layer of a conventional neural network is replaced with an
activation function layer (i.e., RELU (Glorot et al., 2011)) to
ensure that the network outputs non-negative values, which
are considered as the confidence vector e = [e1, e2, ..ec].
Accordingly, the vector of Dirichlet distribution parameters
α can be obtained.

For each instance, in conventional neural network, the MSE
(Mean Square Error) loss is usually employed as

LMSE = ||y − p||22, (9)

where y and p are the ground-truth and the predicted label
distribution vector of the instance respectively. For our

4



Concentration Distribution Learning from Label Distributions

model, given the degree of dataset-side confidence e of the
instance obtained through the confidence network, we can
get the parameter α (i.e., αi = ei + 1) of the Dirichlet
distribution and sample p from Dir(α). After a simple
modification on Eq. (9), we have the adjusted MSE loss of
our model:

LAMSE(α) =

∫
||y − p||22

1

B(α)

c∏
i=1

pαi−1
i dp

=

c∑
i=1

(yi −
αi

S
)2

Lerr

+
αi(S − αi)

S2(S + 1)

Lvar

=

c∑
i=1

(yi − p̂i)
2 +

p̂i(1− p̂i)

S + 1
,

(10)

where S =
∑c

i=1 αi and p̂i = αi

S . By decomposing the
first and second moments, the loss aims to achieve the joint
goals of minimizing the predictive error and the variance of
the Dirichlet distribution generated by the neural network
specifically for each sample in the training set. While doing
so, it prioritizes data fit over variance estimation. With the
trained neural network e = f(x|Θ) and then substitute e
in Eq. 8, we get the predicted concentration distribution
vector cd = [b, µ]. The overall probabilistic graph model of
CDL-LD is presented in Fig. 3.

3.1. Generalization Bound

In this subsection, we first provide Rademacher complexity
(Mohri et al., 2012) for CDL-LD, which is a commonly
used tool for comprehensive analysis of data-dependent risk
bounds.

Definition 1. Let H be a family of functions mapping
from X to [0,1] and S be a set of fixed samples with size
n. Then, the empirical Rademacher complexity of H with
respective to S is defined as

R̂S(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih (xi)

]

≤ Eσ

[
1

n

n∑
i=1

σiLAMSE (αi)

]
,

(11)

where σi ∈ [0, 1] and αi represents the Dirichlet distribu-
tion parameter vector of the i-th instance.

Lemma 1. Let H be a family of functions. For any δ > 0,
with probability at least 1− δ, for all h ∈ H such that

L(h) ≤ LS(h) + R̂S(H) + 3

√
log 2/δ

2n
, (12)

where L(h) and LS(h) are the generalization risk and em-
pirical risk with respective to h, and n represents the number
of instances.

Substitute Eq. (11) in Eq. (12), we have

L(h) ≤LS(h) + Eσ

[
1

n

n∑
i=1

σiLAMSE (αi)

]

+ 3

√
log 2/δ

2n
.

(13)

According to the second line of Eq. (10) and S =∑c
i=1 αi, there holds that LAMSE(α) =

∑c
i=1(yi−

αi

S )2+
αi(S−αi)
S2(S+1) > 0. With σi ∈ [0, 1], the expectation term in Eq.

(13) can be simplified as

Eσ

[
1

n

n∑
i=1

σiLAMSE (αi)

]
≤ 1

n

n∑
i=1

LAMSE (αi)

≤ 1

n

n∑
i=1

c∑
j=1

[
(yij −

αij

Si
)2 +

αij(Si − αij)

S2
i (Si + 1)

]

≤ 1

n

n∑
i=1

c∑
j=1

[
(yij −

αij

Si
)2 +

αij

Si
(1− αij

Si
)

Si(Si + 1)

]

≤ 1

n

n∑
i=1

[
1 +

1

4c(c+ 1)

]
(14)

Substitute Eq. (14) in Eq. (13), we get

L(h) ≤LS(h) +
1

n

n∑
i=1

[
1 +

1

4c(c+ 1)

]
+ 3

√
log 2/δ

2n
.

