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Abstract

Understanding relativistic heavy ion collision is impor-001
tant to study universe evolution. Traditional methods to002
simulate the collision reliant on Bayesian analysis which003
is costly and non-scalable, and deep learning has the po-004
tential to overcome it. We present a benchmark on rela-005
tivistic heavy ion collisions, which simulates the relativistic006
heavy ion collision for about 3700 hours on a combination007
of GPUs and CPUs to compute many events, producing a008
total of 10.8 million jet event images for benchmarking rel-009
ativistic heavy ion collisions. We release it to the vision010
community to push forward. Our dataset converts complex011
physics simulations into physics images, which can be com-012
patible with standard vision classifiers. Using the standard013
Convolutional Neural Networks (CNN), our initial results014
attain a 92% accuracy in energy loss module classification,015
while concurrently accelerating the simulation process by016
an order of magnitude and saving millions of CPU/GPU017
hours. Our results suggest the potential of applying com-018
puter vision algorithms to physics in particle collisions dis-019
covery and beyond.020

1. Introduction021

In the realm of high-energy heavy-ion collisions, our re-022
search addresses a crucial need —- to unravel the intrica-023
cies of the quark-gluon plasma and, specifically, to decode024
the elusive energy loss module within jet events. This pur-025
suit isn’t driven by mere curiosity but by the profound im-026
portance of advancing our comprehension of fundamental027
physics.028

In the realm of relativistic heavy-ion collisions, re-029
searchers aim to investigate the Quark-Gluon Plasma (QGP)030
by studying jets. This pursuit involves extracting various031
parameters, transitioning from the abstract concept of QGP032
to a tangible exploration. Physicists navigate uncertain-033
ties by making assumptions about different stages, blend-034
ing well-understood aspects with ambiguous segments as-035

Figure 1. Representative example of Pb-Pb collision events with
Q0 = 1.5 and αs = 0.2 that show the scattering and energy of the
subatomic particles, depicted as a 2D histogram. Top two figures
are Matter events; bottom two figures are MATTER-LBT events.
We will show how to predict the energy loss module, which is
crucial for particle physics, from those events images.

signed specific parameters. The ultimate goal is to precisely 036
extract these parameters, navigating the blurred boundaries 037
between the known and unknown in the quest to unravel 038
the mysteries of relativistic heavy-ion collisions. Figure 2 039
illustrates collisions evolution in one glance. 040

Addressing the challenges of high-energy collisions and 041
quark-gluon plasma intricacies [18, 28], our project takes 042
a departure from conventional Bayesian analysis approach. 043
Unlike the iterative simulation approach of Bayesian analy- 044
sis [8], our focus is on pioneering computer vision and pat- 045
tern recognition methods. Despite the success of Bayesian 046
[12–14, 19, 36, 37], our central inquiry revolves around ef- 047
ficiency – can computer vision expedite the process? This 048
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Figure 2. Relativistic heavy-ion collisions, credit to Chun Shen et. al. from JETSCAPE collaboration.

leads to our defined problem: using pattern recognition, can049
a ML model discern jet parameters from a set of event im-050
ages? The necessity for a set of events arises due to the051
inadequacy of information in a single event image for com-052
prehensive parameter analysis.053

Our innovative approach centers around the ML-JET054
dataset, a colossal compilation of 10.8 million images ex-055
clusively designed for deep learning. Each image encapsu-056
lates crucial information, depicting three parameters: en-057
ergy loss module, virtuality separation scale (Q0), and058
strong coupling constant (αs). Figure 1 illustrates for sam-059
ple event collisions. The dataset’s creation required an ex-060
tensive 3700 hours of computational effort, utilizing signif-061
icant resources —- 512 GB of memory and up to 16 CPU062
cores. Notably, our emphasis on energy loss module binary063
classification, akin to cat vs. dog classification, is crucial.064
This task, determining MATTER or LBT categorization,065
which lie at the extremes of the energy loss values, offers066
insights into predicting nuanced parameters. This classi-067
fication initiative, our inaugural feasibility study, acts as a068
proof of concept for broader predictive endeavors in our re-069
search.070

Utilizing state-of-art deep learning techniques, notably071
the VGG16 and PointNet model, we achieve unprecedented072
precision in classifying and analyzing energy loss modules.073
Rooted in a comprehensive dataset, this approach not only074
expands our understanding of high-energy heavy-ion colli-075
sions and the mysterious quark-gluon plasma but also rep-076
resents the first in-depth examination of jet evolution within077
a medium. The groundbreaking result stems from the inter-078
section of the ML-JET dataset and cutting-edge deep learn-079

ing techniques, advancing our knowledge and establishing 080
a solid foundation for a nuanced grasp of energy loss mod- 081
ules. Our work, with its exceptional precision, addresses 082
gaps in prior methodologies, signifying a substantial ad- 083
vance in the study of high-energy collisions. The trained 084
classifier demonstrated remarkable efficacy, boasting a 92% 085
accuracy -— an impressive feat compared to the conven- 086
tional Bayesian analysis, which is both computationally and 087
time-consuming, lacking simultaneous consideration of all 088
jet shower data. We will release our data, model, and code. 089

