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Abstract

We report on our design, implementation, and computational results of a new
flow-based solver for combinatorial optimization. The technology is capable of
solving very large instances having up to billions of graph-edges within days and
accuracy of 1 — 2%, consistently. The results have been validated on real-world
instances occurring in the Swiss railway industry.

1 Introduction

Combinatorial optimization has proved time and again, to be an extremely useful method for deriving
better decisions, whenever scarce and constrained resources have to be allocated, see, e.g. [[1]. Typical
areas of industrial use-cases include transportation, logistics, healthcare, finance, technology, defense,
and more. A common problem is combinatorial explosion at growing problem-sizes, which limits the
scalability of algorithms. Given the usefulness of the combinatorial optimization approach, the need
for large-scale solvers becomes evident.

The present paper reports our current engineering progress in designing, implementing, and operating
a flow-based solver for large-scale and real-world combinatorial optimization. The solver has been
tested extensively at the Swiss Federal Railways (and other customers), see Section 4} The challenge
there was to optimize the crew shifts of the train-drivers across the entire country. This is a massive
scheduling problem; and our instances feature graphs with billions of edges. We could solve these
problems with high quality, i.e., optimality gap usually around 1-2%, consistently and within few
days of computation time, see Table |} Our largest instance has 2.3 billion edges and was solved
to an accuracy of 4.74% within 104 hours. This was a substantial breakthrough, since the methods
applied previously did not scale accordingly.

Our main design goals and decisions, see Section have been:

1. We require that the solver is applicable to combinatorial optimization problems, with
reasonable modeling efforts. Our answer to this is to formulate such problems in terms
of SET CONSTRAINED FLOW, which extends network flows with additional edge-set
constraints.

2. Many real-world use-cases have locality and globality properties, that shall be supported in
the modeling: There is a clear separation between groups of constraints that link resources
at a narrow perspective, e.g., precedence requirements for tasks, and groups of constraints
that have to hold at a high level view, e.g., task coverage requirements. In our approach,
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local constraints are mostly captured in a network, while the global constraints are treated
with edge-set constraints.

3. At the same time, we want to provide strong guardrails in modeling, by only allowing a
small number of types of constraints.

4. The solver has to scale “out of the box”. We chose to implement a long-known, proven
method for solving large-scale linear programs: column generation, see, e.g., [2 3]. The
approach iterates between solving master- and pricing-problems. We solve the pricing-
problems in parallel, and will implement GPU support soon.

5. We seek to have guarantees on the quality of the solutions found by the solver. Comparing
the objective-value of the solution of the solver with the linear programming lower bound,
determined by column generation, achieves this goal in a well-known manner.

6. Expert users shall be able to configure the solver, in order to fine-tune it towards their
use-cases. We argue that our modular architecture, see below, yields this objective. Our
implementations of the modules that have been tested and yield proven value.

7. The software shall be accessible easily, even if sophisticated features, like GPU-acceleration
(once supported), are in place. It was straightforward to make the solver available through a
REST API, which hides the technical deployment details from a user.

2 Related Work

This brief survey reviews leading commercial and open-source solvers, emphasizing their suitability
for large-scale optimization and advances in GPU-acceleration, see [4} 5] for an in-depth study.

Commercial Solvers. IBM ILOG CPLEX excels in solving linear and mixed-integer program-
ming problems, offering reliable performance and industry-heavy documentation. It supports large
models and integrates with high-level modeling languages, but does not natively leverage GPU-
acceleration [6]. Gurobi is recognized for fast, scalable solutions on substantial LP and MILP
problems, often setting performance standards. Gurobi utilizes CPU parallelism but currently lacks
native GPU-acceleration in its commercial releases [7]. FICO Xpress offers robust capabilities for
enterprise-scale LP and MIP, with broad language interfaces and cloud integration. Although not
specialized for GPU, its parallel algorithms enable the solution of large and complex models [8]].
Hexaly (Local Solver), engineered for large scheduling problems, harnesses advanced metaheuristics
and has outperformed conventional solvers in job-shop benchmarks. It primarily capitalizes on CPU
heuristics rather than explicit GPU-acceleration [9].