(15)

Let n in Eq. (15) tends to infinity:

L(h) ≤ LS(h) +

[
1 +

1

4c(c+ 1)

]
bound

. (16)

From Eq. (16), we can observe that when the number of
instances n tends to infinity, the generalization risk of our
proposed model will be upper-bounded by the empirical
risk of it with a bound of 1

4c(c+1) , which indicates that this
bound shrinks when the number of classes increases. This
conclusion is intuitive because the background concen-
tration tends to zero when c tends to infinity, degrading
the CDL problem to learnable LDL problem. Combin-
ing all equations together, we can draw the conclusion that
it is possible to directly construct a CDL model from the
LDL datasets, and the concentration distribution learning
problem itself is also learnable.
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4. Experiments
4.1. Experimental Configurations

4.1.1. EXPERIMENTAL DATASETS

The experiments are carried out on 12 real-world datasets
with label distribution. The statistics of these datasets are
summarized in Table 1. Among these, the first eight (from
Alpha to Spoem) are from the clustering analysis of genome-
wide expression in Yeast Saccharomyces cerevisiae (Eisen
et al., 1998). The SJAFFE is collected from JAFFE (Lyons
et al., 1998), and the SBU 3DFE is obtained from BU 3DFE
(Yin et al., 2006). The Scene consists of multi-label images,
where the label distributions are transformed from rankings
(Geng & Xia, 2014). SJA c (in section 4.2) is the first
CDL dataset generated from SJAFFE dataset in this paper.
For each dataset, the last class of the ground-truth label
distribution is regarded as the background concentration
and will be invisible in training.

Table 1. Statistics of the 12 datasets

Dataset (abbr.) # Instances # Features # Labels
Alpha (Alp) 2465 24 18
Cdc (Cdc) 2465 24 15
Cold (Col) 2465 24 4
Diau (Dia) 2465 24 7
Elu (Elu) 2465 24 14

Heat (Hea) 2465 24 6
Spo (Spo5) 2465 24 6
Spo5 (Spo) 2465 24 3

SJAFFE (SJA) 213 243 6
SBU 3DFE (SBU) 2500 243 6

Scene (Sce) 2000 294 9
SJA c (SJAc) 213 243 7

Table 2. Formulas of the four evaluation metrics. Here ↓ indicates
that smaller values are better, and ↑ indicates that larger values are
better.

Measure Formula

Chebyshev↓ Dis1(D, D̂) = maxj |dj − d̂j |

Clark↓ Dis2(D, D̂) =

√∑c
j=1

(dj−d̂j)2

(dj+d̂j)2

KL↓ Dis3(D, D̂) =
∑c

j=1 di ln
di

d̂j

Cosine↑ Sim1(D, D̂) =
∑c

j=1 dj d̂j√∑c
j=1 d2

j

√∑c
j=1 d̂2

j

4.1.2. EVALUATION METRICS

As suggested in (Geng, 2016), we adopt three distance met-
rics (i.e., Chebyshev, Clark and KL) and one similarity met-
ric (i.e. Cosine) to evaluate the performances of methods.
The formulas of these evaluation metrics are summarized in
Table 2.

4.1.3. COMPARISON METHODS

We compare the proposed methods with four baseline
LDL methods, including LDLLC, SA-IIS, LCLR, LDLFs,
LDLLDM and DLDL, which are briefly introduced as be-
low.

• LDLLC (Zheng et al., 2018): LDLLC makes use of
local label correlation to guarantee that prediction dis-
tributions between comparable instances are as close
as possible.

• SA-IIS (Geng, 2016): SA-IIS learns the label distribu-
tion using KL divergence and the maximum entropy
model.

• LCLR (Ren et al., 2019): LCLR uses a low-rank ma-
trix to model global label correlation first, and then it
updates the matrix on sample clusters to account for
local label correlation.

• LDLFs (Shen et al., 2017): To provide an end-to-end
learning framework, LDL forests (LDLFs), which are
based on differentiable decision trees, can be coupled
with representation learning.

• LDLLDM (Wang & Geng, 2023): LDLLDM learns
both the global and local label distribution manifolds in
order to take advantage of label correlations. It is also
capable of handling partial label distribution learning.

