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Abstract

Recent advances in multimodal ECG represen-001
tation learning center on aligning ECG signals002
with paired free-text reports. However, subop-003
timal alignment persists due to the complex-004
ity of medical language and the reliance on a005
full 12-lead setup, which is often unavailable in006
under-resourced settings. To tackle these issues,007
we propose K-MERL, a knowledge-enhanced008
multimodal ECG representation learning frame-009
work. K-MERL leverages large language mod-010
els to extract structured knowledge from free-011
text reports and employs a lead-aware ECG012
encoder with dynamic lead masking to accom-013
modate arbitrary lead inputs. Evaluations on014
six external ECG datasets show that K-MERL015
achieves state-of-the-art performance in zero-016
shot classification and linear probing tasks,017
while delivering an average 16% AUC im-018
provement over existing methods in partial-lead019
zero-shot classification1.020

1 Introduction021

Recent advancements in deep learning have en-022

abled automated classification of cardiovascular023

disease (CVD) using electrocardiograms (ECGs),024

one of the most crucial diagnostic tools. How-025

ever, most methods are supervised, requiring large026

amounts of annotated data, which is costly and de-027

mands prohibitively extensive expert effort in anno-028

tation (Liu et al., 2023a; Huang and Yen, 2022). To029

address this challenge, self-supervised multimodal030

learning has recently emerged as an effective ap-031

proach for learning representative ECG features032

from accompanied free-text clinical reports (Li033

et al., 2023; Pham et al., 2024; Liu et al., 2024). To034

this end, MERL (Liu et al., 2024) recently intro-035

duced the first comprehensive benchmark using the036

largest dataset MIMIC-ECG (Gow et al.) for pre-037

training, and six datasets (Wagner et al., 2020; Liu038

et al., 2018; Zheng et al., 2022, 2020) for evaluating039

1All data and code will be released upon acceptance.

downstream task performance, including zero-shot 040

classification and linear probing. 041

Despite outperforming signal-only self- 042

supervised approaches, multi-modal approaches, 043

including MERL (Liu et al., 2024), still have 044

notable drawbacks: They directly align ECG 045

signals with reports, introducing unnecessary 046

noise due to the free-text nature of the reports, 047

and failing to fully exploit the rich cardiac 048

knowledge contained within the text. Additionally, 049

they encode ECG in a lead-agnostic manner, 050

overlooking the unique spatial and temporal 051

characteristics of the individual 12 ECG leads. 052

Moreover, they require all 12 leads to be available 053

as input, limiting their ability to generalize across 054

different lead combinations. This raises important 055

practical concerns since full 12-lead ECG data is 056

not always available in clinical environments due 057

to factors such as patient mobility issues, the need 058

for rapid assessments in emergencies, and limited 059

resource in pre-hospital care environments (Bray 060

et al., 2021; Swor et al., 2006; Quinn et al., 2020; 061

Nonogi et al., 2008; Kotelnik et al., 2021; Zhang 062

and Frick, 2019; Nonogi et al., 2008). 063

To overcome the challenges listed above, we 064

make the following contributions: (1) We pro- 065

pose a framework dubbed Knowledge-enhanced 066

ECG Multimodal Representation Learning (K- 067

MERL), which extracts cardiac-related entities 068

from free-text ECG reports, converting unstruc- 069

tured reports into structured knowledge to enhance 070

self-supervised ECG multimodal learning. To the 071

best of our knowledge, this is the first work to 072

leverage structured cardiac entities extracted from 073

clinical reports to improve ECG multimodal learn- 074

ing. (2) To effectively capture and leverage the 075

lead-specific spatial and temporal characteristics of 076

12-lead ECGs, we explore various tokenization and 077

positional embedding techniques. In particular, we 078

design lead-specific tokenization and lead-specific 079

spatial positional embeddings, enabling the frame- 080
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work to capture the distinctiveness of each lead. (3)081

To enable our framework to handle arbitrary com-082

binations of input leads, we introduce a dynamic083

lead masking strategy. In addition, we propose an084

independent segment masking strategy to further085

capture lead-specific temporal patterns. (4) Our086

K-MERL framework demonstrates superior perfor-087

mance in zero-shot classification and linear probing088

on multiple downstream datasets in various lead089

combinations, from a single lead to all 12 leads.090

2 Method091

2.1 Overview092

To this end, we first utilize a general-purpose093

open-source large language model (LLM), such094

as Llama3.1 (AI@Meta, 2024), without domain-095

specific fine-tuning, to extract cardiac-related enti-096

ties from free-text ECG reports.2 This makes our097

approach adaptable and well-positioned to benefit098

from future advancements in LLMs. Additionally,099

we design a lead-aware ECG encoder with lead and100

segment masking strategies, allowing the model to101

handle arbitrary lead inputs while capturing lead-102

specific spatial-temporal patterns.103

Our overall framework is illustrated in Fig 1(b),104

shown together with the previous state-of-the-art105

MERL that is based on naive cross-modal con-106

trastive learning (Liu et al., 2024), in Fig 1(a).107

While both approaches utilize contrastive learning108

with an ECG signal encoder FE processing signal109

inputs and a text encoder FT processing reports,110

our method introduces substantial innovations, in-111

cluding lead-specific processing, dynamic masking112

strategies, and the extraction of cardiac-related enti-113

ties from free-text reports, significantly enhancing114

ECG multimodal learning.115

In the following sections, we introduce the116

model framework and lead-specific processing in117

Sec 2.2, followed by the proposed masking strate-118

gies in Sec 2.3. We then describe the pipeline119

for extracting cardiac-related entities as structured120

knowledge from ECG reports in Sec 2.4. Finally,121

in Sec 2.5, we explain the knowledge-enhanced122

ECG multimodal learning process, a synergy of the123

aforementioned components.124

2Entity extraction is inherently simpler than high-level text
comprehension in specialized domains, and has been shown
effective with general-purpose LLMs (Zhang et al., 2023b).