2. Related Work 090

Analyzing heavy ion collisions presents distinctive chal- 091
lenges, with datasets reaching gigabytes or terabytes for 092
a limited number of design points. Unlike conventional 093
datasets, each heavy ion collision dataset is specific to its 094
task, creating varied samples based on governing parame- 095
ters. Recent research in heavy ion collisions has addressed 096
known issues by providing standardized datasets. While 097
AI has been employed for jet and hydro studies, there’s a 098
notable gap in energy loss module binary classification re- 099
search. Prior work focused on vacuum jets, neglecting those 100
traversing a medium. Our research pioneers machine learn- 101
ing applications in examining jets within a medium, mark- 102
ing a significant and novel contribution to the field. [12– 103
14, 19, 36, 37]. [9] focuses on hadron showers using ML 104
and is specialized for specific types of hadron showers. Of 105
these, the excellent work of [11] is most closely related, but 106
with only four physical systems, it still lacks sufficient scale 107
and diversity of data to challenge emerging ML algorithms. 108
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By offering a wider, more varied problem selection and109
scale than these prior initiatives (18 design points with vari-110
ous parametrizations leading to 9 datasets), we increase the111
number of benchmarks available in this field. For these de-112
sign aspects, we also take into account the energy loss mod-113
ule classification problem [7, 27] with the intention of em-114
ploying ML to find latent factors that are not observable.115
Despite growing in prominence throughout the community,116
this has not yet been addressed.117

One may find a summary and taxonomy of develop-118
ments in heavy ion collisions in [18, 28]. Given data119
produced by the JETSCAPE framework [28], which itself120
tries to directly incorporate the tuning of parameters by121
Bayesian analysis, we concentrate on applying CNN mod-122
els to approximate the outputs of the ground truth for creat-123
ing our baselines. A range of techniques to deal with heavy124
ion collisions is discussed in [11, 27]. Methods include125
Bayesian analysis [8], principle component analysis [21],126
and CNN [11]. Each of these methods makes use of vari-127
ous presumptions, applicability domains, and data process-128
ing needs. The JETSCAPE framework is basically designed129
to try/understand jets moving through the medium, i.e., the130
Quark Gluon Plasma (QGP). Jets are localized regions of131
high energy traveling through the QGP. [28]132

Bayesian Analysis:Although computationally expen-133
sive, Bayesian analysis is a relatively efficient means of ex-134
tracting parameter values so the simulation results approx-135
imate experimental data. That’s how physicists convert the136
problem from an abstract model to something more con-137
crete. To make this computationally feasible, the analy-138
sis requires some assumptions about different stages/phases139
and considers only a subset of the available data. Some140
parameter values are better determined than others, and141
most parameter values are not independent of each other,142
so Bayesian analysis is used to tune the system by finding143
suitable parameter values. [12, 14, 19]144

The Bayesian analysis research field operates by system-145
atically varying parameters in simulations and comparing146
the results with real data to isolate specific parameter val-147
ues. Utilizing maximum a posteriori probability (MAP),148
Bayesian analysis seeks the parameter space’s maximum149
probability, reporting this as its parameter predictions. Un-150
like our current approach, which can determine one specific151
parameter at a time, Bayesian analysis aims to concurrently152
determine all parameter values, and its predictions depend153
on the interrelation of all values. [13, 36, 37]154

What we are doing in the big picture and the whole idea155
of our research is to find a different path to determine those156
parameters with computer vision/pattern recognition per-157
spective as an alternate method to Bayesian analysis.158

Physicists have achieved success in utilizing Bayesian159
analysis to ascertain parameter values. The inquiry arises:160
can we enhance efficiency and speed through a computer161

Table 1. Design point parameters leading to nine configurations
that comprise the dataset

Matter Matter-LBT

Config. Q0 Q0 αs # events
(in Millions)

1 1 1.5 0.2 1.2
2 1 1.5 0.3 1.2
3 1 1.5 0.4 1.2
4 1 2 0.2 1.2
5 1 2 0.3 1.2
6 1 2 0.4 1.2
7 1 2.5 0.2 1.2
8 1 2.5 0.3 1.2
9 1 2.5 0.4 1.2

Total = 10.8

vision approach using pattern recognition techniques? This 162
frames the problem as follows: can a pattern recognition 163
routine, when presented with a set of jet experimental events 164
as images, discern the associated jet parameters? The ne- 165
cessity for a set of events arises from the inadequacy of in- 166
formation in a single event image to determine parameter 167
values; hence, a collection of events becomes essential. In 168
this study, as a feasibility study, we started with something 169
simple instead of going to the last version of the problem. 170
We started by simulating many events with some discrete 171
values of parameters, which are determining values from 172
the physics point of view. We then tried to see if we could 173
train a machine to just look at the output data (event images) 174
and recognize the original event parameters e.g., energy loss 175
module on the predefined discrete values. 176

As another aspect of the big picture of the study, with 177
Bayesian analysis, one can define parameter values and ask 178
for a random event generator to produce events. An advan- 179
tage that the machine learning-based approach would have 180
is that it can produce these events faster, the latter meth- 181
ods are not highly computational/time-consuming. At the 182
moment, with the current computational power, jet event 183
generators e.g., JETSCAPE, take 15 minutes to generate 184
one event, therefore it is worthwhile to explore other so- 185
lutions [12, 28]. But before attempting an alternate model 186
for jet generator, we need to make sure that we can predict 187
the values of the parameters with pattern recognition tech- 188
niques. If the outcome shows its prediction matches with 189
real experimental data and the physics behind it with a rea- 190
sonable level of uncertainty, it’s proof we are on the right 191
path toward event generators powered by AI. 192