• DLDL (Jia et al., 2024): DLDL unifies label enhance-
ment (LE) and LDL into a joint model and avoids the
drawbacks of the previous LE methods. Furthermore,
it theoretically proves that directly learning an LDL
model from logical labels is feasible.

The parameters of the methods are as follows. The sug-
gested parameters are used for LDLLC, IIS-LLD, LCLR,
LDLFs and DLDL. For LDLLDM, λ1, λ2 and λ3 are tuned
from {10−3, 10−2, ..., 103}, and g is tuned from 1 to 14.
Note that all the baseline methods are LDL algorithms,
they are not able to provide concentration distributions. So,
for each instance, we append g + δ as the predicted back-
ground concentration to the predicted label distribution vec-
tor, where g is the ground-truth description degree of the last
class and −0.2g < δ < 0.2g is a random noise to simulate
the inaccurate learning of background concentration in the
baseline methods. Then normalization will be applied on
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this concentration distribution vector to ensure that all of its
elements sums up to 1. We run each method for ten-fold
cross-validation.

4.2. Construction of CDL dataset

The generation mechanism of the SJAFFE dataset makes it a
potential concentration distribution dataset. Specifically, the
six classes (happy, sad, surprised, angry, disappointed, and
fear) of the original SJAFFE dataset are semantic ratings
averaged over 60 Japanese female subjects. A 5-level scale
was used for each of the six adjectives (5 for highest and 1
for lowest). An example of the rating vector in the original
SJAFFE dataset can be s = [3, 4.8, 1.2, 2.1, 2.4, 1.5], and
after normalization, it becomes a label distribution vector
sn

sn =
[3, 4.8, 1.2, 2.1, 2.4, 1.5]

3 + 4.8 + 1.2 + 2.1 + 2.4 + 1.5

= [0.2, 0.32, 0.08, 0.14, 0.16, 0.1].

(17)

According to the definition of background concentration,
we have µ = 5 ∗ 6 −

∑6
i=1 si, where µ is regarded the

ground-truth background concentration and si is the i-th
element of the original SJAFFE rating vector. In the case
above, µ = 5 ∗ 6− (3+ 4.8+ 1.2+ 2.1+ 2.4+ 1.5) = 15.
Appending µ to the last of the original rating vector s and
then applying normalization on the new vector, we get a
standard concentration distribution vector cd

cd =
[3, 4.8, 1.2, 2.1, 2.4, 1.5, 15]

3 + 4.8 + 1.2 + 2.1 + 2.4 + 1.5 + 15

= [0.1, 0.16, 0.04, 0.07, 0.08, 0.05, 0.5].

(18)

Repetition of the steps above on each instance in the SJAFFE
dataset gives the ground-truth concentration distributions
of them, making it the first concentration distribution
dataset named SJA c.

4.3. Results and Discussion

Table 3 presents the experimental results (mean±std) of
all the 7 algorithms on 12 datasets in terms of Chebyshev
(abbr. Cheby), Clark, KL, and Cosine, with the best results
highlighted in boldface. According to the results recorded
in Table 3, we observe that

• Our method CDL-LD achieves the lowest average rank
in terms of all of the four evaluation metrics. Specifi-
cally, out of the 48 statistical comparisons, CDL-LD
ranks 1st in 93.75% (45 out of 48) cases. In general,
CDL-LD performs better than most comparison algo-
rithms.

• On some LDL datasets, our method achieves superior
performance. For example, on Col, Dia, Spo and Scene,
CDL-LD significantly improves the results compared

with the other baseline algorithms in terms of all the
four metrics.

• On the concentration distribution dataset (i.e, SJA c),
CDL-LD shows overwhelming superiority to the other
baseline algorithms in all of the four metrics. This re-
sult proves the effectiveness of CDL-LD in real-world
concentration distribution learning problems.

Hap. Sad. Sur. Ang. Dis. Fea. Con.
0

0.2

0.4

0.6
Groundtruth

Prediction

Figure 4. The visualization of a typical result of our method on the
SJA c dataset and its corresponding image.

