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Abstract001

In the era of large language models (LLMs),002
the Chinese Spelling Check (CSC) task has003
seen various LLM methods developed, yet their004
performance remains unsatisfactory. In con-005
trast, fine-tuned BERT-based models, relying006
on high-quality in-domain data, show excel-007
lent performance but suffer from edit pattern008
overfitting. This paper proposes a novel dy-009
namic mixture approach that effectively com-010
bines the probability distributions of small mod-011
els and LLMs during the beam search decoding012
phase, achieving a balanced enhancement of013
precise corrections from small models and the014
fluency of LLMs. This approach also elimi-015
nates the need for fine-tuning LLMs, saving sig-016
nificant time and resources, and facilitating do-017
main adaptation. Comprehensive experiments018
demonstrate that our mixture approach sig-019
nificantly boosts error correction capabilities,020
achieving state-of-the-art results across multi-021
ple datasets. Our code is available at https:022
//anonymous.4open.science/r/MSLLM.023

1 Introduction024

The Chinese Spelling Check (CSC) task focuses on025

identifying and correcting spelling errors in given026

sentences, as demonstrated in Figure 2. Such er-027

rors may lead to comprehension difficulties and ad-028

versely affect various natural language processing029

applications, including machine translation and in-030

formation retrieval. Given its practical significance,031

CSC has gained substantial research attention in032

recent years.033

In the era of pre-trained language models,034

BERT-based approaches (Devlin et al., 2019) have035

emerged as the dominant solution for the CSC task036

(Zhang et al., 2020; Cheng et al., 2020; Li et al.,037

2022a). Based on the characteristic where the input038

and output are of equal length for the CSC task,039

they effectively treat CSC as a character-level clas-040

sification problem. That is, for each character in041

the input sentence, they predict whether it needs042

开车忘带开车忘带驾驶者，被查到不要慌
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Figure 1: Overview of our approach. The correct sen-
tence is “开车忘带驾驶证，被查到不要慌” (If you
forgot to bring the driver’s license while driving, don’t
panic when being checked).

to be corrected. During the fine-tuning process us- 043

ing in-domain data, either artificial or real-world, 044

these BERT-based models can adeptly capture in- 045

tricate relationships between edit pairs. However, 046

this process sometimes leads to overfitting specific 047

edit pairs and generating erroneous sentences. 048

On the other hand, the primary objective of the 049

CSC task is to generate fluent and accurate sen- 050

tences. As a result, generative models are partic- 051

ularly well-suited for this task. With the advent 052

of large language models (LLMs), which boast ex- 053

tensive parameter sizes and vast training datasets, 054

these models exhibit strong cross-domain general- 055

ization abilities. Researchers have explored various 056

strategies for utilizing LLMs in the CSC task, focus- 057

ing on whether to fine-tune these models (Li et al., 058

2023; Dong et al., 2024). Nevertheless, LLMs 059

often over-polish the text for fluency, choosing ex- 060

pressions they consider better, which leads to in- 061

consistencies between the prediction and the input 062

lengths. Li et al. (2024) attempted to address this 063

issue by employing a character-level tokenization 064

and supervised fine-tuning (SFT) technique. How- 065
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ever, this approach requires significant time and066

resources.067

Unlike previous LLM strategies, Zhou et al.068

(2024) fully utilize the language modeling capa-069

bilities of LLMs. They treat open-source LLMs070

as pure language models and manually design a071

distortion model to ensure faithfulness between in-072

puts and outputs by leveraging phonetic and glyph073

similarities. This approach is particularly effective074

in zero-shot scenarios.075

In general, compared to fine-tuned small models,076

the correction performance of LLM approaches re-077

mains unsatisfactory. Liu et al. (2024a) tried using078

an unfine-tuned small model as an arbiter to choose079

between predictions from both small and large mod-080

els, yet only achieved minimal improvements. In-081

deed, due to their different inference mechanisms,082

BERT-based models and LLMs inherently excel083

in different aspects of error correction: precision084

and domain adaptability for BERT-based models,085

and fluency for LLMs. We believe that a deeper086

integration of these two models at the inference087

stage could be a more effective strategy.088

Motivated by these insights, this paper presents a089

novel dynamic mixture approach that strategically090

integrates a BERT-based model with an LLM. Spe-091

cially, we incorporate the probability distribution092

from the BERT-based model into the LLM’s beam093

search process, thereby preserving the correction094

capabilities of both models while mitigating the095

small model’s overfitting tendencies through the096

LLM’s robust language modeling. Furthermore, by097

fine-tuning the small model instead of the LLM, we098

significantly cut down on the resources and time099

needed for domain adaptation.100

Our contributions are summarized as follows:101

‚ We propose a novel and straightforward ap-102

proach that combines a BERT-based model with an103

LLM, leveraging their complementary strengths to104

further enhance error correction performance.105

‚ Our approach does not require fine-tuning106

the LLM, significantly reducing time and resource107

costs while preserving its strong generalization ca-108

pability.109

‚ Extensive experiments on multiple main-110

stream public benchmarks show that our mixture111

approach substantially boosts correction perfor-112

mance, achieving SOTA results on several datasets.113

Type Probability
Identical 0.962
Same Pinyin 0.023
Similar Pinyin 0.008
Similar Shape 0.004
Unrelated 0.003

Table 1: The distribution of the different distortion types
extracted from Zhou et al. (2024).

2 The Basic Approaches 114

Given an input sentence comprising n characters, 115

denoted as x “ x1 ¨ ¨ ¨xi ¨ ¨ ¨xn, the objective of 116

a CSC model is to generate a corresponding cor- 117

rected sentence, represented as y “ y1 ¨ ¨ ¨ yi ¨ ¨ ¨ yn, 118

in which all erroneous characters in x are replaced 119

with the correct ones. In other words, CSC models 120

aim to find an optimal sentence y that maximizes 121

scorepx,yq. Currently, there exist two representa- 122

tive CSC models, i.e., the generative LLM-based 123

models, and the classification-based models. 124

2.1 The LLM-based Approach 125

Recently, Zhou et al. (2024) proposed a novel 126

prompt-free training-free LLM-based approach for 127

the CSC task. The key is treating LLM as a pure 128

language model. They designed a distortion model 129

(DM) to model the relationships between x and y, 130

and more precisely to ensure y is faithful to x. 131

scorepx,yq “ log pLLMpyq ` log pDMpx | yq

pLLMpyq “

n
ź

i“1

pLLMpyi | yăiq

pDMpx | yq “

n
ź

i“1

pDMpxi | yiq

pDMpxi | yiq “ pptypepxi, yiqq

132

The LLM component generates a sentence in an 133

auto-regressive manner, and gives us the probabil- 134

ity, i.e., pLLMp¨q. 135

The DM component first classifies each char- 136

acter pair (e.g., pc1, c2q), into five types, and then 137

obtains the pre-defined corresponding probability, 138

as shown in Table 1. 139

2.2 The Classification Approach 140

In the pre-trained model era, most mainstream CSC 141

models follow a BERT-based approach (Zhang 142

et al., 2020; Xu et al., 2021; Li et al., 2022a; Liu 143

et al., 2024b). These models treat CSC as a local 144
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classification problem, i.e., for each character, they145