We should mention that this study is just the beginning of 193
a vast research that combines relativistic heavy ion energy 194
physics with the pattern recognition field, and we just tried 195
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to scratch the surface. On the other hand, the Bayesian anal-196
ysis approach has been a dominant approach in this field197
for a decade and has been well-studied already. We ex-198
pect that by taking such a different approach and applying199
all the cutting-edge techniques in pattern recognition now200
available, we can develop an alternate/faster solution for the201
problem.202

2.1. JETSCAPE203

High-energy nuclear physics, specifically the study of204
Quark Gluon Plasma (QGP), underwent a significant shift205
with the introduction of heavy ion collisions at the Large206
Hadron Collider (LHC) [2, 3, 5, 6], marking the onset of207
systematic inquiry.208

To cover the wide energy range from 100 GeV at the Rel-209
ativistic Heavy Ion Collider (RHIC) to several TeV at the210
LHC, only moderate enhancements were necessary com-211
pared to existing relativistic fluid dynamical simulations of212
QGP evolution developed over a decade before the LHC213
program [15, 22, 35]. However, it became evident that an214
event-by-event approach was essential to compare theoreti-215
cal predictions with experimental results due to the incorpo-216
ration of various new physics components, including fluc-217
tuating initial states, pre-equilibrium phases, and hadronic218
afterburners, as depicted in Figure 5. This necessitated a219
sophisticated statistical framework to identify or accurately220
estimate numerous unknown parameters (approximately 15221
for a 3+1D simulation with bulk and shear viscosity), de-222
manding a more comprehensive simulator than previous it-223
erations [26].224

A shift in approach occurred concerning how various225
emissions are treated in different systems and how the226
medium affects jet quenching calculations. The Gyulassy-227
Levai-Vitev (GLV) and higher-twist methods were devised228
for situations with higher virtuality, where medium scat-229
tering corrected the vacuum shower, leading to a medium230
modified DGLAP evolution for the leading hadron’s frag-231
mentation function [17, 23, 40]. MATTER, a vacuum-like232
shower generator, emerged from this approach [25]. In con-233
trast, the Baier-Dokshitzer-Mueller-Peigne-Schif (BDMPS)234
and Arnold-Moore-Yaffe (AMY) formalisms employ a dif-235
ferent emission strategy.236

Methods like BDMPS and AMY were designed for jets237
with virtuality comparable to that from multiple scatter-238
ing in the medium, using Poisson emission probability or239
rate equation to simulate uncommon gluon releases [16, 30,240
31, 38]. Approaches like Linearized Boltzmann transport241
(LBT)-based simulators and Q-PYTHIA incorporate mixed242
Monte Carlo methods at the event generator level [4, 33,243
41]. JEWEL utilizes bottom-up approaches for energy loss244
simulation [44, 45].245

Jet Energyloss Tomography with a Statistically246
and Computationally Advanced Program Envelope247

(JETSCAPE) software offers a modular architecture 248
for event generation, advanced modules for simulating 249
heavy ion collisions, and Bayesian statistical routines for 250
calibration and comparison with experimental data.

Algorithm 1 ML-JET Dataset Builder Algorithm

1: Simulate nine configurations, each resulting in two final
state hadron files containing 600K jet events.

2: Define jet observables: pT , ϕ, η.
3: Define cone with radius R = π.
4: for each event do
5: Select particles satisfying |ϕ| < R and |η| < R.
6: Split events into 2D array.
7: Create 2D histogram with 32 bins.
8: Split plane −π to π for |ϕ| and |η| into 32×32 mesh.

9: Calculate sum of transverse momentum in each cell,
PT =

∑
ϕi,ηi

pti.
10: end for
11: Assign energy loss module, Q0, and αs value as labels.

12: Divide labeled events into 90% train and 10% test data.

13: Shuffle train set for better training performance.
14: Package train and test sets into nine separate datasets.

251

3. ML-JET: A benchmark for relativistic heavy 252

ion collisions 253

The benchmark’s general learning problem is discussed in 254
the sections that follow, along with its currently covered de- 255
sign points, implemented baselines (all created using Ten- 256
sorflow [1]), and compliance with FAIR data standards [42]. 257

258

3.1. Energy Loss in JETSCAPE 259

Initial parton virtuality is limited by a preset distribution 260
and fed into the MATTER event generator. A hard parton 261
with light-cone momentum p+ = (p0 + n̂ · p⃗/

√
2) starts 262

a virtuality-ordered shower at point r. Virtuality (t = Q2) 263
is determined using a Sudakov form factor, where αs de- 264
notes the strong coupling constant, influencing parton scat- 265
tering rates. The transport coefficient q̂, evaluated at the 266
scattering location, influences the splitting time of partons. 267
Splitting functions and invariant mass differences are used 268
to estimate daughter pair transverse momenta until parton 269
Q2 reaches Q2

0. 270
Below Q2

0, alternative energy loss modules like LBT 271
may characterize the jet. Q0 serves as the virtuality sep- 272
aration scale. The medium-induced gluon spectrum Γinel 273
is calculated using the differential spectrum of radiated glu- 274
ons from higher-twist energy loss formalism. Monte Carlo 275
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Table 2. MNIST model accuracy & loss diagrams.