Additionally, the visualization of a typical result on the
SJA c dataset is presented in Fig. 4, where the scales on
the horizontal axis represent six emotions of happiness, sad-
ness, surprise, anger, disappointment, and fear, while the
last represents the background concentration. In this figure,
we can observe that the predictive result of our method is
very close to the ground-truth concentration distribution in
the first six classes (the real label distributions of six emo-
tions) and in the last class (the background concentration
of “no emotion”). Specifically, both the ground-truth and
the predicted CDs indicate the emotion of faint sadness
(a peak on sadness with high background concentration),
matching the corresponding image very well. This further
proves that background concentrations exist in reality and
our method has the ability to precisely excavate background
concentrations from real-world datasets.

To sum up, the experimental results further support the
competitive performance of the proposed algorithm, indicat-
ing its effectiveness in real-world concentration distribution
learning problems.
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Metric CDL-LD LDLLC SA-IIS LCLR LDLFs LDLLDM DLDL

Alp

Cheby 0.0245±.0002(1) 0.0571±.0022(7) 0.0366±.0028(2) 0.0529±.0018(6) 0.0502±.0005(3) 0.0523±.0013(5) 0.0520±.0002(4)

Clark 0.2797±.0009(1) 0.4586±.0128(6) 0.7340±.0297(7) 0.4410±.0002(5) 0.4253±.0066(2) 0.4365±.0211(4) 0.4318±.0049(3)

KL 0.0098±.0000(1) 0.0914±.0018(7) 0.0623±.0487(4) 0.0858±.0020(6) 0.0835±.0005(5) 0.0365±.0028(3) 0.0351±.0001(2)

Cosine 0.9894±.0017(1) 0.9560±.0019(7) 0.9824±.0027(2) 0.9563±.0021(6) 0.9590±.0007(3) 0.9570±.0009(5) 0.9573±.0001(4)

Cdc

Cheby 0.0291±.0002(1) 0.0619±.0068(4) 0.1456±.0119(7) 0.0565±.0022(2) 0.0632±.0003(6) 0.0599±.0008(3) 0.0626±.0037(5)

Clark 0.2891±.0003(1) 0.4876±.0270(6) 0.8329±.0030(7) 0.4327±.0007(2) 0.4539±.0026(4) 0.4457±.0122(3) 0.4611±.0086(5)

KL 0.0122±.0003(1) 0.1114±.0082(6) 0.1327±.0506(7) 0.0959±.0010(4) 0.1031±.0007(5) 0.0426±.0041(2) 0.0448±.0041(3)

Cosine 0.9870±.0005(1) 0.9485±.0079(5) 0.8489±.0164(7) 0.9565±.0024(2) 0.9479±.0003(6) 0.9530±.0007(3) 0.9502±.0047(4)

Col

Cheby 0.0821±.0009(1) 0.1606±.0077(7) 0.1561±.0312(6) 0.1475±.0084(4) 0.1488±.0030(5) 0.1441±.0013(2) 0.1454±.0060(3)

Clark 0.2073±.0002(1) 0.4062±.0181(6) 0.4670±.1468(7) 0.3734±.0218(4) 0.3849±.0015(5) 0.3674±.0064(2) 0.3719±.0146(3)

KL 0.0262±.0006(1) 0.2421±.0135(7) 0.1051±.0599(4) 0.2180±.0151(5) 0.2209±.0044(6) 0.0973±.0064(2) 0.0985±.0100(3)

Cosine 0.9737±.0006(1) 0.9139±.0058(7) 0.9385±.0219(2) 0.9266±.0056(6) 0.9277±.0022(5) 0.9302±.0015(3) 0.9289±.0044(4)

Dia

Cheby 0.0677±.0004(1) 0.1092±.0014(4) 0.1529±.0755(7) 0.1140±.0004(6) 0.1105±.0100(5) 0.1079±.0033(3) 0.1072±.0111(2)

Clark 0.2910±.0001(1) 0.4420±.0055(6) 0.5501±.0090(7) 0.4394±.0006(5) 0.4308±.0219(4) 0.4186±.0058(2) 0.4227±.0188(3)