Open-Source and Specialized Solvers. SCIP stands as a top open-source solver for MIP and MINLP,
praised for extensibility and competitive performance on large-scale academic models. Focused on
CPU computation, it does not incorporate GPU support by default, but is highly customizable [10].
HiGHs specializes in large-scale, sparse LP, MIP, and QP [[L1]. Importantly, HiGHs distinguishes itself
with GPU support via CUDA, enabling efficient parallel computations for large linear problems [12].
However, it has been reported, that the quality of the solutions found with GPU-acceleration falls
behind [13]]. Its simplicity and MIT license increase accessibility for large-scale industrial and
academic projects. Google OR-Tools offers a versatile toolkit for various combinatorial problems,
integrating HiGHs and other engines to tackle expansive optimization models. It is widely used in
routing and scheduling applications [[14]. DISCO (Diffusion Solver for Large-Scale Combinatorial
Optimization) leverages neural and diffusion model techniques to rapidly solve large combinatorial
instances. DISCO is especially efficient in both inference speed and solution quality for benchmarks
like TSP, notably outperforming classic methods in large-scale settings with divide-and-conquer and
GPU-acceleration [[15]. Knitro introduces new algorithms and performance improvements tailored for
non-linear and linear optimization. Features such as primal-dual gradients and augmented Lagrangian
methods, faster MILP/MINLP presolve, and hardware-aware enhancements enable quick solutions
for previously hard models [16].



3 Solver

Our algorithm solves a combinatorial optimization problem called SET CONSTRAINED FLOW
directly, by employing the column generation method in a modular software architecture. For an
introduction to the field, see, e.g. [1]. In this section, we summarize our approach.

3.1 Problem Formulation

The problem SET CONSTRAINED FLOW is defined as follows: We are given a directed graph
G = (V, E) on n vertices and m edges, and a family S = {S1, ..., Sk} of k ser constraints, where
the element S; = (E;, ¢;, u;) defines some set E; C E and two numbers ¢; < u;. Each vertex v € V'
is given by a pair v = (i, b, ), Where i, € N is a unique identifier, and b, € R, the balance of v.
A vertex v is called a source if b, > 0 and a sink if b, < 0. Each edge e € E is given by a tuple
€ = (le, Se, te, Ce, We, de ), where i, € N is a unique identifier, s, € V is the source, t, € V is
the target, ¢, € R is the cost, w, is the weight, and finally d. € {B,Z,R} is the domain of e. For
each edge e, there is a variable z. € d., i.e., in the domain given by the edge. Define the vector
x = (x.: e € E) and its cost by cost(x) = >___p Ce - .. The optimization problem is:

ecE
minimize cost(z) = Z Ce * Te, e
ecE
subject to Z Te — Z Te = by v eV, 2)
ecE+t(v) ecE~(v)
Zwemeéui S; €8, 3
eckE;
> we-ze >4 Si €8, )
eckE;
Te € de e€FE. 5)

Here, (D) is the objective function, [2) are the balance constraints, (3)) are the upper constraints, and
@) are the lower constraints. E~ (v) and E™ (v) denote the incoming and outgoing edges of vertex v.

SET CONSTRAINED FLOW is said to be in canonical form, if there is a singleton constraint S; € S
with E; = {e}, l; = 0, and w, > 0 for each e € E. In that case, we identify ¢ and e, and the
edge e has a capacity k. = u./w.. A set constraint, which is not a singleton constraint is called
complicating. Observe that MINIMUM COST FLOW and hence also SHORTEST PATH are direct
special cases of SET CONSTRAINED FLOW in canonical form.