αs = 0.2 αs = 0.3 αs = 0.4

Matter: Q0 = 1,

Matter-LBT: Q0 = 1.5.
Matter: Q0 = 1,

Matter-LBT: Q0 = 2.
Matter: Q0 = 1,

Matter-LBT: Q0 = 2.5.

Table 3. MNIST model evaluation: accuracy

Accuracy (%)

Train Validation Test

Config No. 1 74.12 73.87 79.58
Config No. 2 84.46 84.51 85.88
Config No. 3 68.59 68.73 68.71
Config No. 4 82.77 82.61 82.61
Config No. 5 84.04 83.93 83.95
Config No. 6 84.77 84.78 84.80
Config No. 7 83.36 83.11 83.16
Config No. 8 85.85 85.88 85.81
Config No. 9 85.64 85.68 85.61

methods determine scattering rates within a time step. This276
work focuses on developing a machine learning model to277
predict energy loss models for different Q0 and αs values.278
We explained the energy loss and its relation with alphas279
and Q0 with more quantum physics formalism details in280
Appendix 9281

4. Data collection and pre-processing282

The ML-JET dataset comprises 10.8 million 32×32 resolu-283
tion images, each labeled with MATTER or MATTER-LBT284
associated with JET energy loss. These images are gener-285
ated from simulations within the JETSCAPE framework.286

To construct the dataset, jet events are generated using287
preset parameters in the JETSCAPE framework. Each event288
is pre-processed by aggregating data, clipping outliers, re-289
sizing to a standard size, converting to a 2-dimensional his-290
togram, and normalizing pixel values. Data augmentation291
techniques like rotation, flipping, and cropping were unnec-292
essary due to the dataset’s ample size and variability.293

Jet events simulation configuration: To construct the294

dataset, Pb-Pb (lead-lead) events were simulated using the 295
JETSCAPE framework on a distributed computing Grid 296
system. All events utilize either Matter or Matter−LBT 297
as their energy loss module with a static medium. 298

The dataset comprises nine parts, each corresponding 299
to different combinations of αs and Q0 across 18 design 300
points. Parts with the same αs and varying Q0 are grouped 301
together, resulting in nine distinct parts (see Table 1). 302

4.1. Matching/Filtering procedure 303

The algorithm 1 describes the preprocessing steps for the 304
ML-JET dataset, including simulation, selection of rele- 305
vant jet observables, creation of 2D histograms, visual- 306
ization, labeling, dataset splitting, and packaging. These 307
steps are essential for building/preparing the data for a 308
benchmark dataset and training models in subsequent sec- 309
tions.Followings are jet observable used in our dataset 310
building process: 311

• pT : transverse momentum 312
• ϕ: azimuthal angle 313
• η: pseudorapidity of the emitted thermal particles 314

In the next section, we introduce a methodology to train 315
models from nine datasets with 1080K training records, 316
compile the model, and classify 120K test records and cal- 317
culate the accuracy as their validation method. 318

5. Methodology 319

To predict the energy loss module, we segregate our events 320
into either Matter or Matter-LBT labels on the basis of the 321
features, so we are solving a binary classification problem. 322

We refined the predictor model’s general category based 323
on our data structure. We examined state-of-the-art pat- 324
tern recognition techniques in machine learning, to solve 325
the problem first and because jet events exhibit discernible 326
topological structures resembling images, we opted for 327
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Table 4. VGG16 model with 50 epochs: accuracy & loss diagrams.

αs = 0.2 αs = 0.3 αs = 0.4

Matter: Q0 = 1,

Matter-LBT: Q0 = 1.5.
Matter: Q0 = 1,

Matter-LBT: Q0 = 2.
Matter: Q0 = 1,

Matter-LBT: Q0 = 2.5.

Table 5. VGG16 model with 50 epochs: accuracy.

Accuracy (%)

Train Validation Test

Config. 1 82.58 82.65 89.98
Config. 2 92.12 92.17 92.89
Config. 3 94 94.07 93.87
Config. 4 87.45 87.54 87.26
Config. 5 93.15 93.15 93.06
Config. 6 94.34 94.3 94.29
Config. 7 88.99 88.9 88.91
Config. 8 93.24 93.3 93.24
Config. 9 94.38 94.4 94.29

computer vision and pattern recognition leading us Con-328
volutional Neural Networks (CNN) as our next approach.329
Initiating our baseline models with piece-wise linear units,330
such as Rectified Linear Units (ReLU), we employed Adam331
as the optimizer.332

The incorporation of Adam Batch Normalization yielded333
a marked improvement in optimization performance, partic-334
ularly beneficial for convolutional networks and networks335
featuring sigmoidal nonlinearities, as evidenced by previ-336
ous applications. To enhance regularization and curb over-337
fitting, we universally implemented Early Stopping and ap-338
plied Dropout as a regularizer. Furthermore, Batch Nor-339
malization was employed to minimize regularization errors340
effectively.341

We carefully selected hyperparameters to optimize the342
performance of our approach. The learning rate, a critical343
parameter influencing the convergence of our model, was344
set to [1e − 1, 1e − 7]. Additionally, the architecture of345
our neural network was fine-tuned by specifying 4-16 hid-346
den layers, each designed to capture intricate features rele-347

vant to our task. These hyperparameter choices were made 348
through an iterative process of experimentation and valida- 349
tion, ensuring the robustness and effectiveness of our model 350
across various scenarios. In the context of binary classi- 351
fication, each model employs a loss function, specifically 352
binary cross entropy, consistently applied throughout our 353
comprehensive study. 354