KL 0.0276±.0003(1) 0.1707±.0046(6) 0.0961±.0236(4) 0.1721±.0010(7) 0.1689±.0114(5) 0.0756±.0010(3) 0.0732±.0098(2)

Cosine 0.9718±.0003(1) 0.9292±.0001(5) 0.9042±.0677(7) 0.9259±.0004(6) 0.9294±.0102(4) 0.9315±.0028(2) 0.9344±.0105(3)

Elu

Cheby 0.0317±.0001(1) 0.0657±.0014(6) 0.0506±.0150(2) 0.0647±.0003(5) 0.0629±.0012(3) 0.0632±.0008(4) 0.0683±.0003(7)

Clark 0.2740±.0002(1) 0.4592±.0105(6) 0.6535±.2047(7) 0.4333±.0116(4) 0.4273±.0013(2) 0.4316±.0022(3) 0.4505±.0005(5)

KL 0.0119±.0001(1) 0.1113±.0028(7) 0.0587±.0409(4) 0.1027±.0026(6) 0.1001±.0006(5) 0.0433±.0009(2) 0.0487±.0001(3)

Cosine 0.9871±.0001(1) 0.9479±.0025(6) 0.9742±.0114(2) 0.9507±.0004(5) 0.9529±.0008(3) 0.9523±.0012(4) 0.9471±.0007(7)

Hea

Cheby 0.0641±.0004(1) 0.1183±.0037(5) 0.1006±.0884(2) 0.1205±.0004(6) 0.1154±.0081(4) 0.1276±.0028(7) 0.1138±.0042(3)

Clark 0.2399±.0002(1) 0.4132±.0131(6) 0.3095±.1641(2) 0.4112±.0009(5) 0.3979±.0219(3) 0.4290±.0061(7) 0.3997±.0106(4)

KL 0.0218±.0001(1) 0.1828±.0102(7) 0.0419±.0429(2) 0.1800±.0019(6) 0.1730±.0109(5) 0.0925±.0031(4) 0.0780±.0037(3)

Cosine 0.9776±.0002(1) 0.9309±.0034(5) 0.9505±.0547(2) 0.9307±.0005(6) 0.9359±.0068(4) 0.9247±.0024(7) 0.9370±.0041(3)

Spo

Cheby 0.0634±.0016(1) 0.1324±.0047(6) 0.2541±.0232(7) 0.1210±.0005(2) 0.1251±.0036(3) 0.1270±.0012(5) 0.1254±.0039(4)

Clark 0.2584±.0035(1) 0.4611±.0079(6) 0.6960±.0367(7) 0.4228±.0017(2) 0.4364±.0110(4) 0.4355±.0008(3) 0.4439±.0132(5)

KL 0.0254±.0007(1) 0.2140±.0065(7) 0.2130±.0222(6) 0.1914±.0028(4) 0.2004±.0084(5) 0.0927±.0024(2) 0.0981±.0009(3)

Cosine 0.9754±.0008(1) 0.9190±.0044(6) 0.8423±.0168(7) 0.9301±.0010(2) 0.9265±.0028(3) 0.9253±.0028(4) 0.9241±.0017(5)

Spo5

Cheby 0.3101±.0017(1) 0.3936±.0072(7) 0.3850±.0275(6) 0.3207±.0072(3) 0.3202±.0073(2) 0.3287±.0065(4) 0.3489±.0093(5)

Clark 0.7726±.0044(1) 0.9373±.0049(7) 0.8799±.0624(6) 0.8372±.0123(3) 0.8393±.0116(4) 0.8548±.0034(5) 0.7924±.0252(2)

KL 0.4343±.0151(1) 1.6749±.0256(7) 0.7430±.0877(3) 0.8877±.0236(6) 0.8850±.0195(5) 0.6660±.0054(2) 0.7659±.0352(4)

Cosine 0.8133±.0011(1) 0.7542±.0058(7) 0.8026±.1758(5) 0.8112±.0058(2) 0.8095±.0065(4) 0.8063±.0065(3) 0.7844±.0088(6)

