
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENTIC REINFORCEMENT LEARNING WITH IM-
PLICIT STEP REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly developed as autonomous agents
using reinforcement learning (agentic RL) that reason and act in interactive envi-
ronments. However, sparse and sometimes unverifiable rewards make it extremely
challenging to assign credit when training LLM agents that serve as a policy. Re-
cent work attempts to integrate process supervision into RL but suffers from bi-
ased annotation, reward hacking, high-variance from overly fine-grained rewards
or failtures when state overlap is rare. We therefore introduce implicit step re-
wards for agentic RL (iStar), a general credit-assignment strategy that integrates
seamlessly with standard RL algorithms without relying on additional rollouts or
explicit step labels. Particularly, we alternatively optimize an implicit process re-
ward model (PRM) with the policy model to generate step rewards for each action
via a multi-turn DPO objective. Theoretical analysis shows that this learning ob-
jective produces a step-wise reward function learned from trajectory preferences.
Then the implicit step rewards are used to compute step-level advantages, which
are combined with trajectory (or episode)-level advantages for policy updates, cre-
ating a self-reinforcing training loop. We evaluate our method on three challeng-
ing agent benchmarks, including WebShop and VisualSokoban, as well as open-
ended social interactions with unverifiable rewards in SOTOPIA. Crucially, our
method shows superior performance over frontier LLMs and strong RL baselines
across domains, achieving state-of-the-art results with higher sample-efficiency
and training stability. Further analysis also demonstrates efficient exploration by
iStar with increased rewards in both step- and episode-level while maintaining
fewer steps to achieve task success.

1 INTRODUCTION

LLMs are rapidly evolving from passive generators into autonomous agents that can reason, act, and
adapt strategies over long horizons, including search agents (Jin et al., 2025; OpenAI, 2025a), mobile
and web navigators (Furuta et al., 2024; Bai et al., 2024), software engineering assistants (Yang et al.,
2025; Wei et al., 2025a), and social or embodied intelligence (Liu et al., 2025; Lu et al., 2025).
Unlike conventional RL for LLM post-training in static, single-turn tasks (Ouyang et al., 2022;
Shao et al., 2024), training LLM agents in interactive environments faces particular challenges: (1)
rewards are typically sparse and delayed, complicating credit assignment to intermediate actions;
(2) trajectories are long and non-Markovian in token level, with each step consisting of a chain-of-
thought (CoT) (Wei et al., 2022) and an executable action, inflating variance when credit is pushed to
individual tokens; and (3) environments and counterparts are non-stationary, open-ended and often
come with unverifiable rewards (e.g, dialogues). Consequently, trajectory-level optimization with a
single outcome reward (Wang et al., 2025; Wei et al., 2025b) suffers from credit assignment, yielding
high-variance policy learning, brittle exploration, and limited gains on agent tasks.

Recent work has attempted to solve these problems particularly through process supervision in RL.
For example, Zeng et al. (2025); Zou et al. (2025); Zhang et al. (2025b) provide denser feedback
at intermediate steps but require handcrafted step labels that are costly, biased, and vulnerable to
reward hacking. Generative reward models (GRMs) (e.g, LLM-as-judge) (Liu et al., 2025; Zha
et al., 2025) that predict criticality or correctness for each step reduce annotation overhead but can
be noisy and inconsistent across domains. Implicit PRMs(Yuan et al., 2025; Cui et al., 2025) help in
single-turn tasks, but the token-level process rewards tend to be overly fine-grained in agent training,
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amplifying variance and destabilizing training as trajectories grow. Other approaches (Feng et al.,
2025; Choudhury, 2025) compute step-level advantages by grouping identical states, an assump-
tion that fails in open-ended language environments where state overlap is rare. Together, these
limitations raise a core question for agentic RL: How can we design a credit-assignment strat-
egy that is label-efficient and stable, scales to multi-turn interactions, and remains robust and
generalizable to (un)verifiable rewards in open-ended environments?

To address this, we propose implicit step rewards for agentic RL (iStar), a general credit-assignment
strategy for LLM agents. iStar jointly trains an implicit PRM with the policy model (the LLM
agent) using trajectories collected online. At each training step, the policy model generates rollouts,
which are ranked by an outcome reward verifier (or model) to form positive–negative trajectory
pairs. The implicit PRM is optimized via a multi-turn DPO objective on these pairs. The updated
PRM then generates implicit step rewards for each action by measuring its relative preference over
the previous policy snapshot. Since this reward is computed per step, it provides dense feedback
to guide exploration while staying coarse enough to keep variance under control. When training
the policy model, we combine two complementary advantages: an episode-level advantage from
outcome rewards and a step-level advantage from the implicit step rewards, capturing both global
task success and the contribution of individual actions. iStar is compatible with various existing RL
algorithms, such as GRPO (Shao et al., 2024), RLOO (Ahmadian et al., 2024), and DAPO (Yu et al.,
2025), without relying on annotated step labels or additional rollouts.

Our method addresses the limitations of prior work along several dimensions: (1) iStar provides
step credit without annotated labels through implicit rewards derived from a multi-turn DPO objec-
tive, which is guaranteed to be a step-wise reward function learned from trajectory preferences (see
Section 3.2); (2) iStar stabilizes training with multi-turn RL by learning implicit rewards at the step
level rather than the token-level (Cui et al., 2025); (3) iStar only relies on trajectory preferences that
can be sourced from (un)verifiable outcome rewards even in open-ended environments, enabling
unified credit assignment across different domains.

Experiments on three challenging agent benchmarks show that iStar achieves superior performance
over frontier LLMs and strong RL baselines, achieving state-of-the-art results in WebShop and Visu-
alSokoban. In SOTOPIA, open-ended social interactions with unverifiable rewards, iStar increases
goal completion by up to 14% in self-chat and 48% when chatting with GPT-4o (OpenAI, 2024).
Our method can also be plugged into different RL algorithms to boost their performance. Further
analysis shows higher sample efficiency and training stability of our method than vanilla RL and
token-level PRM (Cui et al., 2025) baselines, as well as efficient exploration with increased rewards
in both step- and episode-level and fewer steps to achieve a goal. Our main contributions include:

• We introduce a general credit assignment strategy for LLM agentic (multi-turn) RL that
alternatively optimizes an implicit step-level PRM with the policy model, creating a self-
reinforcing training loop.