5.1. Baseline Pre-trained Models 355

In this section, we introduce a range of baseline mod- 356
els encompassing both pre-trained deep learning architec- 357
tures and traditional machine learning algorithms for the 358
energy loss module classification task. MNIST Net [20] 359
and VGG16Net [34] serve as representatives of pre-trained 360
deep neural network architectures. MNIST Net, initially 361
devised for handwritten digit recognition, leverages in- 362
sights into 2D shape invariances through local connection 363
patterns and weight constraints. With 4 layers, includ- 364
ing convolutional and fully connected layers, MNIST Net 365
boasts 96,445 trainable parameters. On the other hand, 366
VGG16Net, renowned for its remarkable performance in 367
image recognition tasks, comprises 16 layers, with 4 con- 368
volutional and fully connected blocks, totaling 15,676,673 369
trainable parameters. PointNet [29] introduces a novel ap- 370
proach to processing point cloud data, making it uniquely 371
suited for our jet event image classification task. Unlike 372
conventional convolutional neural networks that operate on 373
structured grid-like data, PointNet directly consumes un- 374
ordered point sets. To ensure consistency across all models, 375
we kept the key features of the networks such as activation 376
function, dropout layer, optimization algorithms, loss func- 377
tions, validation process, and early stopping standardized 378
across architectures. Additionally, we include a selection of 379
traditional machine learning algorithms: 380

• Logistic Regression serves as a fundamental binary clas- 381
sification algorithm that models the probability of an in- 382
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Figure 3. Trained logistic regression, decision trees, KNN, Linear
SVC, and Random Forest models accuracy mean and error bar.

stance belonging to a particular class. It provides a simple383
yet effective baseline for comparison.384

• K-Nearest Neighbor (KNN) is a non-parametric classifi-385
cation algorithm that assigns labels to instances based on386
the majority vote of its k-nearest neighbors in the feature387
space.388

• Support Vector Machine (SVM) offers a powerful389
method for classification by finding the hyperplane that390
best separates the classes while maximizing the margin.391

• Decision Tree constructs a tree-like model by recursively392
partitioning the feature space based on the feature values,393
making it intuitive and interpretable.394

• Random Forest is an ensemble learning method that con-395
structs multiple decision trees during training and outputs396
the mode of the classes as the prediction.397

By incorporating both deep learning architectures and398
traditional machine learning algorithms, we facilitate a399
comprehensive evaluation of various models for the energy400
loss module classification task.401

5.2. Data Format, Benchmark Access, Mainte-402
nance, and Extensibility403

The benchmark consists of different data files, one for each404
configuration from table 1, consisting of Q0, αs, energy loss405
module label, and the event matrices, using the pickle bi-406
nary data format. Each such file contains four arrays, which407
contain Xtrain , Ytrain , Xtest and Ytest , where each array408
has the dimensions Ntrain , Mtest . Ntrain is the number of409
events and energy loss module labels in Xtrain and Ytrain410
and Mtest is the number events and energy loss module la-411
bels in Xtest and Ytest . The scientist can leverage the pre-412
defined classes included in our benchmark code to load a413
particular dataset as a Tensorflow [1] dataset class. These414
can then be applied to create standard DataLoader instances415
for training unique ML models. We make use of the Hy-416
dra [43] package, which facilitates the data management417

and the generation of additional datasets. For the latter, we 418
make many simulation settings available and accessible for 419
the user to modify. As a result, users have a low entry hurdle 420
to benchmark with fresh experiments or standard configura- 421
tions. 422

6. Dataset analysis and evaluation 423

In this section, we present the outcomes of our experiments 424
aimed at assessing the efficacy and suitability of various 425
machine learning and deep learning methodologies on the 426
ML-JET dataset for the task of energy loss module classi- 427
fication. We conducted a comprehensive analysis employ- 428
ing logistic regression, decision trees, K-Nearest Neighbor 429
(KNN), Support Vector Machine (SVM), Random Forest, 430
MNISTNet, VGG16Net, and PointNet models. Our evalua- 431
tion encompasses performance metrics such as binary clas- 432
sification accuracy, training time, stability, and scalability 433
across different dataset sizes. We leverage our university 434
grid by using GPUs. We allocated 128GB memory and 32- 435
core CPU with a GPU V100 Nvidia Tesla for training each 436
model. 437

6.1. Results of Deep Learning Models 438

We initiated our investigation by training deep learn- 439
ing models, specifically Convolutional Neural Networks 440
(CNNs), on the ML-JET dataset. Various CNN architec- 441
tures, including MNIST and VGG16, were utilized with dis- 442
tinct configurations. Notably, the VGG16 model achieved 443
an average accuracy of 92% on the held-out test set, show- 444
casing its effectiveness in energy loss module classification 445
tasks. Extensive experimentation revealed the robustness of 446
deep learning approaches in handling complex classifica- 447
tion problems within heavy ion physics. 448

We trained the MNIST model for 30 epochs, resulting 449
in an average accuracy of 82.23% on the test data over 450
all nine configurations. Furthermore, the VGG16 model 451
achieved an accuracy of 88.95% for 30 epochs and 91.98% 452
for 50 epochs. A detailed analysis of the VGG16 training 453
on 50 epochs and MNIST, focusing on accuracy and loss 454
diagrams for 9 different dataset configurations, is presented 455
in Table 2 and Table 4. Respectively, we reported their de- 456
tailed accuracy results in Table 3 and Table 4. The MNIST 457
model exhibited a mean accuracy of approximately 82.78%, 458
with error bars indicating a 95% confidence interval of 459
±5.27%. This suggests a moderate level of consistency 460
in performance. The VGG16 model trained for 30 epochs 461
achieved a mean accuracy of 89.11%, with relatively small 462
error bars (±2.97%), indicating a high degree of stability 463
in the model’s accuracy across different runs. Moreover, 464
we explored the efficacy of PointNet models, a cutting- 465
edge methodology tailored for point cloud data. Figure 4 466
demonstrates the training results of PointNet models and 467
one sample accuracy and loss diagram for it. Our findings 468
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(a) Accuracy mean and error bar of trained PointNet models.