determine whether it needs to be corrected and, if146

so, which character it should be modified to:147

pSMpy | x, iq “ softmaxp MLPphiq qrys148

where hi represents the contextual representation149

of the i-th character obtained from the BERT-based150

encoder, and SM is the abbreviation for the small151

classification model. By selecting the character152

with the highest probability at each position, i.e.,153

y˚ “ argmaxyPV ppy | x, iq, where V represents154

the vocabulary, we can obtain the final correction155

result y. This classification-based approach demon-156

strates strong fitting capabilities in specific domains157

with high-quality training datasets, and it also of-158

fers fast decoding speed. However, it lacks a global159

scorepx,yq, which results in the model tending160

to memorize specific edit pairs, leading to locally161

optimal solutions.162

3 Our Mixture Approach163

In this work, we propose a straightforward mixture164

approach to integrate the power of both small and165

large models. On the one hand, the training-free166

LLM-based approach of Zhou et al. (2024) exhibits167

remarkable ability in domain generalization. On168

the other hand, the small classification models can169

be effectively trained on in-domain labeled data,170

if available, and thus can dramatically improve in-171

domain performance.172

scorepx,yq “ log pLLMpyq ` log pDMpx | yq

` log pSMpy | xq

pSMpy | xq “

n
ź

i“1

pSMpyi | x, iq

173

3.1 Incremental Decomposition174

In the inference phase, our model follows the LLM175

component, and produces y from left to right in176

an auto-regressive manner. Thus, we give an incre-177

mental decomposition of a partial output sentence178

as follows:179

scorepx,yďiq “ scorepx,yăiq180

` log pLLMpyi | yăiq181

` log pDMpxi | yiq182

` log pSMpyi | x, iq183

3.2 Token-based Generation and Beam184

Search Decoding185

Current LLMs usually generate a sentence token by186

token, i.e., using tokens as the basic units. There-187

fore, the output sentence can also be denoted as 188

y “ t1 ¨ ¨ ¨ tk ¨ ¨ ¨ to, where a token is composed of 189

ℓ ě 1 characters, i.e., tk “ yi´ℓ`1 . . . yi. 190

Moreover, we follow Zhou et al. (2024) and em- 191

ploy their proposed faithfulness reward to further 192

encourage that y retains the same meaning as x. 193

The full model. Combining the above two fac- 194

tors, we give the incremental decomposition of our 195

full model. 196

scorepx,yďi “ tďkq “ scorepx, tăkq

` log pLLMptk | tăkq

` p1 ` HLLMp¨qq ˆ

¨

˝

α ˆ log pDMpx, i | tkq

`

β ˆ log pSMptk | x, iq

˛

‚

(1) 197

where α and β are the weights of the distortion 198

component in the generative LLM-based model 199

and the small BERT-based model, respectively; 200

HLLMp¨q corresponds to the faithfulness reward of 201

Zhou et al. (2024), and represents the entropy of 202

pLLMptk | tăkq, i.e., the probability distribution of 203

the LLM component regarding the generation of tk. 204

Higher entropy means the LLM is more uncertain 205

about the selection of the next token, and thus the 206

other two components obtain higher weights. 207

The token-level formulations for the distortion 208

component and the small model are defined as fol- 209

lows: 210

pDMpx, i | tkq “

ℓ
ź

j“1

pDMpxi´ℓ`j | tkrj ´ 1sq

pSMptk | x, iq “

ℓ
ź

j“1

pSMptkrj ´ 1s | x, i ´ ℓ ` jq

211

Beam search. During inference, we follow Zhou 212

et al. (2024) and employ beam search, in order to 213

explore a larger search space. At each decoding 214

step, we retain the top K candidates with the high- 215

est scores, and based on them build candidates for 216

the next step. 217

4 Experimental Setup 218

4.1 Datasets 219

Chinese Learner Texts. Following the conven- 220

tions of previous works, we employ the SIGHANs 221

datasets (Wu et al., 2013; Yu et al., 2014; Tseng 222

et al., 2015) as our benchmarks, which are derived 223

from Chinese learner texts. We utilize a revised ver- 224

sion of SIGHANs (Yang et al., 2023b), which was 225
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S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç

70.8 81.9 12.1 77.4 79.3 10.9 87.6 94.0 1.8 91.0 94.6 3.8 48.1 49.3 13.1
71.8 81.8 11.5 77.3 79.7 10.5 87.0 93.7 1.6 92.3 94.9 7.4 50.6 51.6 11.7

59.1 70.1 15.4 62.7 65.7 16.8 67.2 78.0 2.0 85.4 90.2 5.1 53.2 56.7 9.9
55.6 68.6 17.9 58.6 62.6 23.5 63.3 74.1 3.2 81.3 88.1 6.6 48.6 53.5 12.8
52.5 66.2 20.1 55.3 59.1 26.5 51.9 62.8 5.3 80.3 87.0 6.9 45.3 50.0 15.6

72.5 83.4 7.4 78.1 79.1 10.1 91.2 96.0 1.4 94.4 96.3 1.7 56.4 58.2 6.9
73.6 83.9 7.0 76.8 78.6 11.3 91.6 95.9 1.6 94.0 95.5 2.7 56.1 58.7 10.1
72.8 83.8 7.9 77.3 78.3 11.5 90.7 95.7 1.7 94.3 94.9 2.2 53.8 55.1 6.7
73.9 83.0 9.2 79.9 81.8 8.4 91.7 96.2 1.1 97.1 98.3 2.1 61.0 61.6 5.6
73.9 82.6 9.1 78.9 79.8 10.0 92.1 96.3 1.3 96.6 97.8 3.0 60.5 61.4 7.9
74.4 83.6 9.5 79.3 81.0 10.1 90.4 95.4 1.5 96.7 98.0 2.6 58.9 60.2 7.9