2.2 Lead-specific Processing 125

To begin with, we define the symbols used in our 126

framework: Given a training dataset X consisting 127

of N ECG-report pairs, we represent each pair as 128

(eli, ti), where eli ∈ E denotes the raw 12-lead ECG 129

signals for lead l ∈ {1, 2, 3, . . . , 12} of the i-th 130

subject (i = 1, 2, 3, . . . , N ), and ti ∈ T represents 131

the associated free-text report. We then perform 132

lead-specific processing, as illustrated in Fig 2. 133

Lead-specific Tokenization. Consider an input 134

ECG signal eli with 12 leads and a signal length de- 135

noted by S. We split the time-series signal into M 136

non-overlapping segments, each segment of length 137
S
M , and perform tokenization for them. In this way, 138

each lead ECG is projected into a sequence of to- 139

kens: 140
eli [p1] , e

l
i [p2] , e

l
i [p3] , . . . , e

l
i [pM ] (1) 141

142
where eli [pm] corresponds to the ECG token for 143

the m-th segment for lead l. For 12 leads, the total 144

number of tokens is 12×M . Unlike MERL (Liu 145

et al., 2024), which generates a single token for a 146

12-lead ECG temporal segment, we produce tokens 147

separately for each individual lead to capture the 148

lead-specific nature. 149
Lead-specific Spatial Positional Embedding. We 150

apply a learnable linear projection W ∈ Rp×d 151

to each token eli [pm]. Then, we introduce learn- 152
able lead embeddings [lead1, . . . , lead12], where 153

leadl ∈ Rd, to capture the characteristics of each 154
lead. The resulting input sequence can be written 155
as: 156

lead1 +Weli[p1], . . . , lead1 +Weli[pM ],

. . . . . .

lead12 +Weli[p1], . . . , lead12 +Weli[pM ].

(2) 157

158Lead-agnostic Temporal Positional Embedding. 159

In line with lead-specific spatial positional embed- 160

ding, we also incorporate learnable lead-agnostic 161

temporal embeddings to retain the temporal infor- 162

mation of ECG signals. These embeddings are de- 163

noted as [temp1, . . . , tempM ], where tempm ∈ Rd. 164

It is worth noting that these positional embeddings 165

are shared across leads, enabling the model to rec- 166

ognize temporal properties across leads, as all leads 167

originate from the same source and share the same 168

temporal domain properties. The resulting input 169

sequence can be written as: 170

temp1 + lead1 +Weli[p1],

. . . , tempM + lead1 +Weli[pM ],

. . . , temp1 + lead12 +Weli[p1],

. . . , tempM + lead12 +Weli[pM ].

(3) 171
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Figure 1: Comparison between classical ECG multimodal learning and our K-MERL framework. (a): The classical
approaches (e.g., MERL (Liu et al., 2024)) are suboptimal: they processes all leads in a lead-agnostic manner and
naively align ECG signals directly free-text reports. (b): K-MERL introduces lead-specific processing and lead &
segment masking to capture spatial-temporal patterns unique to each lead. It also extracts cardiac-related entities
from reports as structured knowledge and aligns them with ECG features to enhance multimodal learning, thereby
reducing the complexity introduced by the grammatical structure of free-text reports.

Figure 2: Illustration of our lead-specific processing and handling of partial leads input in K-MERL. (a): Lead-specific
processing and masking during pre-training. The model employs lead-specific tokenization, spatial embeddings, and lead-
agnostic temporal embeddings to capture spatial-temporal patterns for each lead (see Sec 2.2). Dynamic lead masking is used to
simulate inputs with arbitrary combinations of leads, while segment masking encourage the framework to captures temporal
patterns (see Sec 2.3). (b): Handling partial lead input during downstream tasks. When leads are missing, the model processes
only the available leads using lead-specific embeddings, allowing maintained performance even with incomplete data.

2.3 Lead and Segment Masking172

Using a fixed number of masked leads limits the173

model’s flexibility in handling arbitrary lead in-174

puts. To address this, we propose Dynamic Lead175

Masking (DLM), enabling the model to handle176

varying lead combinations (Fig. 2 a). For an ECG177

signal eli with 12 leads, we first randomly sample178

a number from {9, 10, 11}, which determines how179

many leads will be masked. Then, we randomly180

select a set of unmasked lead indices, denoted as l̂,181

and mask the remaining leads. This approach en-182

sures the model is exposed to diverse combinations183

of unmasked and masked leads during pretrain-184

ing. The resulting ECG signal with the selected185

unmasked leads is denoted as el̂i.186

To better capture the temporal patterns of187

each ECG lead, we introduce Lead-independent188

Segment Masking (LSM) (Fig. 2 a). Applying 189

masking across all tokens from an ECG signal 190

could lead to imbalances, where some leads have 191

more masked tokens than others. To avoid this, 192

LSM applies masking separately to each lead, en- 193

suring an equal number of masked tokens per lead. 194

For each unmasked lead signal el̂i, we randomly se- 195

lect masked token indices Hl̂ based on a masking 196

proportion of 0.25. The model then processes only 197

the unmasked tokens, denoted as {el̂i[ph]}h/∈Hl̂ . We 198

ablate DLM or LSM to verify their effectiveness, 199

as shown in Tab 2c and Fig 7. 200

2.4 Mining Cardiac-related Entities from 201

Report 202

In this section, we introduce the structured knowl- 203

edge extraction process for handling free-text ECG 204
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Figure 3: Illustration of mining structured knowledge from free-text reports (see Sec 2.4). First, cardiac-related
entities are extracted from free-text ECG reports using an open-source LLM (e.g., Llama3.1-70B-Instruct). Next,
we query the LLM to merge duplicated or synonymous cardiac-related entities into a list of unique names. Finally,
the LLM detects and aggregates subtypes into their respective superclasses, creating a structured hierarchy of
cardiac-related entities.