(b) Accuracy and loss of PointNet models for training and validation
on a dataset size of 106.

Figure 4. Performance evaluation of PointNet models.

demonstrated remarkable performance, with point clouds469
achieving an average accuracy of approximately 88% with470
a dataset size of 106, outperforming traditional machine471
learning models such as logistic regression on significantly472
larger datasets. The trajectory of training loss across epochs473
exhibited consistent decrease, indicating effective learning,474
although vigilance against overfitting was warranted.475

6.2. Results of Machine Learning Models476

In parallel, we evaluated traditional machine learning mod-477
els including logistic regression, decision trees, KNN, Lin-478
ear SVC, and Random Forest. Logistic regression emerged479
as a strong contender, achieving an average accuracy of ap-480
proximately 87%, surpassing other traditional models in the481
context of energy loss module classification. However, the482
accuracy plateaued around 87% even with increased dataset483
sizes, suggesting the necessity for alternative approaches,484
particularly in scenarios demanding higher accuracy.485

Linear SVC, Random Forest, KNN, and Decision Tree486
techniques followed, demonstrating varying degrees of per-487
formance. While Linear SVC exhibited a plateauing trend488
in accuracy around 80%, Random Forest showcased a lin-489
ear increase with dataset size expansion. Nevertheless, ex-490
trapolation indicated substantial dataset size requirements491
to match logistic regression accuracy levels. KNN and Ran-492
dom Forest displayed incremental accuracy improvements493

up to a certain dataset size, indicating their efficacy for 494
moderate-scale datasets. 495

7. Conclusion 496

In this paper, we presented a new dataset named ML-JET 497
that is specifically designed for deep learning applications. 498
The dataset consists of 10.8 million images with a reso- 499
lution of 32 × 32, each associated with energy loss mod- 500
ule labels (Matter and Matter-LBT). We believe that this 501
dataset is valuable to researchers and practitioners in the 502
field of deep learning and phenomenal physics, enabling 503
them to develop and test new models for various tasks 504
such as medium parameter classification and event param- 505
eter prediction. We will release the dataset publicly to 506
allow others to replicate our experiments and build upon 507
our findings. Furthermore, our study underscores the effi- 508
cacy of both deep learning and traditional machine learn- 509
ing methodologies in addressing energy loss module clas- 510
sification tasks. While deep learning models, particularly 511
VGG16 and PointNet, demonstrated superior accuracy and 512
scalability, traditional machine learning approaches, espe- 513
cially logistic regression, remain viable options, particularly 514
in resource-constrained environments. For the specific re- 515
quirements of the application and the available computa- 516
tional resources, we recommend pattern recognition tech- 517
niques using deep neural networks. 518

8. Discussion and Future Studies 519

After successfully building a novel dataset of jet events and 520
using it to classify the energy loss module in this study, we 521
plan to extend the study by leveraging the dataset for more 522
machine learning and deep learning tasks. Some possible 523
future studies include the following: 524

• Develop and train deep models individually for classify- 525
ing and predicting the αs and Q0 values. 526

• Construct a synthesis deep model to simultaneously pre- 527
dict the energy loss module, αs, and Q0 values. 528

• Create an application capable of extracting all environ- 529
mental parameters associated with each event from event 530
images. 531

• Expand the dataset from a static medium to a hydro- 532
dynamic medium, generate/simulate events, and build a 533
dataset with the hydrodynamic profile. 534

• Develop and train deep models for the expanded dataset. 535
• Conduct a comparative analysis between the resulting 536

models. 537

We encourage fellow scientists in the field to utilize the 538
ML-JET dataset to explore additional mysteries of the uni- 539
verse. 540
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9. Energy Loss Module Phycics Formalism725

The initial virtuality of the partons will have a maximum726
limit set by the preset distribution. These will then be intro-727
duced into the MATTER event generator. In MATTER, a728
single hard parton created at a point r with a forward light-729
cone momentum p+ = (p0 + n̂ · p⃗/

√
2) where n̂ = p⃗/|p⃗ |730

starts a virtuality-ordered shower.731
To ascertain the real virtuality (t = Q2) of the given parton,732
one may sample a Sudakov form factor,733

∆(t, t0) = exp

[
−
∫ t

t0

dQ2

Q2

αs(Q
2)

2π

∫ 1−t0/t

t0/t

dzP (z)

×

{
1 +

∫ ζ+MAX+

0

dζ+
q̂(r + ζ)

Q2(1− z)
Φ(Q2, p+, ζ+)

}]
,

(1)