• We propose a multi-turn DPO objective to optimize the implicit PRM online, which is theo-
rectically guaranteed to be a step-wise reward function learned from trajectory preferences.

• Experiments demonstrate superior performance of our method over baselines across var-
ious environments, showing higher sample efficiency, training stability and robustness to
unverifiable rewards, as well as efficient exploration during multi-turn online RL.

2 PRELIMINARIES

Task formulation. We consider the LLM agent task as a multi-step decision-making process,
where the agent interacts with the environment to achieve a long-term goal through sequential de-
cisions given a task prompt x ∈ p(X). At each timestep t, the agent receives an observation ot
from the environment and responds with a textual action at ∈ V L, where V denotes the token vo-
cabulary and L the maximum generation length1. The environment then returns a scalar reward rt
and transitions to the next state. Until the last timestep T , the full episode consists of a trajectory
τ = {(o1, a1, r1), ..., (oT , aT , rT )}. However, in real-world scenarios, rewards can be sparse and
delayed, such as feedback provided only at the end of a trajectory.

1Note that we prompt the LLM agent to produce a reasoning process before executing an action, and at

refers to the whole sequence consisting of both the reasoning and the action at each timestep.
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Figure 1: Overview of iStar. At each training step, an LLM agent interacts with the environ-
ment to generate multi-step rollouts ranked by an outcome reward verifier (or model) to construct
positive-negative trajectory pairs. These pairs are used to train an implicit PRM via a multi-turn
DPO objective, which generates implicit step rewards for each action produced by the agent. Fi-
nally, calculate step-level advantages using the implicit step rewards and episode-level advantages
using outcome rewards to optimize the LLM agent (policy model) through RL.

RL for LLMs. RL addresses the agent task by optimizing the LLM agent πθ(at|o1:t, x), with
the objective of maximizing the expected cumulative rewards during multi-turn interactions. Policy
gradient methods are usually used, such as PPO (Schulman et al., 2017), GRPO (Shao et al., 2024),
RLOO (Ahmadian et al., 2024), and REINFORCE++ (Hu et al., 2025). These RL algorithms mainly
differ in the manner of estimating advantages for policy updates. For example, PPO computes
advantages with a learned value function using generalized advantage estimation. GRPO and RLOO
are critic-free and form relative advantages within a group of N responses for the same input prompt.
GRPO centers (and often normalizes) each reward by the group mean, while RLOO uses a leave-
one-out mean. REINFORCE++ instead uses batch-normalized rewards as the baseline reward.

Implicit reward modeling. Implicit rewards have shown effectiveness in reward modeling for
LLM alignment by enabling models to infer rewards without explicit labels (Ethayarajh et al., 2024;
Wu et al., 2025; Zhang et al., 2025a). The implicit rewards are used to evaluate the quality of model
outputs, such as DPO (Rafailov et al., 2024b)). Further, Rafailov et al. (2024a) demonstrates that
DPO can automatically learn a Q-function. Beyond the use as reward models or Q-functions, recent
work uses implicit token-level rewards for test-time reranking (Yuan et al., 2025) or single-turn
RL (Cui et al., 2025): rϕ(yt) := β log

πϕ(yt|y<t)
πref(yt|y<t)

, where πϕ represents the token-level reward model
and πref the reference model. yt denotes the t-th token in the response y.

3 METHOD

In this section, we first provide an overview of our method with a definition of implicit step rewards
for agentic RL. We then present theoretical analysis to justify the learning objective of the implicit
PRM in iStar produces a step-wise reward function.

3.1 OVERVIEW

In iStar, there is an implicit PRM optimized alternately with the policy model (LLM agent), trans-
forming the tendency to prefer more optimal actions into dense step rewards to guide exploration
and improvement of the agent. Figure 1 shows the overall training pipeline of our method. The
alternating optimization between the implicit PRM and the policy model creates a self-reinforcing
training loop to iteratively enhance each other. Below we first provide a definition of the implicit
step rewards, and detail the training process for the implicit PRM and the policy model, respectively.
Please refer to Appendix A for the detailed algorithm of iStar.
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Figure 2: The credit-assignment strategy of iStar. In our method, episode-level advantages AE(τ)
are computed using outcome rewards ro(τ), while step-level advantages AS(a) are calculated based
on implicit step rewards rϕ(a) produced by the implicit PRM. The final advantages for policy up-
dates is a combination of these two-level advantages.

Implicit step rewards. Let τ = (o1, a1, ..., oT , aT ) denote a trajectory produced by the LLM
agent using policy πθ. For action at in the trajectory at step t, its implicit step reward is defined as

rϕ(o1:t, at) = β log
πϕ(at|o1:t, x)
πθold(at|o1:t, x)

, (1)

where πϕ represents the implicit PRM, πθold refers to the previous snapshot of the policy πθ, and
β ∈ [0, 1] is a temperature that scales the reward. The implicit step reward measures how much
more probable the current action is under the freshly learned PRM than under the old policy. Positive
values indicate actions that πϕ believes to be responsible for recent improvements, while negative
values highlight actions that should be discouraged.

Optimizing implicit PRM via multi-turn DPO online. For scalable online RL, we train the
implicit PRM πϕ on positive-negative trajectory pairs sampled by the policy model πθ and derive a
multi-turn DPO objective for online update:

JPRM(ϕ) = −E(τ+,τ−)∼πθold
x∼p(X)

[
log σ

(
β log

πϕ(τ
+ | x)

πθold(τ
+ | x)

− β log
πϕ(τ

− | x)
πθold(τ

− | x)

)]
, (2)

where σ is the logistic sigmoid, and πϕ, πθold as well as β follows Eq. 1. τ+ is a positive trajectory
that is preferred to the negative one τ−, both of which are labeled by an outcome reward verifier
(or model) 2. Particularly, Eq. 2 has two main differences from the standard DPO (Rafailov et al.,
2024b): (1) we use the previous policy snapshot πθold as the reference model, whose parameters alter
during training, instead of the initial policy model that keeps frozen; (2) we derive the DPO objective
from a multi-step Markov decision process (MDP) rather than a one-step bandit problem (Rafailov
et al., 2024b). See Section 3.2 for the justification that Eq. 2 is a multi-turn version of standard DPO
that equivalents to a Bradley-Terry (BT) model with a step-wise reward function.