SJA

Cheby 0.4335±.0002(7) 0.3484±.0473(3) 0.3686±.0326(4) 0.3045±.0056(1) 0.3734±.0119(5) 0.3388±.0219(2) 0.3790±.0216(6)

Clark 0.9992±.0002(1) 1.1948±.0591(7) 1.0976±.0239(4) 1.0627±.0053(3) 1.0373±.0722(2) 1.1630±.0126(6) 1.1508±.0736(5)

KL 0.4841±.0007(1) 1.5855±.0465(7) 0.7308±.0122(2) 0.7653±.0718(3) 0.7871±.1415(4) 1.1815±.0159(6) 0.9323±.0807(5)

Cosine 0.8161±.0013(1) 0.7211±.0425(6) 0.7038±.0316(7) 0.7478±.0021(4) 0.7587±.0110(3) 0.7222±.0149(5) 0.7597±.0398(2)

SBU

Cheby 0.3362±.0008(3) 0.3688±.0047(5) 0.3511±.0213(4) 0.2972±.0019(1) 0.3123±.0019(2) 0.3723±.0151(6) 0.3823±.0171(7)

Clark 0.9682±.0035(1) 1.1914±.0079(7) 1.1503±.0263(5) 0.9798±.0207(3) 0.9757±.0024(2) 1.1761±.0418(6) 1.1245±.0010(4)

KL 0.4641±.0028(1) 1.4267±.0065(7) 0.7209±.0103(2) 0.7894±.0360(3) 0.8296±.0114(4) 1.2469±.0190(5) 1.2848±.0215(6)

Cosine 0.6310±.0009(7) 0.7060±.0044(4) 0.7183±.0208(3) 0.7578±.0008(1) 0.7499±.0013(2) 0.7040±.0097(5) 0.6922±.0255(6)

Sce

Cheby 0.3948±.0011(1) 0.5289±.0033(4) 0.5438±.0447(6) 0.4789±.0021(3) 0.4765±.0083(2) 0.5363±.0154(5) 0.5440±.0153(7)

Clark 1.9714±.0041(1) 2.4907±.0019(2) 2.7042±.0292(7) 2.5404±.0004(6) 2.5387±.0037(5) 2.5202±.0065(3) 2.5237±.0333(4)

KL 0.4918±.0010(1) 1.1354±.0108(2) 1.7242±.0340(7) 1.5624±.0077(5) 1.5938±.0605(6) 1.2310±.1056(3) 1.2955±.0116(4)

Cosine 0.6063±.0020(1) 0.5787±.0048(2) 0.4772±.0116(6) 0.5282±.0011(3) 0.4629±.0083(7) 0.5187±.0072(5) 0.5198±.0234(4)

SJAc

Cheby 0.1153±.0031(1) 0.3190±.0096(4) 0.3024±.0014(3) 0.2504±.0003(2) 0.3598±.0069(7) 0.3303±.0148(5) 0.3518±.0065(6)

Clark 0.5336±.0048(1) 0.9786±.0076(5) 0.8086±.0100(3) 0.7821±.0076(2) 1.1820±.0341(7) 0.9712±.0124(4) 0.9983±.0164(6)

KL 0.0722±.0020(1) 0.7183±.0020(6) 0.2021±.0088(2) 0.4076±.0017(3) 1.0728±.0394(7) 0.4573±.0346(4) 0.5089±.0277(5)

Cosine 0.9740±.0062(1) 0.7459±.0194(4) 0.8824±.0192(2) 0.8434±.0046(3) 0.7160±.0489(6) 0.7195±.0154(5) 0.6791±.0072(7)

Table 3. Predictive results (mean±std) and ranks of our and baseline methods in terms of four metrics on 12 datasets, where the best
results are highlighted in boldface.
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Figure 5. The CD diagram of CDL-LD against other six methods with the Bonferroni-Dunn test (CD = 2.3265 at 0.05 significance level).