Model rSIGHANs CSCD-NS MCSCSet ECSpell LEMON

Previous SOTAs
BERT:

ReLM:

LLMs (Zhou et al., 2024)
Baichuan2
Qwen2.5
IL2.5

Ours
BERT + BC2
BERT + QW2.5
BERT + IL2.5

ReLM + BC2
ReLM + QW2.5
ReLM + IL2.5

Table 2: Sentence- and character-level results on the mainstream CSC test sets. F1 and FPR scores are reported
(%). BC2 stands for Baichuan2, QW2.5 for Qwen2.5, and IL2.5 for InternLM2.5. All LLMs use the 7B model size
version. Note that the performance metrics for rSIGHANs, ECSpell, and LEMON are presented as macro averages.
“:” indicates that the models are pre-trained on 34 million synthetic data and fine-tuned with MFT strategy (LEMON
cannot be further fine-tuned due to the lack of in-domain training data).

manually annotated for errors and noise present226

in the original SIGHANs. We refer to this ver-227

sion as rSIGHANs. In the training stage, we use228

Wang271K (Wang et al., 2018) + SIGHANs as our229

training set.230

Chinese Native-speaker Texts. Due to the lack231

of domain diversity in the SIGHAN datasets,232

we further conduct experiments on more diverse233

datasets, including LEMON (Wu et al., 2023), EC-234

Spell (Lv et al., 2023), CSCD-NS (Hu et al., 2024),235

and MCSCSet (Jiang et al., 2022), all of which236

were written by native speakers. Notably, LEMON237

includes test sets from seven different domains but238

does not provide in-domain training sets, making it239

an ideal benchmark for evaluating a model’s cross-240

domain generalization capability. Detailed informa-241

tion about all datasets can be found in Appendix A.242

4.2 Baseline Models243

We select several BERT-based models and LLMs244

as our baselines.245

Small BERT-based Models. For benchmarks246

across various domains, we select BERT (Devlin247

et al., 2019) and ReLM (Liu et al., 2024b) for ex-248

periments. Additionally, on the rSIGHAN15 test249

set, we select several mainstream SOTA models for250

experiments and report the results, such as ReaLiSe251

(Xu et al., 2021) and SCOPE (Li et al., 2022a). De-252

tailed information about all baselines can be found 253

in Appendix B. 254

Open-source LLMs. We use Baichuan2 (Yang 255

et al., 2023a), Qwen2.5 (Bai et al., 2023), and 256

InternLM2.5 (Cai et al., 2024) as our open-source 257

LLMs for experiments. All LLMs use the base 258

version. In the main experiments, we fix the model 259

size to 7B. For comprehensive and robust experi- 260

ments, in Section 6.1, we select LLMs with differ- 261

ent sizes ranging from 0.5B to 20B. 262

Mixture Strategy. ARM (Liu et al., 2024a) at- 263

tempts to make trade-offs between the correction 264

results of small models and GPT-3.5-Turbo.1 Due 265

to the lack of open-source code and differences 266

in experimental settings on LEMON, we only list 267

their results in Table 8 and Table 11. 268

4.3 Evaluation Metrics 269

Following the mainstream evaluation metrics for 270

CSC tasks, we report the Precision (P), Recall (R), 271

and F1 scores of the correction subtask at both the 272

sentence- and character-level, denoted as S-P/R/F 273

and C-P/R/F, respectively. To comprehensively 274

evaluate the model’s correction capability, we also 275

include the false positive rate (FPR) as an addi- 276

tional metric. 277

1https://platform.openai.com
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Input: 水饺和新鲜的空气都很重要。
Dumplings and fresh air are both important.

Reference: 水饺➔睡觉 (shuı̌jiǎo ➔ shuìjiào, sleep)

ReLM: 水饺➔水觉 (shuı̌jiǎo ➔ shuı̌jiào, water sleep)

LLM: NONE

ReLM+LLM: 水饺➔睡觉 (shuı̌jiǎo ➔ shuìjiào, sleep)

(a) Correct errors from ReLM and LLM

Input: 开车忘带驾驶者,被查到不要慌，...
If you forgot to bring the driver while driving,

don’t panic when being checked,...

Reference: 驾驶者➔驾驶证(zhě ➔ zhèng, driver’s license)

ReLM: 驾驶者➔驾驶证(zhě ➔ zhèng, driver’s license)

LLM: NONE

ReLM+LLM: 驾驶者➔驾驶证(zhě ➔ zhèng, driver’s license)

(b) Correct errors from LLM

Input: 不仅赖账，还提无力要求！
Not only do they refuse to pay, but they also

make powerless demands!

Reference: 无力➔无理(wúlì ➔ wúlı̌, unreasonable)

ReLM: 提➔是(tí ➔ shì, are)

LLM: 无力➔无理(wúlì ➔ wúlı̌, unreasonable)

ReLM+LLM: 无力➔无理(wúlì ➔ wúlı̌, unreasonable)

(c) Correct errors from ReLM

Figure 2: Cases from rSIGHAN15 and LEMON-New
test sets. The LLM used is Baichuan2(7B).

4.4 Implementation Details278

For ReaLiSe, we employ the pre-trained check-279

point available from its official GitHub repository.2280

For SCOPE, we adopt their official implementation281

for fine-tuning.3 Both BERT and ReLM utilize the282

framework from Liu et al. (2024b), with their pre-283

trained models (trained on a corpus of 34 million284

synthetic sentences) being fine-tuned in our exper-285

iments.4 During training, we set the batch size to286

128 and the learning rate to 3 ˆ 10´5, while incor-287

porating the MFT strategy (Wu et al., 2023). All288

experiments are conducted on an NVIDIA A100-289

PCIE-40GB GPU.290

5 Main Results291

Table 2 presents experimental results across five292

benchmark datasets: rSIGHANs, CSCD-NS, MC-293

SCSet, ECSpell, and LEMON. When integrated294

with LLMs, nearly all models exhibit substantial295

enhancements across sentence- and character-level296

correction metrics (Precision, Recall, and F1). We297

also provide the results of the original SIGHAN15298

dataset in Appendix C.1.299

To evaluate cross-domain generalization capabil-300

2https://github.com/DaDaMrX/ReaLiSe
3https://github.com/jiahaozhenbang/SCOPE
4https://github.com/gingasan/lemon