reports. The pipeline is illustrated in Fig 3. Since205

each ECG report provides descriptions of cardiac-206

related entities, as shown in the leftmost part of Fig.207

3, our goal is to extract all positive cardiac-related208

entities mentioned in the report as structured knowl-209

edge to enhance the supervision signals for ECG210

multimodal learning.211

Extracting Cardiac-related Entities. Unlike ex-212

isting biomedical multimodal learning approaches213

from the radiology domain, which rely on knowl-214

edge graphs to extract structured knowledge from215

reports (Zhang et al., 2023b; Wu et al., 2023),216

we directly query an LLM with the following217

prompt: ‘Please extract all positive218

Cardiac-related Entities from the given219

ECG report. Output format is [Entity1,220

Entity2, ...]’. There are two main reasons221

for this approach. First, there is no off-the-shelf222

knowledge graph (KG) specifically focused on223

ECG, making it impractical to use KG-based meth-224

ods for extracting structured knowledge. Sec-225

ond, since we are only extracting existing terms226

from the free-text report, we can easily verify that227

the extracted cardiac-related entities are present228

and positive, ensuring no non-existent terms are229

generated by the LLM. Moreover, (Zhang et al.,230

2023b) has already demonstrated that a general-231

purpose LLM can effectively extract existing med-232

ical terms from free-text reports independently of233

any external knowledge database. To ensure ac-234

curacy, after each extraction operation, we query235

the LLM with: ‘Please verify the extracted236

cardiac-related entities as existing and237

positive in the given report. Output238

format is YES or NO’, and only retain the cardiac-239

related entities with a ‘YES’ response. After this240

stage, we obtain a total of 341 unique cardiac-241

related entities in the whole dataset..242

Merging Duplicated Cardiac-related Entities. 243

After extracting all cardiac-related entities from 244

whole dataset, we observe that many names share 245

the same semantics but are expressed differently, 246

as shown in the second part of Fig 3. This vari- 247

ation arises because different clinical protocols 248

generate ECG reports in different styles, even 249

though they describe the same cardiac-related 250

entities. To address this, we query the LLM 251

with: ‘Please merge the cardiac-related 252

entities that have the same semantics 253

but different expressions. Here are <all 254

Cardiac-related Entities>. Output format 255

is JSON, where the key is the original 256

name and the value is the merged name.’ 257

After this stage, we obtain a total of 252 unique 258

cardiac-related entities in the whole dataset.. 259

Aggregating Subtypes into Superclasses. 260

Since cardiac-related entities are organized in 261

a clear hierarchical structure (Arnaout et al., 262

2016; Okshina et al., 2019), for example, as 263

shown in the rightmost part of Fig 3, ‘anterior 264

myocardial infarction’ and ‘inferior 265

myocardial infarction’ are subtypes of 266

the superclass ‘Myocardial infarction’ 267

(Brieger et al., 2000), we query the LLM 268

with the following prompt: ‘Please detect 269

all the superclasses present in <all 270

Cardiac-related Entities>. Output 271

format is JSON, where the key is the 272

superclass name and the values are the 273

cardiac-related entities that belong to 274

this superclass.’ 275

After this stage, we identify 25 superclasses of 276

cardiac-related entities. By the end of the process, 277

we obtain a list of 277 unique cardiac-related en- 278

tities for the entire dataset. The list of these enti- 279

ties is represented as Q = {q1, q2, . . . , qQ}, where 280
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Q = 277. For each ECG report ti, we create a281

label vector of length 277, where the positions cor-282

responding to present and positive cardiac-related283

entity are set to 1, and all other positions are set284

to 0. This results in a binary label vector for each285

report, which we denote as yi ∈ {0, 1}277.286

2.5 Knowledge-enhanced ECG Multimodal287

Learning288

Aligning ECG and Reports. In this framework,289

as shown in Fig 1 (b), two distinct encoders for290

ECG signals and text reports, symbolized as FE291

and FT, transform the sample pair (ei, ti) into the292

latent embedding space, represented as (ze,i, zt,i).293

The dataset at the feature level is then denoted as294

X = {(ze,1, zt,1) , (ze,2, zt,2) , . . . , (ze,N , zt,N )},295

where ze,i = FE(ei) and zt,i = FT(ti). Af-296

terward, two non-linear projectors for ECG and297

text embeddings, denoted as Pe and Pt, trans-298

form ze,i and zt,i into the same dimensionality299

d, with ẑe,i = Pe(AvgPool(ze,i)) and ẑt,i =300

Pt(AvgPool(zt,i)). Next, we compute the cosine301

similarities as se2ti,i = ẑ⊤e,iẑt,i, representing the302

ECG-report similarities, and formulate the ECG-303

report contrastive loss Lcontrast.304

Le2t
i,j = − log

exp(se2ti,j /τ)∑L
k=1 1[k ̸=i] exp(s

e2t
i,k /η)