Policy learning with implicit step rewards. We use GRPO (Shao et al., 2024) as an example to
illustrate how to integrate our implicit step rewards into policy learning, despite that our method
is compatible with a variety of RL algorithms (Ahmadian et al., 2024; Hu et al., 2025; Yu et al.,
2025; Zheng et al., 2025). As shown in Figure 2, for each task prompt x, we sample a group of N
trajectories {τ1, ..., τN} from the current policy πθ, and obtain its corresponding outcome rewards
{ro(τ1), ..., ro(τN )} through an outcome reward verifier (or model). We then compute episode-level
advantages AE for the group of trajectories:

AE(τi) =
(
ro(τi)−mean(Ro)

)
/std(Ro), (3)

where Ro =
∑N

i=1 ro(τi). Next, we use the latest implicit PRM πϕ (from the previous training step)
to obtain implicit step reward for each action ait via Eq. 1, and compute step-level advantages:

AS(ait) =
(
rϕ(a

i
t)−mean(Rs)

)
/std(Rs), (4)

where Rs = ∪i,trϕ(ait) denotes the whole set of step rewards in the N trajectories. Particularly,
when we use a group of trajectories starting from the same initial state (task prompt), we can generate

2In our experiments on WebShop and VisualSokoban, positive trajectories are those with success rates above
0, while for SOTOPIA, positive trajectories have goal completion score above 6.
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various counterfactual scenarios. This helps us calculate a more accurate and stable estimate of the
state-value baselines, leading to a better measure of the advantage for ait. On the other hand, in a
single trajectory, actions happen in different states and are influenced by noise specific to the policy
used by the agent, leading to advantages in high variance.

Given episode-level advantages and step-level advantages, we combine them for policy updates:
A(ait) = AE(τi) + αAS(ait), (5)

where α is a hyperparameter that balances the two-level advantages. The final advantage can differ-
entiate not only between favorable and unfavorable trajectories but also beneficial and detrimental
steps within a group of trajectories from the same initial state, enabling more dense rewards for
policy learning in long-horizons.

Ultimately, given the advantages A(ait), the policy model πθ is trained using a surrogate objective
that is widely used in Schulman et al. (2017); Shao et al. (2024):

Jpolicy(θ) = E{τi}N
i=1∼πθold

x∼p(X)

[
1

NT

N∑
i=1

Ti∑
t=1

min
(
ρθ(a

i
t)A(ait), clip

(
ρθ(a

i
t), 1± ϵ

)
A(ait)

)]
, (6)

where ρθ(a
i
t) =

πθ(a
i
t|o

i
t,x)

πθold (a
i
t|oi

t,x)
is the importance sampling ratio at the step-level, and ϵ is a hyper-

paramter that controls the clipping range of the importance. Particularly, the step-level importance
sampling ratio aligns well with our implicit step rewards to ensure low-variance training noise on
multi-step rollouts, similar to (Zheng et al., 2025). We also choose not to apply any KL-divergence
penalty to the policy model during training. In an online, agentic RL setting, successful behavior
may need to deviate substantially from what a frozen language model would normally produce. Re-
moving the KL penalty allows the policy model to explore the action space more freely, especially
in regions that are crucial for solving the task. See Table 7 for performance comparison with and
without the KL-divergence penalty.

Remarks. Alternating optimization between the implicit PRM and the policy model establishes a
training loop that enhances stability and accelerates convergence. In particular, using rollouts pro-
duced by the current policy to train both models keeps their data distributions roughly consistent,
minimizing off-policy bias and covariate shift. This consistency keeps implicit step rewards cali-
brated to the agent’s behavior, yielding dense and low-variance credit signals and preventing over-
or underfitting the implicit PRM to ensure stable training. The result is a self-reinforcing loop: im-
proved policies yield better preference data, refining the implicit PRM, which in turn delivers more
accurate implicit step rewards to guide the policy.

3.2 THEORETICAL ANALYSIS

We now justify that the learning objective of our implicit PRM in Eq. 2 is a multi-turn version of
standard DPO, which is equivalent to a BT model with a step-wise reward function. Formally, for
any trajectory pair {τi = {(oit, ait)}

Ti
t=1}2i=1 satisfying o11 = o21 (the same task prompt x), we have

P(τ1 ≻ τ2) = σ

(
T1∑
t=1

β log
π∗
ϕ(a

1
t | o11:t, x)

πθold(a
1
t | o11:t, x)

−
T2∑
t=1

β log
π∗
ϕ(a

2
t | o21:t, x)

πθold(a
2
t | o21:t, x)

)

= σ

(
T1∑
t=1

r∗ϕ(o
1
1:t, a

1
t )−

T2∑
t=1

r∗ϕ(o
2
1:t, a

2
t )

) (7)

where π∗
ϕ denotes the optimal implicit PRM. This is a multi-turn version of standard DPO similar

to Rafailov et al. (2024a), but we consider each action sequence as an optimized unit in the MDP
instead of the token-level MDP. In addition, we only calculate the loss on the action tokens while
excluding the log probability ratios of the tokens generated by the environment. Based on this multi-
turn version, Eq. 7 shows that the learning objective of our implict PRM in Eq. 2 equivalents to a
BT model with a step-wise reward function:

r∗ϕ(o1:t, at) = β log
π∗
ϕ(at | o1:t, x)

πθold(at | o1:t, x)
. (8)

This is also a variant of a token-level dpo objective which has been proved to be equivalent to a BT
model with a token-wise reward function (see Zhong et al. (2025) for proof details).
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4 EXPERIMENTS

We evaluate iStar across a variety of agentic tasks to demonstrate: (1) its effectiveness in training
LLM agents for long-horizon reasoning and acting; (2) high sample efficiency and training stability
given implicit step rewards; (3) improved exploration efficiency evidenced by increased rewards and
fewer steps; and (4) the core components of iStar for credit assignment in agentic RL.