In Section[5] we present reductions that solve SET COVER and KNAPSACK and give computational
evaluations for selected benchmark instances.

3.2 Column Generation

Column generation is a well-known method for solving large-scale linear programs, having a sub-
stantial body of literature, see, e.g., [2, 3]]. It can be seen as an implementation of the SIMPLEX
algorithm, in which the columns of the original constraint matrix A are not given explicitly, but
where “promising” columns are generated on the fly. In the particular approach of Dantzig-Wolfe
decomposition [ [3]], the original matrix A is split into submatrices C and P, ..., P,, where the P;
are disjoint block matrices, and C' is the remainder of A. After the decomposition is determined, the
problem is reformulated: Any solution of a pricing problem induced by P; represents a column of
the master problem. In each iteration, the (restricted) master problem is solved with the currently
available columns, while each pricing problem P; is usually optimized with a specific combinatorial
algorithm. The coefficients of the objective functions of the pricing problems are the reduced costs
derived from dual solutions of the master. We omit the details here.

Our basic approach for SET CONSTRAINED FLOW (in canonical form), is to construct the Dantzig-
Wolfe decomposition as follows: The overall graph G is suitably subdivided into subgraphs, where
each subgraph H induces a pricing problem P. Each edge e of H yields a coefficient r. in the
objective function of P. Further, we include the balance constraints and the non-negativity constraints.



Therefore, P becomes a SHORTEST PATH problem:

minimize cost(z) = Z Te* Te, 6)
e€Ey
subject to Z Te — Z Te = by v e Vy, 7
e€Ef (v) e€Eg (v)
ze >0 ee€ Ey. ®)

Let P = {p1,p2,...pn} denote the paths that have been generated and let these be indexed by
J =1{1,2,...,N}. Let y; denote a variable associated with the path p;. Let ¢; be its cost, which
equals the total cost of the edges in the path. Then the restricted master problem becomes:

minimize cost(y) = Z ¢ - i, )
jeJ
subject to Z Z We - Y5 < Uy S; €8, (10)

e€E; jeJ:e€p;

SN weeyi =l S; €8, (11)

ecE; jeJ:e€p;
y; >0 jeJ (12)

Regarding the implementation of the above schema, observe that the number of non-empty singleton
constraints is bounded by the number of distinct edges in all generated paths. This property allows us
to deal with large graphs, as we will only generate the necessary singleton constraints. Furthermore,
many use-cases exhibit the property that GG is an acyclic directed graph. In that case, the SHORTEST
PATH problem can be solved in linear time. By independence of the pricing problems, they can be
solved in parallel (and possibly with GPU-acceleration).

3.3 Modular Software Architecture

Instance Generator Instance Classifier
Coordinator Column Pool
Fixing Solver Master Solver Pricing Solver

Figure 1: Architecture of the solver

Figure [T]displays the overall architecture of the solver. Its main purpose is that expert users are able
to fine-tune the solver towards the specialties of their use-cases.

The initial module is the instance generator, which is a framework that helps to transform the input
of some given use-case into an instance of SET CONSTRAINED FLOW. The user simply has to define
the inter-dependencies between the objects of the use-case. The actual graph generation is taken
care of by the module, by making use of parallelization to speed up the process. Finally, the user
needs to specify the set constraints to complete the definition of the instance. Given that, the instance
classifier detects properties that will be exploited in the subsequent modules and hence affects the
overall configuration of the optimizer.