734

where Φ represents a sum over phase factors that depends735
on ζ+, p+, and Q. The transport coefficient q̂ is evalu-736
ated at the location of scattering r⃗ + n̂ζ+, P (z) is the vac-737
uum splitting function, and ζMAX+ is the maximum length738
( 1.2τ+f ), which is used to sample the actual splitting time of739

the given parton with τ+f as the mean light-cone formation740

time τ+f = 2p+/Q2 [10]. After determining Q2, z can be741
sampled using the splitting function P (z). The transverse742
momentum of the created daughter pair can be estimated us-743
ing the difference in invariant mass between the parent and744
daughters. This method is repeated until a given parton’s745
Q2 reaches a specific value for Q2

0.746
Below Q2

0 the jet might be better characterized by another747
energy loss module such as LBT, which can evolve accord-748
ing to the linear Boltzmann equation. Q0 is the virtual-749
ity separation scale. For our dataset, the medium-induced750
gluon spectrum751

Γinel =

∫
dxdk2⊥

dNg

dxdk2⊥dt
, (2)752

where the differential spectrum of radiated gluon is taken753
from the higher-twist energy loss formalism [24, 32, 39]:754

dNg

dxdk2⊥dt
=

2αsCAq̂P (x)k4⊥
π(k2⊥ + x2m2)4

sin2
(
t− ti
2τf

)
, (3)755

where x and k⊥ are the fractional energy and transverse756
momentum of the emitted gluon with respect to its parent757
parton, αs is the strong coupling constant, CA = Nc is the758
gluon color factor, P (x) is the splitting function, q̂ is the759

transport coefficient, ti denotes the production time of the 760
given parton, and τf = 2Ex(1 − x)/k2⊥ + x2m2 is the 761
formation time of the radiated gluon with E and m as the 762
parton energy and mass, respectively. With these scatter- 763
ing rates, the Monte Carlo method is applied to determine 764
whether scattering happens within a given time step. In this 765
work, we develop a ML model to determine the energy loss 766
model for different values of Q0 and αs. 767

10. Heavy Ion Collisions 768

In this section, we show a visualization that depicts the 769
multi-stage approach that is leveraged in the JETSCAPE for 770
jet evolution in Figure 5. 771

11. Sample events 772

In this appendix, we provide sample events for configura- 773
tions two through nine of the dataset, depicted in Figures 6 774
through 23. 775

12. Calculating Accuracy for VGG16 Training 776

for 50 epoch Config. #9 - Test Data 777

One of the methods for assessing classification models is 778
accuracy, which is simply the percentage of correct predic- 779
tions. For binary classification, accuracy can also be cal- 780
culated in terms of positives and negatives as in equation 781
(4) 782

Accuracy =
TP + TN

TP + TN + FP + FN
, (4) 783

where TP = True Positives, TN = True Negatives, FP = 784
False Positives, and FN = False Negatives. Table 6 shows 785
an example confusion matrix (VGG16 Model – 50 epoch - 786
Config. #9 – Test data) to calculate model’s accuracy. The 787
accuracy is 0.9429, or 94.29% (94 out of 100 instances 788
yielded correct predictions) regarding equation 4.That indi- 789
cates that our energy loss module classifier is very effective 790
in detecting between Matter and Matter-LBT. 791

Table 6. Confusion Matrix for VGG16 Model – 50 epoch - Config.
#9 – Test data

Predicted
MATTER MATTER-LBT

MATTER TP: 56192 FP: 3039

MATTER-LBT FN: 3808 TN: 56961
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Figure 5. Multi-stage approach in heavy-ion collisions, credit to Y. Tachibana et. al. from JETSCAPE collaboration.

Figure 6. Dataset: Sample events: Config No. 1 Matter and Matter-LBT.

13. VGG16 Training for 30 epochs 792

In this appendix, we provide the detailed analysis for 793
VGG16 traning for 30 epochs. Table 7 demonstrates the 794
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Figure 7. dataset: Sample events: Config No. 1 Matter-LBT.

Figure 8. dataset: Sample events: Config No. 2 Matter.

Table 7. VGG16 model with 30 epochs: accuracy.

Accuracy (%)

Train Validation Test

Config No. 1 89.395 89.4242 89.1383
Config No. 2 91.031 91.0596 91.5408
Config No. 3 84.5407 84.6833 84.4558
Config No. 4 76.0095 76.1054 75.9908
Config No. 5 91.7856 91.8829 91.6892
Config No. 6 94.367 94.3083 94.3483
Config No. 7 86.5311 86.41 86.2825
Config No. 8 93.029 93.0608 93.0133
Config No. 9 94.1714 94.1717 94.0925

loss and accuracy diagrams and table 8 demonstrates the795
accuracy for nine configurations.796

14. Early stopping on VGG15 models797

To prevent overfitting early stopping techniques has been798
applied on the training models. Table 9 shows a detailed ac-799

curacy report on each model when it confronted early stop- 800
ping on VGG16 for 50 epochs. 801

15. Accuracy central tendency and variation 802

for MNIST and VGG16 models 803

In this section, models’ accruacy results with central ten- 804
dency (mean) and their variation (error bars) in Figure 24. 805

15.1. Analysis of Machine Learning Models 806

In the pursuit of evaluating the efficacy and applicability 807
of the ML-JET dataset, a series of experiments were con- 808
ducted employing diverse machine learning methodologies. 809
These encompassed logistic regression, decision trees, K- 810
Nearest Neighbor (KNN), Support Vector Machine (SVM) 811
including its linear variant (Linear SVC), and Random For- 812
est, each deployed with various architectures and configu- 813
rations. Training these models on the ML-JET dataset, we 814
gauged their performance against a held-out test set. 815

Figure 3 illustrates the binary classification accuracy 816
along with error bars for five distinct machine learning mod- 817
els trained over 5-fold cross-validation and employing four 818
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Figure 9. dataset: Sample events: Config No. 2 Matter-LBT.