Benchmarks. We evaluate LLM agents in three challenging environments: (1) WebShop (Yao
et al., 2022), a text-based web environment where the agent interacts with a HTML-based website
to search, nevigate, and purchase an item given an user instruction, requiring multi-step decision
making; (2) VisualSokoban (Schrader, 2018) with 6 × 6 size, a puzzle game where the agent has
to push all boxes on targets, requiring spatial reasoning and long-term planning over both visual
and textual inputs; (3) SOTOPIA (Zhou et al., 2024), an open-ended social interaction environment
where the agent interacts with another LLM agent given a social scenario, role profiles and private
goals, requiring reasoning over the other agent’s real-time strategies. During training, we use scenar-
ios from SOTOPIA-π (Wang et al., 2024b). See Appendix B for more details of the environments.

Baselines. We compare our method against a range of competitive baselines: (1) prompting LLMs
specialized in general-purpose reasoning: GPT-5 (OpenAI, 2025b), Gemini-2.5-Pro (Google, 2024),
DeepSeek-R1 (Guo et al., 2025), and Claude-Sonnet-4-Thinking (Anthropic, 2025); (2) vanilla RL
methods that only use outcome rewards: PPO (Schulman et al., 2017), GRPO (Shao et al., 2024),
RLOO (Ahmadian et al., 2024) and REINFORCE++ (Hu et al., 2025); (3) a recent single-turn RL
method: PRIME (Cui et al., 2025) that introduces token-level process rewards for policy learning;
and (4) a recent agentic RL algorithm: GiGPO (Feng et al., 2025) that computes step-level advan-
tages via same-state grouping.

Evaluation. For WebShop and VisualSokoban, we adopt Success Rate and Score (only for Web-
Shop) as the evaluation metrics following Feng et al. (2025). These metrics are computed over
validation instances and select the best score for comparison. For SOTOPIA, we report goal com-
pletion score ranging from 0 to 10, which is evaluated by GPT-4o as a proxy for human judgement
following Zhou et al. (2024). We set the tempature to 0 for the LLM judge. Refer to Appendix C.2
for evaluation prompts used in each environment.

Implementation details. In our experiments, the implicit PRM is initialized from the base policy
model by default. However, in VisualSokoban, we use Qwen2.5-VL-7B-Instruct as the base model
for the policy model and Qwen2.5-7B-Instruct as the base model for the implicit PRM. We use a
constant learning rate 5 × 10−7 for the policy model and 10−6 for the implicit PRM with AdamW
optimizer. Both the policy model and the implicit PRM use a batch size of 64 and micro-batch size
8. We set the advantage coefficient α = 1.0 following (Feng et al., 2025) and β = 0.05 for the
implicit PRM following (Yuan et al., 2025). Performance with varying α and β is shown in Table 4.
The rollout size is set to 8 per prompt. All methods share the identical RL configurations for fair
comparison, and all experiments are run on 8×A100 GPUs. Additional training details for each
environment are shown in C.1.

4.1 MAIN RESULTS

Performance on benchmarks. Table 1 showcases iStar’s superior performance over baselines in
WebShop and VisualSokoban, with notable gains on the latter, where RL algorithms struggle with
irreversible mistakes and limited foresight. Similar trends occur with much smaller base models
as demonstrated in Table 5. Specifically, our method achieves state-of-the-art performance and
surpasses recent multi-turn RL baseline GiGPO (Feng et al., 2025) by enabling finer-grained credit
assignment, distinguishing good and bad actions with implicit rewards for each step than relying
on same-state grouping. Our method also outperforms recent single-turn RL baseline PRIME (Cui
et al., 2025) that uses token-level process rewards, which provides overly fine-grained rewards that
complicate policy training in multi-turn RL with high-variance (see Figure 4(a)-(b)). In SOTOPIA,
where GiGPO and PRIME are inapplicable due to open-ended state space and unverifiable rewards,
Table 2 shows that iStar still achieves state-of-the-art performance. Particularly, compared to vanilla
RL baselines, our method improves goal completion in hard social scenarios by 14% (7.92→ 8.06)
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Table 1: Performance on WebShop and VisualSokoban. Qwen2.5-7B-Instruct and Qwen2.5-
VL-7B-Instruct serve the base models for WebShop and VisualSokoban, respectively. Note that
Deepseek-R1 and PPO training do not currently support multi-modal scenarios, and PRIME is only
applicable to tasks with binary outcome rewards. Results are averaged over three random seeds.

Method WebShop VisualSokoban
Success Score Success

Prompting frontier LLMs (ReAct)
GPT-5 37.5 66.1 16.6
Gemini-2.5-Pro 30.5 38.4 16.0
DeepSeek-R1 29.3 39.8 -
Claude-Sonnet-4-Thinking 35.2 62.0 19.1

Base Model (ReAct) 21.5 47.3 14.1
+ PPO 78.2± 4.5 86.6± 1.1 -
+ GRPO 80.1± 1.7 89.3± 2.8 85.6± 2.8
+ RLOO 77.4± 1.1 87.6± 4.7 86.3± 0.6
+ REINFORCE++ 77.0± 3.9 85.8± 0.1 81.4± 8.8
+ PRIME (Cui et al., 2025) 81.5± 1.8 91.3± 0.6 -
+ GiGPO (Feng et al., 2025) 84.1± 3.9 91.2± 1.5 85.9± 2.6
+ RLOO w/ iStar 86.5± 2.8 93.6± 1.0 91.7± 1.2

Table 2: Performance on Sotopia. Self-Chat: the model being evaluated interacts with itself; GPT-
4o-as-Patrner: the model interacts with GPT-4o. “Goal” refers to the goal completion score (0-10).
“Hard” denotes a challenging subset of scenarios that demand for advanced reasoning, and “All”
denotes the all set of social scenarios in SOTOPIA. Results are averaged over three random seeds.