,305

Lcontrast =
1

L

N∑
i=1

N∑
j=1

Le2t
i,j . (4)306

307 The temperature hyper-parameter, denoted as η,308

is set to 0.07 in our study. L refers to the batch size309

per training step, which is a subset of N .310

Aligning ECG and Cardiac-related Entities. To311

learn the knowledge from extracted cardiac-related312

entities, we design a cardiac query network, de-313

noted as FCQ. This network consists of four trans-314

former layers concatenated with a linear classifier315

that predicts each ECG’s corresponding cardiac316

entity labels yi. Given the set of cardiac-related en-317

tities Q, we compute a corresponding set of cardiac318

query vectors using the text encoder, denoted as319

Q = {q1,q2, . . . ,qQ}, where each query vector320

qi is obtained as qi = FT(qi). These query vectors321

are then used as inputs for the cardiac query net-322

work FCQ. During pre-training, the ECG features323

ze,i serve as the key and value inputs to the cardiac324

query network FCQ. We use binary cross-entropy325

(BCE) loss to compute the predictions from FCQ326

and compare them to the existence labels yi. The327

total loss is defined as:328

LCQ =
1

L

N∑
i=1

BCE(FCQ(Q, ze,i),yi), 329

Ltotal = Lcontrast + LCQ. (5) 330

331
3 Experiments 332

3.1 Pre-training Configurations 333

MIMIC-ECG. We pre-train K-MERL using the 334

MIMIC-ECG dataset (Gow et al.), comprising 335

800,035 ECG-report pairs. Each sample includes 336

a raw ECG signal recorded at 500Hz over a 337

10-second duration, along with its correspond- 338

ing report. For fair comparison with the MERL 339

framework (Liu et al., 2024), we adhere to their 340

preprocessing protocol, available in the official 341

GitHub repository3. After preprocessing, we ob- 342

tain 771,693 samples for model pre-training. 343

Implementation. For pre-training, we inherit the 344

settings from MERL (Liu et al., 2024), using a 345

ViT-tiny model as the ECG encoder and Med-CPT 346

(Jin et al., 2023) as the text encoder. The key dif- 347

ferences in our approach are the proposed lead- 348

specific tokenizer and spatial-temporal positional 349

embeddings. For extracting cardiac-related entities 350

from the ECG reports, we utilize Llama3.1-70B- 351

Instruct (AI@Meta, 2024) as our main extractor. 352

While we are aware that smaller LLMs, such as 353

those at the 7B scale, can also acceptable good 354

results, we select the 70B model to maximize ex- 355

traction quality. Additionally, entity extraction is 356

performed only once prior to pretraining, so the 357

computational cost of using a larger model has min- 358

imal impact on overall efficiency. Ablation results 359

comparing different LLM extractors are provided 360

in Table 7c. Pre-training configuration details are 361

provided in Sec B. 362

3.2 Downstream Tasks Configurations 363

We evaluate our framework on both zero-shot clas- 364

sification and linear probing, using full and partial 365

lead ECGs across multiple public datasets cover- 366

ing over 100 cardiac conditions. We adhere to the 367

data split and preprocessing provided by MERL 368

(Liu et al., 2024). The tasks are implemented on 369

the following datasets: (1) PTBXL: The PTBXL 370

dataset (Wagner et al., 2020) includes 21,837 ECG 371

signals from 18,885 patients, sampled at 500 Hz 372

for 10 seconds. It provides four subsets for multi- 373

label classification: Superclass (5 categories), Sub- 374

class (23 categories), Form (19 categories), and 375

3https://github.com/cheliu-computation/MERL-
ICML2024/tree/main
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Rhythm (12 categories), with varying sample sizes.376

(2) CPSC2018: The CPSC2018 dataset (Liu et al.,377

2018) contains 6,877 12-lead ECG records, sam-378

pled at 500 Hz, annotated with 9 distinct labels.379

(3) CSN: The Chapman-Shaoxing-Ningbo (CSN)380

dataset (Zheng et al., 2020, 2022) comprises 45,152381

ECG records sampled at 500 Hz for 10 seconds.382

After excluding records with ‘unknown’ annota-383

tions, the final curated dataset includes 23,026 ECG384

records with 38 labels. Detailed information about385

the downstream datasets is presented in Tab 3. We386

introduce the details of the compared methods in387

Sec. C.388

In the downstream tasks, we implement three389

scenarios: zero-shot classification, linear probing,390

and partial lead analysis. The implementation de-391

tails are provided in Sec D.3.392

3.3 State-of-the-art on Zero-shot393

Classification394

We first evaluate K-MERL on zero-shot classifi-395

cation using 12-lead input across all downstream396

datasets. The results for each dataset, along with397

the average AUC score across six datasets, are398

shown in Fig 4. Our framework significantly out-399

performs MERL with both backbone architectures,400

demonstrating the superiority of K-MERL when401

using the original disease names as text prompts.402

State-of-the-art on Unseen Disease Prediction.403

Additionally, since we extract cardiac-related enti-404

ties from reports during pre-training, there may be405

overlap with categories in downstream tasks. This406

could provide our model with prior knowledge of407

certain categories, leading to an unfair comparison408

with MERL (Liu et al., 2024). To address this, we409

use Med-CPT (Jin et al., 2023), the text encoder, to410

extract embeddings for all 277 cardiac-related enti-411

ties and for all category names in the downstream412

datasets. We compute the similarity between these413

embeddings, and if the similarity exceeds 0.95, we414

consider them overlapped. We identify 35 out of415

277 extracted cardiac-related entities that overlap416

with downstream categories, as listed in Tab 5. We417

label these as ‘Seen Classes,’ while the remain-418

ing downstream categories are labeled as ‘Unseen419

Classes.’420

The average F1 score are depicted in Fig 5(b). K-421

MERL outperforms MERL in both seen and unseen422

categories. Notably, both K-MERL and MERL423

exhibit performance drops on unseen classes com-424

pared to seen classes, demonstrating that we suc-425

cessfully detected an overlap of approximately426

12.7% between the extracted cardiac-related enti- 427

ties from MIMIC-ECG and downstream categories, 428

effectively separating the tasks into ‘seen’ and ‘un- 429

seen’ groups. The results show that K-MERL per- 430

forms well not only on categories present during 431

pre-training but also on unseen categories, demon- 432

strating its generalizability. Since the original 433

MERL (Liu et al., 2024) framework relies on man- 434

ual prompt engineering (PE) at inference time to 435

enhance performance, we also evaluate MERL with 436

customized prompts, as detailed in Sec. F, to pro- 437

vide a comprehensive comparison. Notably, our 438

method outperforms MERL with PE while being 439

entirely independent of prompt engineering. 440

3.4 Performance of Linear Probing 441

As shown in Tab 1, K-MERL consistently outper- 442

forms multimodal methods, including MERL (Liu 443

et al., 2024) with both ResNet and ViT backbones, 444

as well as all eSSL methods across datasets and 445

data ratios. This highlights K-MERL’s robust per- 446

formance and the quality of its learned ECG fea- 447

tures, which not only improve multimodal tasks but 448

also significantly enhance single-modality tasks. 449

3.5 Performance with Partial Leads Input 450

We explore the robustness of K-MERL to missing 451

leads by simulating missing-lead scenarios through 452

progressively adding visible leads starting from a 453

single lead, as there is no publicly available ECG 454

dataset explicitly designed to evaluate missing-lead 455

scenarios.4 As shown in Fig 6 (a) and (b), K-MERL 456

consistently outperforms MERL across all lead 457

combinations from 1 to 12 in both zero-shot classi- 458

fication and linear probing. Impressively, K-MERL 459

with just a single lead surpasses MERL’s perfor- 460

mance using all 12 leads. Additionally, K-MERL 461

shows a stable performance trend as the number 462

of leads increases, unlike MERL, which exhibits 463

fluctuations in Fig 6 (a). This demonstrates the 464

effectiveness of our dynamic lead masking strat- 465

egy, lead-specific processing, and spatial-temporal 466

positional embeddings, contributing to K-MERL’s 467

superior results. 468

4 Analysis 469

This section provides ablation studies on the key 470

components of K-MERL and reports zero-shot clas- 471

sification results for single-lead and 12-lead inputs 472

4In most cases, publicly released datasets undergo strict cu-
ration, with samples containing missing leads often excluded
as corrupted data, despite their clinical relevance.
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Figure 4: Performance on zero-shot clas-
sification across six datasets, comparing K-
MERL with previous ECG multimodal learn-
ing methods. Notably, we use the original
disease category names as prompts for both
K-MERL and MERL to ensure a fair compar-
ison.