S-Fæ C-Fæ S-Fæ C-Fæ S-Fæ C-Fæ

7B 79.6 85.4 96.5 98.2 50.0 50.4
13B 77.9 84.6 96.7 98.3 50.8 50.9
0.5B 78.4 84.2 95.7 97.3 45.4 46.3
1.5B 78.2 83.3 95.7 97.6 48.1 49.0
3B 79.3 83.7 96.7 98.1 48.8 49.9
7B 77.9 84.2 95.9 97.7 49.4 50.6

14B 78.6 84.3 97.3 98.5 50.5 51.5
1.8B 79.0 84.5 95.5 97.6 45.1 46.7
7B 79.5 85.3 96.9 98.3 47.7 48.8

20B 76.8 83.6 97.1 98.3 48.1 48.6

LLM Size rSIGHAN15 ECSpell-Odw LEMON-Nov

BC2

QW2.5

IL2.5

Table 3: Sentence- and character-level F1 scores of dif-
ferent model families and sizes. All LLMs are combined
with ReLM.

ity, we specifically test on ECSpell and LEMON 301

datasets. Our approach demonstrates consistent per- 302

formance gains on both test sets, with detailed sub- 303

domain results provided in Appendix C.2. Notably, 304

ReLM integrated with Baichuan2 achieves remark- 305

able improvements: a 10.4% average increase in 306

sentence-level F1 across all seven LEMON do- 307

mains, and 4.8% enhancement on ECSpell. During 308

our experiments, we discovered that ECSpell has 309

a serious issue of target sentence leakage, lead- 310

ing to overly high performance of fine-tuned small 311

models. We will explain this issue and present 312

the results on the cleaned ECSpell dataset in Ap- 313

pendix C.3. 314

Due to different experimental setups, we also list 315

another mixture strategy, ARM (Liu et al., 2024a), 316

in Appendix C.1 and C.2. In comparison, our ap- 317

proach achieves greater improvements across all 318

datasets. 319

5.1 Case Study 320

Figure 2 presents comparative cases demonstrating 321

our approach’s effectiveness in error correction. 322

In Figure 2(a), while ReLM provides partial 323

corrections and the LLM fails to detect the er- 324

ror, our mixture approach achieves complete er- 325

ror resolution. This is because compared to Zhou 326

et al. (2024), we reduce the weight of the distortion 327

model in Eq. (1), which allows the language model 328

to play a greater role. 329

Figure 2(b) illustrates a typical under-correction 330

scenario. Here, the LLM’s under-correction of "驾 331

驶者" (driver) is successfully revised to "驾驶证" 332

(driver’s license) through ReLM’s complementary 333

intervention. 334

The third case in Figure 2(c) reveals an over- 335

correction scenario where ReLM introduces an er- 336
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rSIGHAN15

Baichuan2(7B)

0.9

0.3 0.4 0.5 0.6 0.7

1.0

1.1

1.2

1.3

(a)

Qwen2.5(7B)

0.3 0.4 0.5 0.6 0.7

(b)

InternLM2.5(7B)

0.3 0.4 0.5 0.6 0.7

(c)
Baichuan2(7B)

ECSpell-Odw

0.9

0.3 0.4 0.5 0.6 0.7

1.0

1.1

1.2

1.3

(d)

LEMON-Nov

0.3 0.4 0.5 0.6 0.7

(e)

LEMON-New

0.3 0.4 0.5 0.6 0.7

(f)

Figure 3: Model performance (sentence-level F1) of
ReLM + LLMs on rSIGHAN15, ECSpell, and LEMON
with different α and β. The x-axis is α and y-axis is β.
The red cells denote superior performance of ReLM
+ LLM compared to ReLM. The blue cells represent
inferior performance. The darker the color, the larger
the performance gap.

roneous modification, which is effectively identi-337

fied and corrected by the LLM through beam search338

decoding.339

In summary, LLMs demonstrate superior fluency340

preservation, while small models are better at mak-341

ing accurate corrections. The synergistic integra-342

tion of both capabilities through our framework343

yields optimal correction results.344

6 Discussion345

Following Zhou et al. (2024), we evaluate our ap-346

proach on three benchmark datasets: rSIGHAN15,347

ECSPell-Odw, and LEMON-Nov.348

6.1 Impact of Different LLM Families and349

Model Sizes350

To systematically analyze how LLM families and351

model sizes affect correction performance, we352

conduct comprehensive experiments with multiple353

open-source LLMs scaled from 0.5B to 20B param-354

eters, including Baichuan2 (7B-13B), Qwen2.5355

(0.5B-14B), and InternLM2.5 (1.8B-20B). All356

models are integrated with ReLM and evaluated357

across all three datasets. Table 3 reveals two key358

findings:359

S-Pæ S-Ræ S-Fæ C-Pæ C-Ræ C-Fæ FPRç

ReLM 76.8 73.8 75.2 87.9 78.0 82.6 8.3
BC2 67.1 55.8 61.0 78.7 61.0 68.7 8.3
Ours 83.5 76.1 79.6 93.8 78.3 85.4 4.1
- DM -4.3 -0.2 -2.1 -4.2 +1.3 -1.1 +3.4
- FR -3.6 -0.9 -2.1 -3.1 +0.3 -1.2 +2.3
- both -4.7 -0.5 -2.5 -4.6 +1.1 -1.4 +3.8

ReLM 89.4 91.5 90.4 93.1 95.7 94.4 5.8
BC2 92.0 89.1 90.5 95.0 92.6 93.8 1.6
Ours 97.2 95.7 96.5 98.7 97.7 98.2 0.8
- DM -5.2 -1.5 -3.4 -3.2 -0.8 -2.0 +3.3
- FR +0.4 +0.4 +0.4 -0.2 +0.3 +0.0 +0.0
- both -4.4 -0.8 -2.7 -3.0 -0.5 -1.7 +3.3

ReLM 46.3 32.2 38.0 48.9 31.0 37.9 17.6
BC2 49.8 37.0 42.4 53.5 42.0 47.1 14.9
Ours 64.0 41.0 50.0 67.2 40.3 50.4 9.8
- DM -15.8 -4.2 -8.2 -16.1 -4.3 -8.1 +7.8
- FR -6.2 +3.1 +0.0 -6.2 +4.5 +1.3 +4.3
- both -16.4 -3.0 -7.8 -16.5 -2.6 -7.1 +8.6

Model
rSIGHAN15

ECSpell-Odw

Lemon-Nov

Table 4: Ablation results of distortion model
(DM) and faithfulness reward (FR) on ReLM +
Baichuan2(7B). “ReLM” and “BC2” represent using
ReLM and Baichuan2(7B) model alone respectively.
“-both” represents that we remove the intervention of
both DM and FR on the results.