Method Self-Chat GPT-4o-as-Partner
Goal (Hard) Goal (All) Goal (Hard) Goal (All)

Prompting frontier LLMs (ReAct)
GPT-5 7.21 8.95 7.70 8.90
Gemini-2.5-Pro 6.74 8.27 7.43 8.41
DeepSeek-R1 6.98 8.56 7.30 8.44
Claude-Sonnet-4-Thinking 6.39 8.64 7.02 8.62

Qwen2.5-7B-Instruct (ReAct) 5.56 6.77 5.51 7.30
+ PPO 6.63± 0.24 8.25± 0.09 6.27± 0.14 8.07± 0.08
+ GRPO 6.97± 0.24 8.31± 0.06 6.42± 0.31 7.84± 0.06
+ RLOO 5.70± 0.16 7.13± 0.02 6.09± 0.13 7.77± 0.03
+ REINFORCE++ 6.17± 0.30 7.87± 0.09 6.38± 0.05 7.93± 0.09
+ GRPO w/ iStar 7.11± 0.19 8.42± 0.03 6.76± 0.18 8.36± 0.03

Llama3.1-8B-Instruct (ReAct) 5.89 6.95 5.82 7.43
+ PPO 7.76± 0.14 9.05± 0.03 6.64± 0.03 8.14± 0.01
+ GRPO 7.92± 0.08 9.12± 0.02 6.68± 0.03 8.14± 0.02
+ RLOO 6.48± 0.15 8.33± 0.03 6.51± 0.14 8.02± 0.06
+ REINFORCE++ 7.84± 0.14 9.06± 0.04 6.38± 0.23 7.99± 0.10
+ GRPO w/ iStar 8.06± 0.11 9.20± 0.03 7.16± 0.14 8.45± 0.03

in self-chat, and up to 48% (6.68 → 7.16) increase when chatting with GPT-4o. This demonstrates
the generalizability of our method to a wide variety of interactive environments.

iStar with different vanilla RL algorithms. Since our method is compatible with various RL
methods, we also evaluate it using different RL algorithms, including RLOO (Ahmadian et al.,
2024), REINFORCE++ (Hu et al., 2025) and GRPO (Shao et al., 2024), and compare each to its
vanilla version that only uses outcome rewards. As shown in Figure 3, iStar consistently improves
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vanilla RL methods by integrating implicit step rewards into multi-turn RL to improve credit assign-
ment in long-horizons. For example, iStar with RLOO obtains substantial gains of 6.3% in success
rate on both WebShop and VisualSokoban. Similar trends occur with REINFORCE++ and GRPO,
demonstrating the robustness of our method to diverse RL algorithms and environments.

Figure 3: Performance comparison of iStar with different vanilla RL algorithms. Qwen2.5-
7B-Instruct and Qwen2.5-VL-7B-Instruct serve the base models for WebShop and VisualSokoban,
respectively. Results are reported using one seed.

4.2 IN-DEPTH ANALYSIS

Sample efficiency and training stability. Figure 4 illustrates that compared to baselines, iStar
achieves faster improvement and higher final performance in validation metrics during multi-turn
RL, demonstrating superior sample efficiency. Particularly, in Figure 4(a), our method achieves the
score of vanilla RLOO in WebShop in just 105 steps, around 2× improvement in training efficiency.
By 165 steps, we reach the highest score of 94.7%, showcasing significant improvements in both
efficiency and performance. Notably, while PRIME exhibits comparable early-stage performance
on WebShop, its growth stagnates and experiences sharp fluctuations. This is because overly fine-
grained process rewards in token-level will complicate policy learning in long-horizon interactions,
which usually involve much longer sequences than single-turn tasks. In contrast, iStar continues to
improve consistently, suggesting that our implicit step rewards provide dense feedback for explo-
ration while being sufficiently coarse to reduce variance for stable training.

With increased compute, our method’s advantages in sample efficiency and training stability not
only persist but become more pronounced. As shown in Figure 10 and Figure 11, its performance
improvements remain consistently stable as training progresses. In contrast, baselines such as vanilla
RLOO and GiGPO become increasingly unstable and can even degrade with more training steps. In
addition, although our method introduces an implicit PRM that adds some computation per training
step, this overhead is relatively small since policy rollouts dominate the total training cost. Our
method can also reduce per-step computation owing to its shorter trajectories (see Figure 5(c)-(d)).
Consequently, our method generally achieves better performance than the baselines for the same
amount of GPU hours as illustrated in Figure 12.

(a) (b) (c)

Figure 4: Validation performance (10-step moving) during multi-turn RL in WebShop and
VisualSokoban. Note that PRIME can only be applied to tasks with binary outcome rewards.

Exploration efficiency. To demonstrate the implicit step rewards provide useful guidance for pol-
icy learning, we visualize the evolution of step- and episode-level rewards in Figure 5(a) and (b). In
particular, the implicit step reward improves very early (especially in VisualSokoban) and then the
episode reward follows, indicating that our method first captures good local action heuristics and
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(a) (b) (c) (d)

Figure 5: Training dynamics (10-step moving) of iStar in WebShop and VisualSokoban. Left:
Dynamics of the episode and implicit step rewards during RL training by our method. Right: The
episode length versus training step compared to baselines.

then composes them into higher-return trajectories. Even when we use a smaller base model that
may generate lower-quality rollouts in the early stage of RL, our implicit PRM still remains stable
and effective as shown in Figure 9. A key consequence is that unnecessary actions are reduced
during multi-turn interactions, resulting in shorter episode lengths. As shown in Figure 5(c) and
(d), episode lengths decrease without compromising task success, as evidenced by the consistent
increase in episode rewards.

Table 3: Ablation studies on core components of iStar. “RLOO”: only outcome rewards are used
to compute advantages for policy updates. “w/ environmental process rewards”: use raw step re-
wards provided by VisualSokoban to calculate step-level advantages. “w/ merged rewards”: implicit
step rewards are added directly to outcome rewards before advantage computation. “w/ token-level
process rewards”: the implicit PRM produces rewards for each token along the entire trajectory
rather than step-level rewards for each action sequence. Results are reported using one seed.

Method WebShop VisualSokoban
Success Score Success

RLOO 76.6 84.2 85.9
w/ environmetal process rewards - - 87.5
w/ merged rewards 81.3 90.7 88.3
w/ token-level process rewards 82.0 90.0 89.1
w/ iStar 89.1 94.7 93.0

4.3 ABLATION STUDIES

Table 3 presents results of ablation experiments to validate the necessity of key components of our
method for effective credit assignment. First, raw step penalties provided in VisualSokoban show
limited improvement over vanilla RL, suggesting that the implicit step rewards learned by iStar are
superior credit signals for policy learning. Second, merging the implicit step rewards into episode
rewards obtains gains over vanilla RL but the improvement are modest compared to our method.
This indicates that we should not only reward intermediate actions but also gate credit by final task
success to prevent speculative reward exploitation. Therefore, combining signals at the advantage
level is crucial to credit assignment in long-horizons. Third, learning token-level process rewards is
sub-optimal to multi-turn RL, suggesting that overly fine-grained rewards may introduce noise and
thus increase the difficulty of policy learning.