Figure 10. dataset: Sample events: Config No. 3 Matter.

variations in dataset size ranging from 1K to 1000K in-819
stances. Our findings underscore the ML-JET dataset’s pro-820
ficiency, particularly in logistic regression models for tasks821
pertaining to energy loss module classification. These mod-822
els achieved an average accuracy of approximately 87%,823
surpassing the performance of other models. However, it’s824
noteworthy that the accuracy of logistic regression models825
plateaued at around 87% even with an increase in dataset826
size from 105 to 106, prompting consideration for alterna-827
tive approaches within deep learning paradigms.828

Linear SVC, Random Forest, KNN, and Decision Tree829
techniques followed in rankings from 2 to 5 respectively,830
in terms of their accuracy performance. Similar to logis-831
tic regression, Linear SVC exhibited a plateauing trend in832
accuracy, albeit at around 80% on average. Random For-833
est displayed a linear increase in accuracy with the expan-834
sion of the dataset size. However, extrapolating this trend835
suggests an immense dataset size requirement of 1010 in-836
stances to merely attain logistic regression accuracy levels837
with a dataset size of 106. KNN and Random Forest exhib-838
ited analogous accuracy trends, showing improvements be-839
tween 103 to 104 instances, with marginal gains thereafter,840

boasting approximately 2-3% better performance. 841

16. Analysis of Point Cloud Models 842

Upon scrutinizing the limitations of contemporary ma- 843
chine learning models in terms of computational capacity 844
and accuracy, our focus shifted towards exploring cutting- 845
edge deep neural network methodologies. Specifically, we 846
delved into training PointNet [29] models for addressing the 847
energy loss binary classification problem, employing vari- 848
ous settings and configurations. 849

Figure 4a presents a comprehensive overview of the bi- 850
nary classification accuracy along with error bars for five 851
distinct machine learning models, trained over 10 folds, 32 852
epochs, and with dataset sizes ranging from 1K to 1000K 853
instances. The results obtained are highly encouraging. No- 854
tably, a linear correlation is observed between dataset size 855
and average accuracy. Furthermore, as the dataset size in- 856
creases, the standard deviation of accuracy diminishes, in- 857
dicating improved stability in accuracy metrics. Notably, 858
point clouds achieve an average accuracy of approximately 859
88% with a dataset size of 105. Remarkably, this outper- 860
forms logistic regression on a dataset size of 106, showcas- 861
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Figure 11. dataset: Sample events: Config No. 3 Matter-LBT.

Figure 12. dataset: Sample events: Config No. 4 Matter.

ing the consistent and linear progress achieved by PointNet862
models.863

Additionally, Figure 4b illustrates the trajectory of train-864
ing loss across epochs, demonstrating a consistent decrease,865
indicating effective learning from the training data. Con-866
versely, the validation loss exhibits an initial decrease but867
later manifests fluctuations, suggestive of potential overfit-868
ting as the training progresses. Towards the latter stages of869
training, a slight increase in validation loss further corrobo-870
rates the presence of overfitting tendencies.871

The training accuracy steadily ascends with each epoch,872
as anticipated due to the model’s learning process. How-873
ever, the validation accuracy showcases a plateauing trend874
after a certain epoch, indicating limited improvement in per-875
formance on unseen data beyond a certain point.876

The widening chasm between training and validation877
loss serves as a telltale sign of overfitting, wherein the878
model excels on the training data but struggles to general-879
ize to unseen instances. Despite these challenges, the final880
validation accuracy hovers around 86-87%, a commendable881
achievement within the realm of heavy ion physics and its882
specific requirements.883
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Figure 13. dataset: Sample events: Config No. 4 Matter-LBT.

Figure 14. dataset: Sample events: Config No. 5 Matter.

Figure 15. dataset: Sample events: Config No. 5 Matter-LBT.
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Figure 16. dataset: Sample events: Config No. 6 Matter.

Figure 17. dataset: Sample events: Config No. 6 Matter-LBT.

Figure 18. dataset: Sample events: Config No. 7 Matter.
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Figure 19. dataset: Sample events: Config No. 7 Matter-LBT.

Figure 20. dataset: Sample events: Config No. 8 Matter.

Figure 21. dataset: Sample events: Config No. 8 Matter-LBT.
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Figure 22. dataset: Sample events: Config No. 9 Matter.

Figure 23. dataset: Sample events: Config No. 9 Matter-LBT.

Table 8. VGG16 model with 30 epochs: accuracy & loss diagrams.

αs = 0.2 αs = 0.3 αs = 0.4

Matter: q0 = 1,

Matter-LBT: q0 = 1.5.
Matter: q0 = 1,

Matter-LBT: q0 = 2.
Matter: q0 = 1,

Matter-LBT: q0 = 2.5.

Table 9. VGG16 trained models for 50 epochs early stopping and their converged accuracy

Configuration No. 2 3 4 5 7 8

Accuracy (%) 92 93 90 93 89 93
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Figure 24. trained models accuracy mean and error bar.
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