‚ Within the same LLM family, larger models 360

do not necessarily lead to better performance. For 361

example, on rSIGHAN15, the correction perfor- 362

mance of all LLMs does not show an increasing 363

trend with the growth of model size. 364

‚ Different LLM families exhibit varying 365

strengths across different domains. For exam- 366

ple, InternLM2.5 outperforms Qwen2.5 on the 367

rSIGHAN15 dataset, whereas the opposite is true 368

for LEMON-Nov. Overall, the combination of 369

ReLM and Baichuan2 shows more stable correc- 370

tion performance. 371

6.2 Impact of Hyperparameters 372

We conduct an analysis of two critical hyperpa- 373

rameters in Eq. (1): the distortion model weight α 374

and the small BERT-based model weight β. Fig- 375

ure 3 demonstrates their effects on three 7B-scale 376

LLM families evaluated on rSIGHAN15. For α, 377

most LLMs achieve optimal performance around 378

0.5. Compared with Baichuan2, both Qwen2.5 379

and InternLM2.5 require higher β values for peak 380

performance. This difference likely stems from 381

their weaker performance on rSIGHAN15 com- 382

pared to Baichuan2. This hypothesis is further 383

supported by experiments on different test sets. On 384
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S-Pæ S-Ræ S-Fæ C-Pæ C-Ræ C-Fæ FPRç

BC2 67.1 55.8 61.0 78.7 61.0 68.7 8.3

ReaLiSe 75.7 70.2 72.9 83.4 73.9 78.4 8.1
+ BC2 80.5 72.0 76.0 92.9 74.6 82.7 5.2

BERT 75.3 74.9 75.1 86.2 79.6 82.8 10.8
+ BC2 82.6 74.4 78.3 93.3 78.4 85.2 3.5

ReLM 76.8 73.8 75.2 87.9 78.0 82.6 8.3
+ BC2 83.1 75.6 79.2 93.8 78.1 85.2 4.1

SCOPE 78.7 73.5 76.0 83.9 76.7 80.1 7.0
+ BC2 84.9 75.4 79.9 93.8 77.2 84.7 3.3

Model rSIGHAN15

LLMs (Zhou et al., 2024)

Previous SOTAs & Ours

Table 5: Ablation results of SOTA BERT-based models
combined with Baichuan2(7B).

ECSpell-Odw, where the small and large models385

demonstrate closer correction capabilities, we ob-386

serve greater flexibility in β selection. Conversely,387

for LEMON, the superior performance of LLMs388

reduces the significance of small models.389

It is important to note that in Table 2, the weights390

are set at fixed values (α “ 0.5, β “ 0.9). In391

practice, tuning these weights can further enhance392

model performance. Importantly, our approach393

consistently surpasses the ReLM baseline across394

all hyperparameter settings, highlighting its robust-395

ness.396

6.3 Impact of Distortion Model and397

Faithfulness Reward398

Table 4 investigates the individual contributions399

of the distortion model (DM) and faithfulness re-400

ward (FR) through an ablation study. The results401

show that while the removal of DM leads to perfor-402

mance degradation, our approach still outperforms403

the ReLM baseline. This demonstrates that even404

when stripped of LLM-specific correction strate-405

gies, an LLM retaining core language modeling406

capability can still provide effective corrective guid-407

ance to the small model.408

Moreover, removing the DM and FR has a larger409

impact on Precision than on Recall. This is be-410

cause the DM’s similarity information and FR’s411

constraints help the model avoid unnecessary mod-412

ifications.413

6.4 Impact of Small BERT-based Models414

To evaluate the impact of small models on experi-415

mental outcomes, we conducted experiments with416

several classic and high-performing BERT-based417

models in combination with Baichuan2(7B). As418

demonstrated in Table 5 and Table 8, the integra-419

Model Speed (ms/sent) Slowdown
BC2 1,276.0 1.00ˆ

BERT 13.7 –
+ BC2 1,470.7 1.15ˆ

ReLM 14.1 –
+ BC2 1,498.1 1.17ˆ

Table 6: The decoding time per sentence on
rSIGHAN15. The LLM used is Baichuan2(7B).

tion with LLMs leads to substantial performance 420

improvements across all small models. Notably, 421

this enhancement is reflected in both Precision and 422

Recall metrics, while simultaneously reducing the 423

FPR. Furthermore, our analysis reveals a strong 424

positive correlation between the performance of 425

the selected small models and the overall correc- 426

tion performance of our mixture approach. 427

6.5 Impact of Beam Size 428

During beam search inference, beam size deter- 429

mines the number of candidate sequences main- 430

tained during decoding. While larger beam sizes 431

enhance output diversity and better approximate the 432

global optimal Scorepx,yq, this comes at the ex- 433

pense of decoding speed. Beam search can alleviate 434

the limitation where generative models can only ac- 435

cess previously generated tokens. In our approach, 436

incorporating BERT-based models supplies addi- 437

tional contextual information to the LLMs, thereby 438

reducing the dependence on beam search compared 439

to using LLMs alone. As shown in Figure 4, as 440

beam size increases, the performance of all models 441

generally shows an upward trend. 442

6.6 Inference Speed 443

We compare the inference speeds of our approach 444

and baseline models in Table 6, with all experi- 445

ments conducted on a single NVIDIA A100-PCIE- 446

40GB GPU. The evaluation uses a batch size of 447

1 and beam size of 12 for LLMs. The results re- 448

veal that our approach exhibits marginally slower 449

inference speed compared to using the LLM alone, 450

which can be attributed to the computational over- 451

head introduced by integrating the small model’s 452

probability distribution at each beam search step. 453

7 Related Work 454

7.1 BERT-based Approaches. 455

Since the advent of BERT, BERT-based CSC mod- 456

els have shown strong correction capabilities. To 457
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Figure 4: F1 scores of different LLMs (model size is 7B) with varying beam sizes. All models are combined with
ReLM. Solid lines show sentence-level results, while dashed lines show character-level results.