We also compare our method to training the policy on SOTOPIA using multi-turn DPO alone. As
shown in Table 6, vanilla GRPO already substantially outperforms both online and offline multi-turn
DPO. Building on this, our method further improves performance by using both step and episode
rewards, enabling more effective credit assignment in multi-turn RL.

5 RELATED WORK

PRMs has been widely explored in single-turn tasks, such as mathematical reasoning and single-
shot code generation. In these settings, PRMs are used to score intermediate steps for test-time

9
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search or reranking (Lightman et al., 2024; Wang et al., 2024a; Mahan et al., 2024), or for online-
RL (Dou et al., 2024; Setlur et al., 2025; Zha et al., 2025). Moving to dynamic, interactive tasks,
process rewards are usually constructed in three ways: (1) handcrafted step rewards assigned to tool
execution (Zeng et al., 2025) or meta-reasoning tags (Zhang et al., 2025b); (2) GRMs (Liu et al.,
2025; Zou et al., 2025) that label step quality; (3) and implicit PRMs (Yuan et al., 2025) that produce
token-level process rewards.

However, manually-designed or judge-based step labels are costly and biased, suffering from reward
hacking. Learning step Q-values (Choudhury, 2025) can reduce the bias but a fixed PRM may
poorly estimate Q-values for unseen actions during inference. PRIME(Cui et al., 2025) partially
addresses these issues by jointly training an implicit PRM with the generator. Yet, with overly
fine-grained rewards in token-level, it introduces noises and distabilizes training in multi-turn RL.
Another issue with PRIME is that it applies a cross-entropy loss to optimize the implicit PRM, which
is only applicable to tasks with binary outcome rewards. Instead of learning a PRM, Feng et al.
(2025) addresses credit assignment by computing step-level advantages via same-state grouping.
While effective in tasks with finite state-action space, it relies on exact state overlaps and cannot be
generalized to open-ended language environments where same state is rare. In contrast, our method
learns implicit rewards at the step-level through a multi-turn DPO objective, offering label-efficient
step rewards with low-variance in long-horizon RL and showing robustness and generalization to
(un)verifiable rewards even in open-ended environments.

6 CONCLUSION AND DISCUSSION

We propose iStar, a general credit-assignment strategy for LLM agents. In particular, we alter-
natively optimize an implicit PRM with the policy model, which provides implicit step rewards to
guide policy learning and results in a self-reinforcing training loop. To optimize the implicit PRM
in an online setting, we propose a multi-turn DPO objective that is guaranteed to be equivalent to a
BT model with a step-wise reward function. In practice, our method can be plugged into a variety
of RL algorithms and generalized to (un)verifiable rewards even in open-ended environments. Em-
pirical results show that iStar achieves averaged 86.5% success and 93.6% score on WebShop, and
reaches 91.7% success on VisualSokoban. In SOTOPIA, our method improves goal completion in
hard scenarios by up to 14% in self-chat and 48% against GPT-4o.

In the future, our method can also be validated in math problems or code generation to provide
implicit step rewards for intermediate CoT steps. It can also be applied to test-time scaling for search
guidance. Regarding the limitations, we currently separate the implcit PRM from the policy model
during training, which however, can be a unified model trained with different objectives to reduce
computation memory and potentially improve representation sharing. Additionally, in SOTOPIA,
our implicit PRM is trained to only predict goal-completion preferences, while future work could be
extended to multi-objective implicit PRMs.

ETHICS STATEMENT

The development of autonomous LLM agents capable of independent thinking and decision-making
in interactive environments, including those involving human users, offer transformative potential
to real-world applications but could also introduce some ethical concerns. First, if improperly de-
signed or monitored, such an agent may exhibit behaviors that prioritize success metrics at the
expense of human values and safety. For instance, an LLM agent operating in dynamic interactions
may inadvertently take actions that conflict with ethical principles, reinforce biases, or neglect the
broader societal and interpersonal impacts of its decisions. These risks highlight the need for inte-
grating rigorous safeguards to ensure alignment with human-centric values. Second, a commitment
to transparency, accountability, and inclusivity in the training and evaluation of these LLM agents is
essential to ensuring they exhibit empathy, integrity, and fairness in reasoning and acting. By em-
bedding ethical principles into the development process, it is expected to mitigate potential harms
and harness the potential of these technologies for the benefit of individuals and the society.
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REPRODUCIBILITY STATEMENT

To reproduce our experiments, we provide the source code as supplementary materials. Regard-
ing the theoretical analysis in Section 3.2, since recent work (Zhong et al., 2025) has provided a
detailed proof in a token-wise setup, which is a variant of our step-wise justification, we do not
elaborate more in this paper. For specific proof details, please refer to Zhong et al. (2025). With
respect to training data, our training pipeline relies solely on initial task prompts, as the policy model
autonomously generates online rollouts during interactions with the environment (including a user
simulator in SOTOPIA). Therefore, we do not require a fixed offline dataset or a dedicated data
processing step. See Appendix C.2 for the detailed task prompt templates used in our experiments.
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A ALGORITHM

The algorithm flow of iStar is detailed in Algorithm 1.

Algorithm 1: Training LLM Agents with iStar (GRPO as an example)
Input: Task distribution p(X), language model πθinit , outcome reward verifier or model ro,

training steps M, rollout size N, mixing weight α
Output: Optimized policy πθ and PRM πϕ

Initialize policy model πθ ← πθinit , πθold ← πθinit , PRM πϕ ← πθinit ;
for iteration = 1, ...,M do

// Multi-step rollouts collection
Sample task x ∼ p(X) and initialize N identical environments
for t = 1, ..., T do

Sample actions {ait ∼ πθ(o
i
1:t, x)}Ni=1

Execute actions and observe next observation {oit+1}Ni=1

// PRM training
Compute outcome rewards for N trajectories: ro(τ1:N )
Forward pass πϕ based on trajectory preferences to obtain step reward rϕ(a

i
t) with Eq. 1

Update PRM πϕ on trajectories using a DPO-style objective in Eq. 2
// Policy training