Figure 5: Comparison of K-MERL and
MERL on seen and unseen classes, report-
ing (a) Average AUC and (b) Average F1
scores. Definitions are in Sec 3.3.

Table 1: Linear probing results of K-MERL and other ECG learning methods, with best results bolded.
PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

Method 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

From Scratch

Random Init (CNN) 70.45 77.09 81.61 55.82 67.60 77.91 55.82 62.54 73.00 46.26 62.36 79.29 54.96 71.47 78.33 47.22 63.17 73.13
Random Init (Transformer) 70.31 75.27 77.54 53.36 67.56 77.43 53.47 61.84 72.08 45.36 60.33 77.26 52.93 68.0 77.44 45.55 60.23 71.37

ECG only SSL

SimCLR 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.96 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
ST-MEM 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36

Multimodal Methods

MERL (ResNet) 82.39 86.27 88.67 64.90 80.56 84.72 58.26 72.43 79.65 53.33 82.88 88.34 70.33 85.32 90.57 66.60 82.74 87.95
MERL (ViT) 78.64 83.90 85.27 61.41 77.55 82.98 56.32 69.11 77.66 52.16 78.07 81.83 69.25 82.82 89.44 63.66 78.67 84.87

K-MERL (Ours) 84.19 87.71 89.83 68.22 81.54 88.00 60.11 73.71 81.48 63.72 84.16 91.04 71.91 86.13 91.26 69.51 83.53 93.71

Figure 6: Performance comparison of K-MERL and MERL with partial lead inputs. (a) Zero-shot classification shows K-MERL
consistently outperforming MERL with two backbones across all lead combinations from 1 to 12. (b) Linear probing with 1%
data demonstrates K-MERL’s superior performance and robustness, even with limited data and varying lead inputs.

across all downstream datasets. Due to the page473

limit, we show more ablation studies in Sec H.474

Loss Ablation. Tab 2a shows the effect of remov-475

ing Lcontrast and LCQ during pre-training. Re-476

moving LCQ, which excludes structured knowl-477

edge from cardiac-related entities, leads to a signif-478

icant performance drop. While removing Lcontrast479

also reduces performance, the impact is less se-480

vere. This indicates that both losses are necessary,481

with cardiac-related entities alignment providing a482

larger benefit for pre-training. 483

Tokenization Size. In Fig 7 (a), we ablate the to- 484

ken size p and find the optimal length to be 100. 485

Larger token sizes (e.g., 200) have a more nega- 486

tive impact than smaller sizes (e.g., 25), likely due 487

to convert multiple segments to one token, which 488

introduces ambiguity. Across all token sizes, K- 489

MERL consistently outperforms MERL (Liu et al., 490

2024), demonstrating the robustness and effective- 491

ness of our method. 492
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Figure 7: Ablation study on zero-shot classification with 12 leads. Left: Performance of K-MERL across varying token lengths,
showing optimal results with a token length of 100, consistently outperforming MERL. Right: Impact of different segment
masking ratios (25%, 50%, 75%) and the minimum number of masked leads. K-MERL outperforms MERL, with the best
performance at a 25% mask ratio and a minimum of 9 masked leads.

Table 2: Results of various ablation experiments. The best results are bolded.
(a) Ablating Loss Function.

Loss 1 Lead 12 Leads

K-MERL (Ours) 71.61 76.52

– ECG-Text Alignment (Lcontrast) 69.23 73.98

– ECG-Condition Alignment (LCQ) 65.44 68.95

(b) Effects of Entities Processing.

Methods 1 Lead 12 Leads

K-MERL (Ours) 71.61 76.52

– Subtype Aggregation 70.11 74.62
– Merging Duplicated Patterns 70.54 74.93

(c) Effects of Masking Strategy.

Masking Strategy 1 Lead 12 Leads

K-MERL (Ours) 71.61 76.52

– Lead-independent Segment Masking 70.32 75.21
– Segment Masking 68.93 74.74
– Dynamic Lead Masking 67.84 72.11
– Lead Masking 65.41 69.10