better capture the relationships between misspelled458

and correct characters, phonetic and glyph simi-459

larities have been incorporated into the encoder.460

Techniques include using confusion sets for data461

augmentation (Liu et al., 2021) and employing neu-462

ral networks to encode phonetic and glyph features463

(Xu et al., 2021; Huang et al., 2021). Additionally,464

new training objectives like pinyin prediction tasks465

have been developed to boost model performance466

(Liu et al., 2021; Li et al., 2022a,b; Liang et al.,467

2023).468

Other strategies involve modifying the model469

pipeline, for example, by adding a detection layer470

to enhance detection capability (Zhang et al., 2020;471

Huang et al., 2023); and employing decoding inter-472

vention strategies to improve result selection (Wang473

et al., 2019; Bao et al., 2020; Lv et al., 2023; Qiao474

et al., 2024).475

7.2 LLM Approaches476

In the era of LLMs, researchers have been actively477

exploring their potential in CSC tasks. A key con-478

sideration in these studies is whether LLMs re-479

quire fine-tuning. Li et al. (2023) pioneered the480

exploration of prompt-based methods for correc-481

tion tasks. They also experimented with SFT tech-482

niques, though the results were not satisfactory.483

Dong et al. (2024) enhanced the correction capabil-484

ities of LLMs by incorporating pinyin and radical485

information of Chinese characters into prompts.486

However, these prompt-based strategies struggle to487

maintain consistency between the prediction and488

input lengths.489

Further advancements were made by Li et al.490

(2024), who replace mixed tokenization with491

character-level tokenization. They fine-tune the492

LLMs to perform corrections in a character-by-493

character way, thereby resolving over 99% of the494

length inconsistency issues.495

In contrast to these methods, Zhou et al. (2024)496

introduced a novel approach that is both prompt- 497

free and training-free, treating LLMs as pure lan- 498

guage models. This innovative approach opens a 499

new research direction, aiming to fully leverage the 500

intrinsic language modeling potential of LLMs. 501

7.3 Mixture Approaches 502

In the field of Grammatical Error Correction 503

(GEC), model ensemble is commonly used. Mul- 504

tiple small models vote on edits to produce a final 505

prediction (Zhang et al., 2022). Zhou et al. (2023) 506

employed a language model, GPT-2, and a Gram- 507

matical Error Detection (GED) model, BART, as 508

critics to dynamically guide the token selection in 509

a Seq2Seq GEC model. They did not use a LLM 510

due to the absence of a token-alignment method. 511

In the CSC domain, Liu et al. (2024a) introduced 512

an ARM method. Similar to the model ensem- 513

ble technique, they replaced the voting process 514

with an unfine-tuned small model that selects be- 515

tween the outputs of the LLM and a fine-tuned 516

small model. Unlike their method, which focuses 517

on post-processing predictions, our approach inte- 518

grates both models during the beam search decod- 519

ing process. 520

8 Conclusions 521

In this paper, we propose a novel dynamic mixture 522

approach that effectively combines small models 523

and LLMs during the beam search decoding phase. 524

By leveraging the strong error correction capabili- 525

ties of fine-tuned BERT-based models and the lan- 526

guage modeling strengths of LLMs, we achieve 527

significant performance improvements. The advan- 528

tage of not requiring fine-tuning of LLMs enhances 529

the domain adaptability of our method. Experi- 530

ments on mainstream public datasets demonstrate 531

that our mixture approach achieves SOTA perfor- 532

mance across multiple datasets. 533
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Limitations534

Different Tasks. Our method is primarily de-535

signed for the CSC task. However, this mixture536

approach can also be adapted to other tasks, such as537

GEC, which is another type of text error correction,538

and even other areas that can be modeled simulta-539

neously as classification and generation tasks.540

Different Languages. Our method is currently541

limited to Chinese. However, for other languages,542

such as English, Korean, and Japanese, by modify-543

ing the token alignment between small models and544

LLMs, the same mixture approach can also achieve545

collaborative error correction.546
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A Details of Datasets763

SIGHANs. The SIGHAN collection comprises764

three Chinese learner corpora (SIGHAN 13/14/15)765

(Wu et al., 2013; Yu et al., 2014; Tseng et al., 2015),766

which serve as standard benchmarks for CSC re-767

search. To address the noise and annotation errors768

in the original datasets, we adopt the revised ver-769

sion (Yang et al., 2023b) (rSIGHANs), which was770

manually re-annotated. Following prior setups, we771

combine SIGHAN datasets with Wang271K (Wang772

et al., 2018) (containing 271K synthetic training773

instances) to form the composite training set.774

LEMON. Containing over 22K sentences across775

seven distinct domains (game, encyclopedia, con-776

tract, medical care, car, novel, and news) (Wu et al.,777

2023), LEMON provides a cross-domain evalua-778

tion framework for CSC systems. Due to the ab-779

sence of in-domain training sets, LEMON is em-780

ployed to assess the cross-domain generalization781

capability of CSC models.782

ECSpell. ECSpell consists of three small-scale783

datasets from the domains of law, medical treat-784

ment, and official document writing (Lv et al.,785

2023), offering domain-specific evaluation scenar-786

ios for CSC models.787

CSCD-NS. CSCD-NS (Hu et al., 2024) contains788

40K annotated samples sourced from real posts on789

Sina Weibo, effectively reflecting the real-world790

error correction performance of CSC models.791

MCSCSet. Developed for medical domain ap-792

plications (Jiang et al., 2022), this large-scale cor-793

pus contains approximately 200K professionally794

annotated sentences. The significant domain gap795

between medical texts and open-domain datasets796

makes MCSCSet particularly valuable for evaluat-797

ing domain adaptation capabilities in CSC systems.798

Detailed statistics are presented in Table 9.799

B Details of Baselines800

In our experiments, we selected four BERT-based801

models as baselines: BERT, ReaLiSe, SCOPE, and802

ReLM.803

Source
From Test set:
行政机关实施行政管理都应当公开，这是程序正档原则的要求

From Training set:
行政机关实施行政管理都应当公开，这是程序正当原则的要求
行政机关实施行政管理都应当公开，这是程序争当原则的要求
行政机关实施行政管理都应当公开，这是程序正当原则的要求
行政机关实施行政管理都应当公开，这是程序止当原则的要求
行政机关实私行政管理都应当公开，这是程序正当原则的要求

Table 7: Examples of ECSpell-Law.