CDL-LD LDLLC SA-IIS LCLR LDLFs LDLLDM DLDL

Cheby 1.67(1) 5.17(7) 4.67(5) 3.42(2) 3.92(3) 4.25(4) 4.92(6)

Clark 1.00(1) 5.83(7) 5.75(6) 3.67(2) 3.67(2) 4.00(4) 4.08(5)

KL 1.00(1) 6.33(7) 3.92(4) 4.83(5) 5.08(6) 3.17(2) 3.67(3)

Cosine 1.50(1) 5.33(7) 4.33(5) 3.83(2) 4.17(3) 4.25(4) 4.58(6)

Table 4. Average ranks and their ranks of our and baseline methods
in terms of four metrics on all the datasets, where the best average
ranks are highlighted in boldface.

Critical Value Evaluation metric Chebyshev Clark KL Cosine

2.913 Friedman Statistics FF 22.2645 40.2058 43.9416 21.8687

Table 5. Summary of the Friedman statistics FF in terms of four
evaluation metrics, with the critical value at a significance level of
0.05 (7 algorithms on 12 datasets)

CDL-LD LDLLC SA-IIS LCLR LDLFs LDLLDM DLDL

Alp 10.45(1) 177.12(6) 69.34(2) 78.75(3) 136.89(5) 114.36(4) 180.71(7)

SBU 29.96(1) 189.84(5) 103.29(2) 123.57(3) 158.09(4) 197.38(6) 241.15(7)

Sce 17.23(1) 186.58(6) 92.62(3) 92.03(2) 143.62(4) 172.51(5) 234.02(7)

Table 6. Average ranks and their ranks of our and baseline methods
in terms of running time (unit: second) on three large datasets,
where the best average ranks are highlighted in boldface.

4.4. Significance Tests

In this subsection, the average ranks of all methods are
presented in Table 4. First, we conduct the Friedman test
(Demšar, 2006) to study the comparative performance of
all methods. Table 5 shows the Friedman statistics for each
metric and the critical value. At the confidence level of
0.05, the null hypothesis that all algorithms have equal per-
formance is rejected. Then we apply a post-hoc test, that
is, the Bonferroni-Dunn test (Demšar, 2006) at the 0.05
significance level to test whether CDL-LD achieves signif-
icantly better performance compared to other algorithms.
We use CDL-LD as the control algorithm with a critical dif-
ference (CD) (Demšar, 2006) to correct for the difference in
mean level with the comparison algorithms. An algorithm is
deemed to achieve significantly different performance from

CDL-LD if its average rank differs from that of CDL-LD
by at least one critical difference.

The results are shown in Fig. 5. If the average rank of
a comparing algorithm is within one CD to that of CDL-
LD, they are connected with a thick line; otherwise, it is
considered to have a significantly different performance
from CDL-LD. It is impressive that CDL-LD achieves the
lowest rank in terms of all four evaluation metrics, and
the effectiveness of it is also more significant than all the
other baseline methods based on Clark and Cosine. and the
effectiveness of it is also more significant than all the other
baseline methods based on Clark and Cosine.

4.5. Time Complexity Analysis

In this section, three large datasets are selected from all
the training datasets. We compare the running time of all
the algorithms, and the results are shown in Table 6. The
hardware configuration of the test machine is as follows:
AMD EPYC 7K62 48-Cores CPU, 377G running memory
and NVIDIA GeForce RTX 3090 GPU. It can be observed
from the results that the proposed model CDL-LD is much
lower in terms of time cost than all other baseline algorithms,
further proving the superiority of it.

5. Conclusion
This paper presents a novel paradigm called concentration
distribution learning (CDL). Specifically, concentration dis-
tributions are constructed by introducing background con-
centration terms in label distributions. Due to the lack of
concentration distribution learning datasets, we propose an
algorithm to learn concentration distribution from traditional
label distribution learning (LDL) datasets. Extensive exper-
iments validate the advantage of CDL-LD against other
baseline algorithms in concentration distribution learning,
confirming the effectiveness of our method in training a
CDL model from LDL datasets. Moreover, we build the
first CDL dataset, that is, SJA c from the original SJAFFE
dataset, and further prove the ability of our method to solve
real-world CDL problems. Future work will continue to
explore this innovative direction, focusing on concentration
distribution learning.
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