Compute episode-level advantages AE(τi) using ro(τi) via Eq. 3
Compute step-level advantages AS(ait) using rϕ(a

i
t) via Eq. 4

Combine advantages: A(ait) = AE(τi) + αAS(ait)
Update policy πθ by maximizing objective in Eq. 6
Update old parameters: θold ← θ

B ENVIRONMENT DETAILS

WebShop. WebShop (Yao et al., 2022) simulates online shopping tasks on an e-commerce plat-
form, where the agent’s objective is to interpret human-provided text instructions and purchase a
product that aligns with the given specifications. To accomplish this, the agent must interact with
the website’s search engine, select items to review from the search results, examine their descrip-
tions and details, and choose relevant options (e.g., size, color) before finalizing the purchase by
clicking the “Buy” button. To identify the best product that fulfills the user’s requirements, the agent
may need to compare multiple products, navigate back and forth between pages, and conduct ad-
ditional searches if necessary. The environment includes over one million products sourced from
amazon.com, more than 12,000 crowd-sourced instructions, and a rich set of semantic actions. At
the end of each interaction, a binary reward is provided to indicate whether the task is successfully
completed. The final score for each task is automatically calculated using programmatic matching
functions that evaluate attributes, type, options, and price of the selected product.

VisualSokoban. Sokoban (Schrader, 2018) consists of rooms composed of five key elements:
walls, floors, boxes, box targets, and an agent. These elements may exist in different states de-
pending on whether they overlap with a box target. Rooms are randomly generated, which helps
prevent models from overfitting to specific predefined layouts. The game includes two primary ac-
tions, Push and Move, which can be performed in four directions: Up, Down, Left, and Right. The
Move action allows the agent to proceed to an empty space in the specified direction, provided there
is no wall or box blocking the path. The Push action attempts to move an adjacent box, but only
if the field behind the box is empty; chain pushing of multiple boxes is not allowed. If no box is
adjacent, the Push action functions identically to the Move action in the same direction. Success-
fully completing the game by pushing all boxes onto their targets yields a reward of 10 points on the
final step. Additionally, pushing a box onto a target grants a reward of 1 point, while removing a
box from a target results in a penalty of -1 point. Each step incurs a small penalty of -0.1 points to
discourage trajectories with many steps. VisualSokoban renders visuals in RGB, with the pixel size
equal to the grid size.
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SOTOPIA. SOTOPIA (Zhou et al., 2024) is a general-domain, open-ended platform to simulate
social interactions between LLM agents. The scenarios span a diverse array of social interaction
types, such as negotiation, exchange, collaboration, competition, accommodation, and persuasion.
A particularly challenging subset, known as SOTOPIA-hard, involves scenarios requiring advanced
strategic reasoning. Each agent is defined by character profiles, encompassing attributes like name,
gender, personality, and profession. At the end of each dialogue, agents are evaluated by GPT-4o
as a proxy for human judgment across seven dimensions: Goal Completion, Believability, Knowl-
edge, Secret, Relationship, Social Rules, Financial and Material Benefits. SOTOPIA-π (Wang et al.,
2024b) is a follow-up work that uses GPT-4 to generate a new set of scenarios. The social tasks in
SOTOPIA-π are guaranteed to be entirely distinct from those in SOTOPIA.

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS

WebShop and VisualSokoban. We use Qwen2.5-(VL)-7B-Instruct (Yang et al., 2024) as the base
models for policy learning. To address invalid actions produced by LLM agents, a reward penalty
of -0.1 is imposed. The maximum response length is 512 tokens, while the maximum prompt length
is 4096 tokens in WebShop and 1024 tokens in VisualSokoban. We sample 16 different groups per
rollout in WebShop, resulting in a total of 16×8 = 128 environments. In VisualSokoban, we sample
32 different groups per rollout, resulting in a total of 32 × 8 = 256 environments. Instead, PPO
uses 128 and 256 separate environments for rollouts in WebShop and VisualSokoban, respectively.
The rollout temperature is set to 1.0, while the validation temperature is set to 0.4. We implement
experiments in veRL (Sheng et al., 2024), each for 200 training steps.

SOTOPIA. We use Qwen2.5-7B-Instruct (Yang et al., 2024) and Llama3.1-8B-Instruct (Meta,
2024) as the base models for policy learning to demonstrate the robustness of our method to different
model backbones. The maximum prompt length is 6144 tokens and the maximum response length is
2048 tokens. As with WebShop, we sample 16 different groups per rollout in WebShop, resulting in
a total of 16×8 = 128 environments (PPO uses 128 separate environments). The rollout temparature
is set to 0.7. Each experiment implemented in veRL consists of 800 training steps.

α β Success Score

0.5 0.05 79.7 89.4
0.8 0.05 84.4 91.3
1.0 0.05 89.1 94.7
1.2 0.05 85.9 92.6
2.0 0.05 78.1 90.7
1.0 0.1 82.8 91.8
1.0 0.5 85.2 94.7

Table 4: Performance of our method on WebShop with varying α and β. Qwen2.5-7B-Instruct
is used as the base model.

C.2 EVALUATION PROMPTS

We use ReAct (Yao et al., 2023) as the prompting strategy, with chain-of-thought (Wei et al., 2022)
generated before each action. The prompt templates used for evaluating LLM or multimodal large
language model (MLLM) agents in WebShop (Yao et al., 2022), VisualSokoban (Schrader, 2018),
and SOTOPIA (Zhou et al., 2024) are presented in Figure 6, Figure 7, and Figure 8. Placeholders
enclosed in curly braces({}) represent semantic slots, which are dynamically populated at runtime.
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You are an expert autonomous agent operating in the WebShop e-commerce environment.
Your task is to: {task_description}.
Prior to this step, you have already taken {step_count} step(s). 
Below are the most recent {history_length} observations and the corresponding actions you took: {action_history}
You are now at step {current_step} and your current observation is: {current_observation}.
Your admissible actions of the current situation are: 
[
{available_actions}
].
Now it's your turn to take one action for the current step.
You should first reason step-by-step about the current situation, 
then think carefully which admissible action best advances the shopping goal. 
This reasoning process MUST be enclosed within <think> </think> tags. 
Once you've finished your reasoning, you should choose an admissible action for current step,
and present it within <action> </action> tags.

Prompt template for WebShop

Figure 6: Evaluation prompts used for the LLM agent in WebShop.