S-Pæ S-Ræ S-Fæ C-Pæ C-Ræ C-Fæ FPRç

BC2 61.2 58.2 59.7 69.0 65.4 67.2 14.3

ReaLiSe 75.9 79.9 77.8 83.4 83.8 83.6 12.0
+ BC2 80.7 82.4 81.5 87.2 85.3 86.3 9.5

BERT 75.2 83.4 79.1 81.9 89.2 85.4 14.1
+ BC2 81.7 84.1 82.9 86.8 89.6 88.2 7.9

ReLM 76.8 83.9 80.2 83.2 88.6 85.8 12.7
+ BC2 82.8 85.9 84.3 87.6 88.7 88.1 7.8

SCOPE 78.6 83.5 81.0 83.3 86.6 84.9 11.3
+ BC2 83.8 85.0 84.4 88.1 87.6 87.9 7.9
+ ARM 79.5 83.1 81.3 – – – –

Model SIGHAN15

LLMs (Zhou et al., 2024)

Previous SOTAs & Ours

Table 8: Sentence- and character-level results on the
SIGHAN15 test set. ARM represents the latest ap-
proach that integrates the results of small models and
GPT-3.5-Turbo (Liu et al., 2024a).

‚ BERT: The vanilla BERT architecture im- 804

plemented using the bert-chinese-base5 pre- 805

trained weights. 806

‚ ReaLiSe: This model employs GCN and 807

CNN respectively to encode the pinyin and vi- 808

sual features (font images) of each Chinese char- 809

acter. These additional representations help 810

the model capture the intrinsic phonetic and 811

glyph relationships between characters. It uses 812

chinese-roberta-wwm-ext6 as its backbone. 813

‚ SCOPE: As one of the current SOTA CSC 814

models, SCOPE incorporates an extra training task 815

for character pronunciation prediction (CPP). The 816

model is initialized from ChineseBERT-base7. 817

‚ ReLM: ReLM reframes the CSC task as a 818

rephrasing problem rather than a tagging task. 819

In practice, it still adopts non-autoregressive in- 820

ference and remains essentially a BERT-based 821

model, pre-trained and fine-tuned based on 822

bert-chinese-base. 823

5https://huggingface.co/bert-base-chinese
6https://huggingface.co/hfl/chinese-roberta-w

wm-ext
7https://huggingface.co/ShannonAI/ChineseBERT

-base
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Training Sets
Subsets – – – – Law Med Odw
#Sent. 6,479 271,329 30,000 157,194 1,960 3,000 1,720
Avg. Length 42.1 42.6 57.4 10.9 30.7 50.2 41.2
Avg. Error/Sent. 1.0 1.4 0.5 0.9 0.9 0.8 0.9

SIGHANs Wang271K CSCD-NS MCSCSet ECSpell

Test Sets
Subsets 15 14 13 – – Law Med Odw –
#Sent. 1,100 1,062 1,000 5,000 19,650 500 500 500 22,252
Avg. Length 30.6 50.0 74.3 57.6 10.9 29.7 49.6 40.5 35.4
Avg. Error/Sent. 0.8 0.9 1.5 0.5 0.9 0.8 0.7 0.8 0.5

rSIGHANs CSCD-NS MCSCSet ECSpell LEMON

Table 9: Detailed statistics of all datasets used in our experiments.

Datasets
Subsets Law Med Odw

71.0 70.3 77.7

83.7 82.0 90.5
83.7 73.1 89.1
85.8 66.2 89.0

86.4 87.9 93.1
89.0 86.7 93.5
86.4 87.1 93.7

ECSpell (cleaned)

Previous SOTA
ReLM

LLMs (Zhou et al., 2024)
Baichuan2
Qwen2.5
IL2.5

Ours
ReLM + BC2
ReLM + QW2.5
ReLM + IL2.5

Table 10: Experiments on cleaned ECSpell.

C More Experiments824

In this section, we present detailed results across825

different domains and the results of some other826

CSC models, such as ARM (Liu et al., 2024a) and827

C-LLM (Li et al., 2024).828

C.1 Experiments on Original SIGHAN15829

Following the experimental settings of previous830

studies, we use the original SIGHAN15 test set for831

comparison.8 In line with rSIGHAN15, we also832

adopt ReaLiSe and SCOPE, as shown in Table 8.833

Evidently, our method significantly improves the834

performance of all baseline models, surpassing the835

current SOTA performance. We also show the latest836

approach that ensembles the results of small models837

and GPT-3.5-Turbo (SCOPE + ARM) (Liu et al.,838

2024a), compared with which our method achieves839

a more effective performance improvement through840

deep integration of the small and large models dur-841

ing the inference stage.842

8Since the dataset includes traditional characters, we use
the preprocessed version by Xu et al. (2021).

C.2 Detailed Results 843

Due to space limitations, we present the detailed 844

results of the subsets of rSIGHANs, ECSpell, and 845

LEMON in Table 11, Table 12, and Table 13. We 846

also provide the results of ARM and C-LLM in the 847

corresponding tables. The results show that our 848

method outperforms another mixture approach and 849

the current SOTA SFT-based LLM strategy. 850

C.3 Experiments on Cleaned ECSpell 851

Our analysis reveals that the strong performance 852

of fine-tuned small models on ECSpell originates 853

from substantial data leakage caused by homoge- 854

neous sentence pairs. Although ECSpell avoids 855

including identical source-target sentence pairs, 856

it introduces different synthesized errors for the 857

same correct sentences that appear in both the train- 858

ing and test sets. These overlapping sentences ac- 859

count for 52.7%, 19.3%, and 28.2% of the ECSpell- 860

Law/Med/Odw training sets, respectively. For ex- 861

ample, the first sentence in the ECSpell-Law test 862

set appears five times in the training set as the same 863

sentence, as illustrated in Table 7. 864

Undoubtedly, the fine-tuning process of small 865

models leads to results that are significantly higher 866

than those of the LLMs without fine-tuning. There- 867

fore, we removed the leaked sentences from the 868

training sets and reorganized the experiments in 869

Table 10. It is worth noting that all hyperparameter 870

settings remain identical to those in the main exper- 871

iments. Clearly, our mixture approach continues 872

to achieve significant and stable improvements. In 873

fact, due to the significantly reduced size of the 874

training set, the performance of fine-tuned small 875

models lags behind that of LLMs, and appropri- 876

ately lowering the weight of the small model β can 877

yield even more significant performance improve- 878

ments. 879
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Datasets
Subsets 15 14 13 Law Med Odw Car Cot Enc Gam Med New Nov