The main module of the solver is the coordinator: It instructs the behavior of the remaining modules,
observes if a terminating solution has been found or if time-limits have been exceeded. Following the
column generation approach, the constraints of the instance are split into local- and global constraints,
respectively. The master solver hosts the global constraints and always solves some given linear
program. The corresponding dual solution yields reduced cost coefficients on the edges, which are



Table 1: Real-world CREW SCHEDULING results

Nr. Name D,G T m k Time LB Value  Gap [%]
1 Avg depot 1 1,2 556 16190245 370 575s 3835.68 3848 0.33
2 Avg depot 2 1,3 784 7068272 515 205s 7331.53 7497 2.20
3 Large depot1 1,8 2096 150605068 1334 3.03h 37880.79 38342 1.20
4 Country 1 34,69 12982 1350972506 11871 42.9h 1177.87 1200 1.87
5 Country 2 34,66 15192 853239517 9241 27.1h 1244.69 1256 0.90
6 Country 3 34,67 20041 2315427477 12244 104.0h  1158.01 1213 4.74

reported to the pricing solver by the coordinator. We currently have connectors to CPLEX, Gurobi,
HiGHS, and SCIP to implement the solution of the linear programs. The pricing solver solves the
subproblem, which is given by the graph, the local singleton constraints, and the vertex-balances. In
many cases, these problems are simply SHORTEST PATH problems of some variety (and determined
by the instance classifier). The pricing solver is responsible for most of the speed and scalability of
our approach: Especially on directed acyclic graphs, SHORTEST PATH can be solved in linear time
and a large number of paths can be generated in parallel. The paths are reported to the column pool,
deciding which ones to keep and which ones to discard. The remaining columns are finally added to
the linear program to be solved by the master solver. Finally, the fixing solver decides which variables
or constraints in the linear program are rounded, frozen, or released. This module can implement
branch-and-bound schemes (if need be) or fixing heuristics originating from insights into the use-case
at hand.

4 Real World Application: Crew Scheduling

This section originates from our work at the Swiss Federal Railways. Our optimizer is used for annual
driver- and conductor-planning and for strategic simulations.

The CREW SCHEDULING problem asks to partition a set of tasks into a set of shifts, while respecting
temporal consistency, geographic consistency, break requirements, and other labor rules. Drivers
are organized into depots, where each depot has one or more driver groups with different skill sets.
The objective is to minimize a weighted sum over the shifts. The problem has attracted substantial
research, see, e.g., [17, (18,19} 20} 21} [22]]. The dominant approach is column-generation [23]], with
SET COVER as the master problem [17, 20, 22]] and the NP-complete RESOURCE CONSTRAINED
SHORTEST PATH as the pricing problem [24} 20} 25/ 22].

We applied the SET CONSTRAINED FLOW approach as follows: The graph captures the possible
transitions between the tasks. States stored on the vertices represent a task and the relevant history of
a shift that contains it. A source vertex marks the start of a planning day at some location, while a
target vertex marks its end there. By construction, each path from the source to the target represents a
valid shift. Set constraints ensure that at most one unit of flow passes through each vertex. Hence
any integral flow decomposes into disjoint paths. For each task ¢, there is a constraint .S; defined of
the edges that lead to the vertices containing the task. The set bound constraints ¢; = 1 and u; = 1
ensure that each task occurs in exactly one vertex with positive flow.

Notice that this construction yields that our pricing problems are now ordinary SHORTEST PATH
problems (even on an acyclic directed graph), instead of the usual RESOURCE CONSTRAINED
SHORTEST PATH. This advantage is paid by having to deal with large graphs. However, our
parallelized solvers for SHORTEST PATH and the availability of computational resources with large
memory outweighs this drawback. Thus, our strategy is to generate a lot of promising paths very
quickly and filter them before we solve the linear program. In addition, we developed special fixing
strategies, that exploit insights into the CREW SCHEDULING problem.

Our benchmark instances cover a variety of real-world scenarios, ranging from single-depot to
full-country optimizations. Table E] summarizes our results. Therein, “D, G” count the number of
depots and groups in the instance, respectively; “T” counts the number of tasks. The column m is the
number of edges, while column k shows the number of non-singleton constraints after preprocessing.
The overall results substantiate that our technology is capable to solve instances with billions of edges
in high quality. The experiments were run on a HPE ProLiant ML350 Gen9, with two Intel Xeon E5
CPU having 14 cores, each, and 512 GB of main memory.