Cardiac-related Entities Processing. As shown493

in Tab 2b, both subtype aggregation and merging494

duplicate entity names improve K-MERL’s perfor-495

mance. However, the best results are achieved496

when both procedures are applied together, indi-497

cating they complement each other.498

Masking Strategy and Ratio. Tab 2c shows the499

results of various masking strategies, where all ap-500

proaches enhance K-MERL’s performance. Re-501

moving dynamic lead masking and using a fixed502

number of masked leads degrades performance,503

highlighting its importance. Similarly, omitting504

lead masking during pre-training causes a sharp505

drop in zero-shot classification, indicating its role506

in capturing lead-specific features. Fig 7 (b) ex-507

plores mask ratios and lead masking. An optimal508

configuration is identified with a mask ratio of 25%509

and a minimum of 9 masked leads. Increasing the510

mask ratio beyond this or using more than 9 leads511

as the minimum for masking leads to a decrease in512

performance.513

5 Related Work514

Recent ECG self-supervised learning (eSSL) ap-515

proaches have explored contrastive (Kiyasseh et al.,516

2021; Wang et al., 2023) and generative (Zhang517

et al., 2022; Na et al., 2023; Jin et al., 2024) ob-518

jectives, but they remain unimodal and often lack519

clinical context. Multimodal ECG methods (Liu520

et al., 2024; Li et al., 2023; Yu et al., 2024)521

typically align signals with text using simplistic522

prompts or assume fixed lead configurations, lim-523

iting generalizability. Drawing inspiration from524

knowledge-enhanced radiograph-language mod- 525

els (Zhang et al., 2023b; Wu et al., 2023), we in- 526

troduce structured cardiovascular entities extracted 527

from ECG reports to provide fine-grained supervi- 528

sion without relying on radiology-specific ontolo- 529

gies, preserving clinical distinctions such as my- 530

ocardial infarction subtypes (Thygesen et al., 2018). 531

Additionally, we address the practical challenge of 532

partial-lead ECG inputs (Alizadeh Meghrazi et al., 533

2020) by designing dynamic masking and lead- 534

specific processing, enabling our model to operate 535

robustly under varying lead configurations. A more 536

comprehensive review and comparison with prior 537

work are provided in Appendix A. 538

6 Conclusion 539

We present K-MERL, a knowledge-enhanced ECG 540

multimodal learning framework capable of process- 541

ing arbitrary lead inputs. First, we mine cardiac- 542

related entities as structured knowledge from ECG 543

free-text reports using a general LLM, without re- 544

lying on external domain-specific resources. Next, 545

we align ECG features with these cardiac-related 546

entities to integrate this knowledge into the ECG 547

multimodal learning. Additionally, we introduce 548

lead-specific processing and lead&segment mask- 549

ing strategies to capture the spatial-temporal pat- 550

terns unique to each ECG lead, enabling the model 551

to handle varying lead inputs. Our experiments on 552

six downstream ECG classification tasks, along 553

with extensive ablation studies, demonstrate K- 554

MERL’s superior performance over existing ECG 555

representation learning methods. 556
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Limitation557

While K-MERL demonstrates promising results558

in handling arbitrary lead inputs and integrating559

knowledge from ECG reports, there are some lim-560

itations to consider. The framework’s reliance on561

LLMs for mining cardiac-related entities, though562

effective, may be limited by the model’s ability563

to capture highly specialized domain knowledge.564

Due to the lack of publicly available datasets ex-565

plicitly designed for missing-lead ECG scenarios,566

we simulate this setting by progressively adding567

ECG leads starting from a single lead. While this568

strategy enables controlled evaluation, we hope fu-569

ture research will explore more realistic clinical570

benchmarks to better validate performance under571

naturally occurring lead dropouts. Additionally,572

while our experiments show strong zero-shot and573

linear probing performance, further evaluation is574

needed to assess K-MERL’s effectiveness in real-575

world clinical settings, where data quality and noise576

levels can be more challenging. Future work will577

focus on enhancing the robustness of knowledge578

extraction and developing more adaptive strategies579

for handling diverse ECG data sources.580
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A Related Work935