75.1 65.6 71.6 95.9 88.0 89.1 52.0 63.8 45.3 32.9 50.8 56.0 35.8
75.2 65.9 74.4 96.2 90.2 90.4 53.6 67.7 47.7 34.6 53.9 58.8 38.0

– – – – – – 34.1 49.2 32.8 14.8 29.5 34.4 14.3

61.0 53.1 63.1 83.7 82.0 90.5 54.2 63.3 51.4 36.9 60.6 63.9 42.4
58.3 50.7 57.9 83.7 73.1 89.1 48.2 59.9 46.5 34.7 54.2 59.5 37.1
55.6 45.9 56.0 85.8 66.2 89.0 44.4 54.7 45.2 33.0 50.2 57.2 32.1

– – – – – – 37.1 52.7 35.2 15.3 33.0 36.4 15.6
78.3 67.1 72.1 95.7 93.8 93.6 56.0 68.0 49.4 41.2 63.9 68.7 47.6
77.7 69.5 73.7 96.5 94.1 91.5 57.7 67.0 52.4 37.9 65.2 67.5 44.7
78.4 67.7 72.3 96.3 94.7 92.0 55.8 67.4 51.6 38.3 55.6 64.8 43.1
79.6 67.6 74.6 98.3 96.6 96.5 62.7 74.5 56.5 45.1 66.3 72.0 50.0
77.9 67.7 76.0 98.1 95.9 95.9 63.6 71.2 57.4 44.0 66.7 71.4 49.4
79.5 68.3 75.3 97.3 95.9 96.9 61.3 72.0 56.1 39.5 64.7 71.0 47.7

rSIGHANs ECSpell LEMON

Previous SOTAs
BERT
ReLM
MDCSpell‹

LLMs (Zhou et al., 2024)
Baichuan2
Qwen2.5
IL2.5

Mixture
MDCSpell + ARM‹

BERT + BC2
BERT + QW2.5
BERT + IL2.5

ReLM + BC2
ReLM + QW2.5
ReLM + IL2.5

Table 11: Sentence-level F1 (S-F) scores across different domains. “‹” indicates that the results are extracted from
Liu et al. (2024a) and the small model is trained on Wang271K + SIGHANs.

Datasets
Subsets 15 14 13 Law Med Odw Car Cot Enc Gam Med New Nov

82.8 77.3 85.7 97.4 93.3 93.2 52.7 65.3 46.1 35.6 52.0 57.4 36.3
82.6 76.7 86.1 93.6 94.4 94.4 54.3 67.4 48.1 37.9 54.9 60.5 37.9

68.7 64.9 76.8 88.0 93.8 93.8 58.8 65.3 56.3 40.9 61.6 66.8 47.1
66.1 64.7 75.0 81.6 93.0 93.0 54.1 62.5 52.4 41.8 56.6 63.2 43.8
64.6 60.6 73.4 78.3 92.4 92.4 49.9 58.1 51.6 37.5 53.5 61.0 38.6

– – – – – – 57.5 60.4 56.5 38.0 65.3 64.5 43.9

85.2 78.3 86.6 96.2 95.6 95.6 58.3 68.4 51.8 43.9 64.4 70.6 50.1
84.6 80.1 87.0 95.4 93.4 93.4 60.5 67.3 55.5 43.4 65.7 70.0 48.7
84.8 79.3 87.4 92.7 94.4 94.4 57.4 68.0 52.3 41.5 56.0 66.2 44.0
85.4 78.0 85.7 97.8 98.2 98.2 62.5 74.2 56.7 47.8 66.5 73.1 50.4
84.2 77.1 86.6 96.9 97.7 97.7 64.0 69.8 57.8 48.2 66.8 72.7 50.6
85.3 78.7 86.8 97.5 98.3 98.3 62.2 71.8 57.4 44.1 65.1 72.1 48.8

rSIGHANs ECSpell LEMON

Previous SOTAs
BERT
ReLM

LLMs (Zhou et al., 2024; Li et al., 2024)
Baichuan2
Qwen2.5
IL2.5
C-LLM

Ours
BERT + BC2
BERT + QW2.5
BERT + IL2.5

ReLM + BC2
ReLM + QW2.5
ReLM + IL2.5

Table 12: Character-level F1 (C-F) scores across different domains.

Datasets
Subsets 15 14 13 Law Med Odw Car Cot Enc Gam Med New Nov

10.8 13.0 12.5 3.7 5.1 2.5 12.2 7.8 13.8 22.4 8.5 9.4 17.3
8.3 13.6 12.6 6.5 9.8 5.8 12.0 4.9 12.7 20.6 5.8 8.4 17.6

8.3 15.7 22.3 4.9 8.7 1.6 6.9 7.8 10.2 19.8 3.4 6.0 14.9
10.2 19.4 24.2 4.1 12.9 2.9 10.7 6.7 13.2 23.9 5.4 9.2 20.7
13.3 21.4 25.5 4.1 14.0 2.5 13.0 10.1 15.2 28.3 7.9 9.8 24.8

3.5 10.0 8.7 1.6 2.6 0.8 6.0 2.3 7.5 14.5 2.4 4.2 11.4
3.7 8.7 8.7 1.6 4.4 2.1 8.4 2.5 10.9 22.5 3.1 6.7 16.9
5.6 9.3 8.7 2.0 3.3 1.3 5.7 2.2 7.2 14.1 2.5 3.5 11.9
4.1 10.0 13.4 2.4 3.1 0.8 4.5 1.3 6.6 11.6 2.3 3.1 9.8
5.4 11.0 10.8 3.3 4.5 1.2 6.4 2.9 9.2 17.3 2.2 5.1 12.2
5.2 10.6 12.7 3.3 3.8 0.8 6.8 2.2 9.1 15.7 3.3 4.4 13.9

rSIGHANs ECSpell LEMON

Previous SOTAs
BERT
ReLM

LLMs (Zhou et al., 2024)
Baichuan2
Qwen2.5
IL2.5

Ours
BERT + BC2
BERT + QW2.5
BERT + IL2.5

ReLM + BC2
ReLM + QW2.5
ReLM + IL2.5

Table 13: False positive rate (FPR) scores across different domains.
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