Table 2: KNAPSACK benchmarks

Nr. Name 1 B m k Time Opt Value Gap [%]

1 n_400 400 10° 401 402 4s 602022 601925 0.016

2 n_600 600 10° 601 602 7s 603289 603284 0.00082
3 n_800 800 108 801 802 15s 99762610 99138454 0.0062
4 n_1200 1200 10'° 1201 1202 36s 9999255664 9954720602  0.0044

Table 3: SET COVER benchmarks

Nr. Name U F m k Time LB Value  Gap [%]

rail516 516 47311 47312 47827 18s 182.0 182 0.00
2 rail2536 2536 1081841 1081842 1084377 4.78h 688.39 693 0.66

—_

5 Modeling Problems and Experimental Results

Here we exemplify the modeling of two classical combinatorial optimization problems. Both of them
only require a single decision gadget, which is defined as follows: The directed graph D(c, p) is called
decision graph, see Flgure' 2| of up to ¢ choices amongst p options. It has two vertices V' = {s, t}
with balances b, = c and by = —c. There are p + 1 directed edges E={e; = (i,s,t,ci,w;,B) :i=
1,...,p+ 1}. Edge eyt has a capacity of ¢, while the remaining edges have a capacity equal to one.
The cost structure ¢; and weight structure w; is dictated by the application. Our experiments were
run on hardware with one Intel i7 CPU, having 8 cores, and 64 GB main memory.

5.1 Knapsack

The problem KNAPSACK is NP-complete (in its decision version) and one of the classics de-
scribed in [26]]. In the optimization version, we are given an overall budget B, and n items
I={nL,I,...,1I,}, where any item is a tuple I; = (i;, b;, p;) with unique identifier i;, budget b;,
and profit p;. Select a subset K C I, such that ) 0, _, by < B, as to maximize ), _ ;- Pk.

The reduction from SET CONSTRAINED FLOW is: Con-

sider the decision graph D(n,n), where each edge e;

corresponds to an item i with weight w; = b; and Figure 2: Decision graph D(c, p)
cost ¢; = —p;. The edge e,+; has weight w,,+1 = 1 <
and cost ¢,11 = 0. There is one constraint Sy =
(0,{e1,...,€n},0,B) and n singleton constraints S; =
(i,{e;}, 0, w;) yielding that each such edge has a capacity
equal to one. Notice that any feasible integral flow on the
edges eq, ..., e, corresponds to a selection of items not o

exceeding the budget B (due to constraint Sy) and whose

profit is equal to the negative cost of the flow. We have chosen benchmark instances from the set
given in [27]. The optimal values of these instances are known. See Table 2] for our results.

e

5.2 Set Cover

One of the classical NP-complete problems (in its decision version) given in [26] is SET COVER,
and defined as follows. Given an n-element set, called universe U = {1,...,n} and a k-element
family of U-subsets F = {F7, ..., Fy} with cost h(F;) = h; > 0 for each F; € F, find a subfamily
C C F, called cover, such that each element v € U is contained in some set C' € C. The objective is
to minimize the total cost h(C) = D e M(C).

We construct an instance of SET CONSTRAINED FLOW as follows: Consider the decision graph
D(k, k), where each edge e; corresponds to a set F; with weight w; = 1 and cost ¢; = h;. The edge
en+1 has weight w,, 11 = 1 and cost ¢,,+1 = 0. There are n constraints S; = (j, {e; : j € Fi},1,k)
and n singleton constraints S. = (-, {e; }, 0, w;) yielding that each such edge has a capacity equal to
one. Notice that any feasible integral flow on the edges eq, .. ., e corresponds to a selection of sets
covering each element of U and whose cost is equal to the cost of the flow. The benchmark instances
are taken from [28]] and were discussed also in [29]]. See Table [3|for our results.
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