A.1 ECG Representation Learning936

Recently, ECG self-supervised learning (eSSL) has937

shown promise in learning ECG representations938

from unannotated signals (Lai et al., 2023; Chen939

et al., 2020; Sangha et al., 2024). Contrastive940

methods such as CLOCS (Kiyasseh et al., 2021)941

and ASTCL (Wang et al., 2023) explore tempo-942

ral and spatial invariance, while generative tech-943

niques (Zhang et al., 2022; Sawano et al., 2022;944

Na et al., 2023; Jin et al., 2024; Choi et al., 2023;945

Oh et al., 2022; McKeen et al., 2024) focus on946

masked segment reconstruction. However, both ap-947

proaches often lack clinical domain knowledge and948

are limited to single-modality settings, restricting949

the quality of learned representations.950

Multimodal learning has shown success in multi-951

ple biomedical applications (Wan et al., 2023; Liu952

et al., 2023b; Wu et al., 2023). However, ECG953

signals pose unique challenges due to their com-954

plex spatial-temporal structure, necessitating well-955

tailored modeling. As a result, few studies have956

explored multimodal ECG learning. (Lalam et al.,957

2023; Yu et al., 2024) demonstrated the effective-958

ness of combining ECG and EHR data using large959

language models (LLMs) to rewrite textual reports.960

However, their work is restricted to private datasets,961

making reproducing and comparisons challenging.962

Other works such as (Li et al., 2023; Liu et al.,963

2023c; Zhou et al., 2024) explored multimodal964

ECG learning for zero-shot classification. How-965

ever, their methods were over simplistic: They966

align signals with text without sufficiently captur-967

ing the distinctiveness of individual ECG leads, and968

rely on naive category names as prompts, which969

fail to capture relative patterns, leading to subop-970

timal performance. Their limited evaluations on971

small datasets also fall short of fully assessing mul-972

timodal ECG learning in real-world scenarios. Ad-973

ditionally, works such as (Zhao et al., 2024; Wan974

et al., 2024) focus on ECG-to-text generation tasks,975

but their results are not publicly accessible, making976

reproducing and comparisons difficult.977

MERL (Liu et al., 2024) is the first open-source978

study to demonstrate the potential of ECG multi-979

modal learning in zero-shot classification and lin-980

ear probing across diverse datasets. Therefore, we981

mainly compare our work to MERL. However, like982

other methods, MERL relies on all 12 ECG leads983

as input and cannot handle arbitrary lead combina-984

tions, limiting its applicability in real-world clini-985

cal scenarios where all 12 leads may not always be 986

available (Jahrsdoerfer et al., 2005; Madias, 2003; 987

Fontana et al., 2019; Maheshwari et al., 2014) 988

A.2 Knowledge Enhanced Medical 989

Multimodal Learning 990

Leveraging medical knowledge to improve medi- 991

cal multimodal learning has advanced significantly, 992

particularly in the radiograph domain, with meth- 993

ods like MedKLIP, KAD, and MAVL (Zhang et al., 994

2023b; Wu et al., 2023; Phan et al., 2024). These 995

approaches focus on extracting structured knowl- 996

edge, such as clinical entities from free-text ra- 997

diology reports, and using this information as an 998

additional supervisory signal to guide multimodal 999

learning. Many models mimic radiological prac- 1000

tices or modify structures based on diagnostic rou- 1001

tines (Li et al., 2019; Huang et al., 2020; Zhang 1002

et al., 2023b; Wu et al., 2023). However, they rely 1003

heavily on well-annotated knowledge graphs, such 1004

as RadGraph (Delbrouck et al., 2024) and Chest 1005

ImaGenome (Wu et al., 2021), which require sub- 1006

stantial human annotation and are limited to the 1007

radiology domain. Due to the distinct nature of 1008

ECG signals compared to radiographs, the above 1009

pipelines cannot be directly adapted for ECG mul- 1010

timodal learning. Furthermore, CVD has a clear 1011

hierarchical structure because conditions can have 1012

multiple subtypes, such as myocardial infarction, 1013

which can be further classified as inferior or ante- 1014

rior myocardial infarction (Thygesen et al., 2018). 1015

Unlike lung diseases, typically categorized by mor- 1016

phological or pathological patterns rather than dis- 1017

tinct region based subtypes (King Jr, 2017), directly 1018

using only the entity from an ECG report can lead 1019

to information loss by ignoring the superclass or 1020

subtypes. 1021

A.3 Challenge in Partial Leads ECG Input 1022

Currently, full 12 leads ECG data dominates pub- 1023

licly accessible ECG datasets (Gow et al.; Ribeiro 1024

et al., 2020; Junior et al., 2023). However, in 1025

real clinical scenarios, obtaining a standard 12 1026

leads ECG can be excessive and often requires 1027

advanced clinical knowledge, which may not al- 1028

ways be readily available (Chamadiya et al., 2013; 1029

Alizadeh Meghrazi et al., 2020; Dai et al., 2016). 1030

This makes partial-lead ECG data both crucial and 1031

common for practical applications. Despite its im- 1032

portance, partial leads issue is often overlooked and 1033

remain unaddressed in existing ECG multimodal 1034

representation learning studies. To handle partial 1035
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lead inputs across various downstream tasks, in1036

this work, we design lead-specific processing and1037

dynamic lead masking strategies that enable our1038

model to accept any combination of ECG leads1039

as input. adaptable to various clinical scenarios1040

(Jahrsdoerfer et al., 2005; Madias, 2003; Fontana1041

et al., 2019; Maheshwari et al., 2014). We evalu-1042

ate our model on extensive downstream tasks with1043

partial lead inputs, demonstrating its ability to rec-1044

ognize and adapt to the lead-specific nature of ECG1045

signals.1046

B Pre-training Configuration1047

Following MERL (Liu et al., 2024), we employ the1048

AdamW optimizer with a learning rate of 2× 10−41049

and a weight decay of 1× 10−5. Pre-training runs1050

for 50 epochs, with a cosine annealing scheduler1051

for learning rate adjustments. We use a batch size1052

of 512 per GPU, with all experiments conducted1053

on eight NVIDIA A100-80GB GPUs.1054

C Baseline Details1055

In this work, we compare against both multimodal1056

and unimodal ECG representation learning meth-1057

ods for a comprehensive evaluation. For multi-1058

modal methods, we compare with MERL (Liu et al.,1059

2024), as it is the first multimodal ECG represen-1060

tation learning framework that publicly released1061

both code and pretrained models. For unimodal1062

methods, following the setup in (Liu et al., 2024),1063

we compare with general self-supervised learning1064

(SSL) methods such as SimCLR (Chen et al., 2020),1065

BYOL (Grill et al., 2020), Barlow Twins (Zbontar1066

et al., 2021), MoCo v3 (Chen et al., 2021), and1067

SimSiam (Chen and He, 2021), as well as TS-1068

TCC (Eldele et al., 2021), a time-series-specific1069

SSL baseline. Furthermore, we include compar-1070

isons with ECG-specific SSL methods including1071

CLOCS, ASTCL, CRT, and ST-MEM (Kiyasseh1072

et al., 2021; Wang et al., 2023; Zhang et al., 2023a;1073

Na et al., 2023). All results are directly taken from1074

the original MERL (Liu et al., 2024) paper to en-1075

sure a fair comparison.1076

D Downstream Task Details1077

D.1 Downstream Task Data Split1078

We detail the data splits in Tab. 3. For all datasets,1079

we follow the splits provided by MERL5. The1080

5https://github.com/cheliu-computation/MERL-
ICML2024/tree/main/finetune/data_split

preprocessing for all datasets is also done using 1081

MERL’s official codebase6. 1082

D.2 Downstream Task Configuration 1083

We detail the key hyperparameters used across 1084

all downstream tasks in Tab. 4. For each 1085

dataset (PTBXL-Super, PTBXL-Sub, PTBXL- 1086

Form, PTBXL-Rhythm, CPSC2018, and CSN), we 1087

maintain consistency in the learning rate, batch 1088

size, number of epochs, and optimizer configura- 1089

tion with MERL (Liu et al., 2024). 1090

D.3 Downstream Tasks Implementation 1091

Zero-shot Classification. For zero-shot classifica- 1092

tion, we freeze the entire model and use the original 1093

category names from the dataset as entity queries 1094

Q for input to the cardiac query network, FCQ. 1095

The ECG signals are converted into ECG feature 1096

with FE, serving as the key and value inputs for 1097

FCQ. The output of FCQ provides the predicted 1098

probabilities for each category. 1099

Linear Probing. For linear probing, we keep the 1100

ECG encoder FE frozen and only update the pa- 1101

rameters of a randomly initialized linear classifier. 1102

We conduct linear probing with {1%, 10%, 100%} 1103

of the training data. This configuration is used con- 1104

sistently across all linear probing tasks. Further 1105

implementation details are provided in the Tab 4. 1106

Partial Lead Setting. In the partial lead setting, 1107

we follow the lead order from the MIMIC-ECG 1108

dataset (Gow et al.): [I, II, III, aVF, aVR, aVL, V1, 1109

V2, V3, V4, V5, V6], progressively expanding the 1110

input from a single lead to all 12 leads in sequence. 1111

In contrast, since MERL (Liu et al., 2024) requires 1112

a full 12-lead input, we pad the missing leads with 1113

zeros to maintain the 12-lead format. 1114

D.4 Overlapped Categories 1115

As described in Sec 3.3 and Fig 5, we observe that 1116

35 categories are present in both the pre-training 1117

and downstream datasets, and we list all the class 1118

names in Tab 5. 1119

E Standard Deviation Comparison with 1120

MERL 1121

We provide standard deviations in Tab. 6 to sup- 1122

port the performance claims more rigorously. No- 1123

tably, we report all results using the original disease 1124

6https://github.com/cheliu-computation/MERL-
ICML2024/tree/main/finetune
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Table 3: Details on Data Split.

Dataset Number of Categories Train Valid Test

PTBXL-Super (Wagner et al., 2020) 5 17,084 2,146 2,158
PTBXL-Sub (Wagner et al., 2020) 23 17,084 2,146 2,158
PTBXL-Form (Wagner et al., 2020) 19 7,197 901 880
PTBXL-Rhythm (Wagner et al., 2020) 12 16,832 2,100 2,098

CPSC2018 (Liu et al., 2018) 9 4,950 551 1,376
CSN (Zheng et al., 2022, 2020) 38 16,546 1,860 4,620

Table 4: Hyperparameter settings on downstream tasks.

PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Batch size 16 16 16 16 16 16

Epochs 100 100 100 100 100 100
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW

Learing rate scheduler Cosine anealing Cosine anealing Cosine anealing Cosine anealing Cosine anealing Cosine anealing
Warump steps 5 5 5 5 5 5

Table 5: Overlap of cardiac-related entities between downstream tasks and the pretraining dataset.

prolonged qt interval normal
arrhythmia first degree av block
anterior myocardial infarction ventricular premature complex
conduction disturbance second degree av block
hypertrophy st depression
atrial premature complex prolonged pr interval
t wave abnormalities premature complex
atrial fibrillation sinus tachycardia
sinus arrhythmia sinus bradycardia
atrial flutter supraventricular tachycardia
atrial premature complex abnormal q wave
av block left bundle branch block
myocardial infarction right bundle branch block
st elevation st-t changes
t wave changes ventricular bigeminy
ventricular premature complex sinus tachycardia
atrial flutter supraventricular tachycardia
atrial tachycardia

names as prompts to ensure fair and consistent eval-1125

uation across models. The results are directly taken1126

from MERL (Liu et al., 2024).1127

Table 6: Comparison of AUC scores and standard de-
viations between MERL and K-MERL under zero-shot
and 1% linear probing settings.

Methods Zero-shot (AUC) 1% Linear Probe (AUC)

MERL (ResNet) 61.5 ± 1.6 65.96 ± 2.1
MERL (ViT) 63.7 ± 2.0 63.53 ± 2.6
K-MERL (Ours) 76.5 ± 1.8 69.61 ± 1.7

F State-of-the-Art Without Prompt 1128

Engineering 1129

It is important to note that MERL heavily relies 1130

on prompt engineering (PE), which requires tai- 1131

loring the text prompt of each possible disease at 1132

inference time, querying external knowledge bases 1133

using LLM, which is inefficient (Liu et al., 2024). 1134

To fully showcase the our method’s capabilities, we 1135

compare K-MERL with the PE-enhanced version 1136

of MERL in Fig 8. Unlike MERL, K-MERL does 1137

not depend on any customized disease prompts 1138

at inference time, as it has better leveraged car- 1139
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diac knowledge contained in the reports during1140

pre-training. Despite being free from PE, K-MERL1141

still surpasses MERL with PE, demonstrating the1142

superiority of our approach.1143

Figure 8: Comparison of K-MERL and MERL with prompt
engineering (PE). Notably, even though MERL with PE uses
customized disease prompts with human effort, K-MERL, free
with PE, still surpasses both versions of MERL, demonstrat-
ing its generalizability and effectiveness.

Figure 9: Reported performance of zero-shot classification
with scaled ECG encoders. As the model size increases
from K-MERL(Tiny) to K-MERL(Base), the performance
improves, demonstrating the scalability of the model.

G Scalability1144

We scale our ECG encoder using ViT-Tiny, ViT-1145

Small, ViT-Middle, and ViT-Base, as shown in Fig.1146

9. K-MERL consistently improves as model size1147

increases, demonstrating its scalability for ECG1148

multimodal learning.1149

H Additional Ablation Studies1150

Lead-specific Processing. In Tab 7a, we ablate the1151

effects of lead-specific tokenization, lead-specific1152

spatial positional embedding, and lead-agnostic1153

temporal embedding. he results show each compo-1154

nent enhances K-MERL’s performance, with the1155

full combination yielding the best results. The re-1156

sults demonstrate that lead-specific processing is1157

crucial for enabling the ECG multimodal model to1158

recognize lead uniqueness.1159

Text Encoder. Tab. 7b shows Med-CPT (Jin et al.,1160

2023) outperforms BioClinicalBERT (Alsentzer1161

et al., 2019) and Med-KEBERT (Zhang et al.,1162

2023b), due to contrastive pretraining on a large1163

Table 7: Additional Ablation Studies.

(a) Effects of Lead-specific Processing.

Methods 1 Lead 12 Leads

K-MERL (Ours) 71.61 76.52

– Lead-specific Tokenization 68.47 74.23
– Lead-specific Spatial Positional Embedding 69.12 75.35
– Lead-agnostic Temporal Positional Embedding 70.84 75.10

(b) Effects of Text Encoder.

Text Encoder 1 Lead 12 Leads

BioClinicalBERT 68.25 73.21

Med-KEBERT 69.62 74.59

Med-CPT 71.61 76.52

(c) Effects of LLM on Processing Cardiac-related
Entities.

Methods 1 Lead 12 Leads

Llama3.1-8B-Instruct 68.52 74.19
Gemma-2-9B 68.94 74.47
Gemma-2-27B 70.54 75.81
Llama3.1-70B-Instruct 71.61 76.52

(d) Effects of the Number of Transformer
Layers in the Cardiac Query Network FCQ

Num of Layers 1 Lead 12 Leads

1 69.92 72.96
2 70.14 73.13
3 70.31 74.40
4 71.61 76.52
5 69.25 74.94

(e) Effects of the Number of Heads in the
Cardiac Query Network FCQ.

Num of Heads 1 Lead 12 Leads

1 68.76 74.89
2 70.25 74.23
3 70.27 75.36
4 71.61 76.52
5 71.23 75.48

medical corpus, suggesting contrastive pretraining 1164

improves text encoder performance for this task. 1165

Entity Extractor and Query Network. Tab. 7c, 1166

7d, and 7e present ablation results on the LLM- 1167

based entity extractor and the Cardiac Query Net- 1168

work FCQ. Tab. 7c shows that larger LLMs im- 1169

prove the extraction of cardiac-related entities, with 1170

Llama3.1-70B-Instruct achieving the best perfor- 1171

mance across both 1-lead and 12-lead settings. Tab. 1172

7d examines the effect of the number of transformer 1173

layers in FCQ, where performance improves and 1174

saturates at 4 layers. Tab. 7e analyzes the num- 1175

ber of attention heads, with 4 heads yielding the 1176
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optimal results.1177
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