You are an expert agent operating in the Sokoban environment. 
Your goal is to push all the boxes onto the target spots. Once all boxes are on the targets, you win!

# Rules
You can only push boxes. You can't pull them, so plan ahead to avoid getting stuck.
You can't walk through or push boxes into walls.
To avoid traps, do not push boxes into corners or against walls where they can't be moved again.

# Visual Elements in the Image:
Character: A small, green alien-like figure with two antennae and black eyes. It represents you.
Box: A yellow crate marked with an orange "X" across its front. It is the box you need to push.
Target: A black tile outlined in red, with a small red diamond shape in the center. 
It marks the destination where a box should be pushed.

# Current Step
Your current observation is shown in the image: <image>
Your admissible actions are ["up", "down", "left", "right"].

Now it's your turn to make a move (choose ONE action only for the current step).
You should first reason step-by-step about the current situation — observe the positions of boxes and targets, 
plan a path to push a box toward a target, and avoid traps like corners or walls. 
This reasoning process MUST be enclosed within <think> </think> tags. 
Once you've finished your reasoning, you should choose an admissible action for current step,
and present it within <action> </action> tags.

Prompt template for VisualSokoban

Figure 7: Evaluation prompts used for the MLLM agent in VisualSokoban.

D ADDITIONAL RESULTS

D.1 RESULTS ON SMALLER LLMS

Table 5 presents results of our method compared to baselines on WebShop using Qwen2.5-1.5B-
Instruct (Yang et al., 2024) as the base model. The results show that our method can also benefit
base models with weaker reasoning capabilities. Furthermore, Figure 9 demonstrates that even the
weaker base model generates low-quality rollouts (indicated by low episode rewards) in the early
stage of RL, our implicit PRM still remains stable and effective with steadily increasing step rewards
and episode rewards throughout the training.
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Prompt template for SOTOPIA

Imagine you are {agent}, your task is to act/speak as {agent} would, keeping in mind {agent}'s social goal.
You can find {agent}'s goal (or background) in the 'Here is the context of this interaction' field.
Note that {agent}'s goal is only visible to you.
You should try your best to achieve {agent}'s goal in a way that align with their character traits.
Additionally, maintaining the conversation's naturalness and realism is essential (e.g., do not repeat what 
other people has already said before).

You are at Turn {turn}. You can say something to interact or just say 'left the conversation' to stop continuing.
Note: You can 'left the conversation' if 1. you have achieved your social goals, 2. this conversation makes you 
uncomfortable, 3. you find it uninteresting or you lose your patience, 4. for other reasons you want to leave.

You should first reason step-by-step to reflect on the current state of the dialogue, then think carefully what 
communication and social strategies best advances your goal. 
This reasoning process MUST be enclosed within <think> </think> tags. 
Once you've finished your reasoning, provide your response and present it within <action> </action> tags.

Figure 8: Evaluation prompts used for LLM agents in SOTOPIA.

Table 5: Performance on WebShop with Qwen2.5-1.5B-Instruct as the base model. Results are
reported using one seed.

Method Success Score
Qwen2.5-1.5B-Instruct (ReAct) 10.4 46.1

+ RLOO 71.9 85.7
+ GiGPO 72.7 86.8
+ PRIME 74.2 86.6
RLOO w/ iStar 80.5 91.5

Figure 9: Training dynamics (10-step moving) of our method using Qwen2.5-1.5B-Instruct as
the base model on WebShop. Left: The learning curve of average episode rewards during RL.
Right: The learning curve of implicit step rewards during RL.

D.2 RESULTS WITH MORE COMPUTE

Figures 10 and 11 show that the sample-efficiency and stability advantages of our method not only
persist but grow with increased compute. As training steps increase, our method yields larger and
more consistent performance gains, whereas baselines such as vanilla RLOO and GiGPO become
increasingly unstable and can even degrade in performance over time.

Regarding GPU hours (Figure 12), our method still outperforms the baselines in both sample ef-
ficiency and training stability, even though the implicit PRM adds some computation per training
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step. This overhead is relatively small because policy rollouts dominate the total training cost, and
our shorter trajectories can further reduce per-step computation (see Figure 5(c)–(d)).

Figure 10: Validation performance (10-step moving) on WebShop and VisualSokoban with more
training steps.

Figure 11: Performance comparison (10-step moving) between iStar and vanilla GRPO on WebShop
and VisualSokoban.

Figure 12: Performance comparsion (10-step moving) on WebShop and VisualSokoban with respect
to GPU hours.

D.3 PERFORMANCE COMPARISON AGAINST USING MULTI-TURN DPO ALONE

To evaluate our method—which integrates an implicit PRM optimized via DPO into online RL—we
compare it against using multi-turn DPO alone to train the policy on SOTOPIA. In the offline setting,
we use the datasets proposed by Kong et al. (2025) and follow Rafailov et al. (2024a); Tajwar et al.
(2025) to perform multi-turn DPO at the trajectory level. For online DPO, trajectory preference
pairs are constructed online using outcome rewards produced by the LLM-as-judge in SOTOPIA,
and optimized by multi-turn DPO following Guo et al. (2024).

Results in Table 6 shows that vanilla GRPO already significantly outperforms both online and offline
multi-turn DPO. Our method further improves performance by leveraging both step and episode
rewards to achieve better credit assignment in multi-turn RL.

D.4 PERFORMANCE COMPARISON WITH AND WITHOUT KL-DIVERGENCE PENALTY

Table 7 compares performance on WebShop with and without the KL-divergence penalty. Dropping
the KL penalty improves performance, supporting our hypothesis that removing it allows the policy
to better explore the action space in LLM agent tasks.
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Table 6: Performance comparison on SOTOPIA in self-chat settings. Llama3.1-8B-Instruct is
used as the base model. We apply supervised fine-tuning (SFT) before multi-turn DPO, whereas
GRPO and iStar do not require this step.

Method Goal (Hard) Goal (All)

SFT + DPO (offline) 6.40 8.29
SFT + DPO (online) 6.68 8.46
GRPO 7.92 9.12
GRPO w/ iStar 8.06 9.20

Table 7: Performance comparison on WebShop with and without the KL-divergence penalty.
Qwen2.5-7B-Instruct is used as the base model.

Method Success Score

RLOO w/ iStar 89.1 94.7
RLOO w/ iStar & KL 82.8 92.0
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