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Abstract

Little is known about the training dynamics of
equivariant neural networks, in particular how
it compares to data augmented training of their
non-equivariant counterparts. Recently, neural
tangent kernels (NTKs) have emerged as a pow-
erful tool to analytically study the training dy-
namics of wide neural networks. In this work,
we take an important step towards a theoretical
understanding of training dynamics of equivari-
ant models by deriving neural tangent kernels for
a broad class of equivariant architectures based
on group convolutions. As a demonstration of
the capabilities of our framework, we show an in-
teresting relationship between data augmentation
and group convolutional networks. Specifically,
we prove that they share the same expected pre-
diction over initializations at all training times
and even off the data manifold. In this sense, they
have the same training dynamics. We demonstrate
in numerical experiments that this still holds ap-
proximately for finite-width ensembles. By imple-
menting equivariant NTKSs for roto-translations
in the plane (G = C,, x R?) and 3d rotations
(G = SO(3)), we show that equivariant NTKs
outperform their non-equivariant counterparts as
kernel predictors for histological image classifica-
tion and quantum mechanical property prediction.

1. Introduction

Equivariant neural networks (Weiler et al., 2023; Gerken
et al., 2023) are widely used in many applications of great
practical importance, for example in medical image analysis
in two and three dimensions (Bekkers et al., 2018; Winkels
& Cohen, 2019; Miiller et al., 2021; Pang et al., 2023) and in
quantum chemistry (Duval et al., 2023; Batzner et al., 2022;
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Schiitt et al., 2021; Unke et al., 2021). Other application
areas include particle physics (Bogatskiy et al., 2020), cos-
mology (Perraudin et al., 2019) and even fairness in large
language models (Basu et al., 2023).

Recently, there has been a number of works which avoid
equivariant architectures but rely on data augmentation
to approximately learn equivariance, most notably Al-
phaFold3 (Abramson et al., 2024). This has the potential ad-
vantage that non-equivariant architectures may offer better
training dynamics, for example favorable scaling capabili-
ties. There has been a vigorous debate on this subject with
some empirical works claiming superiority of equivariant ar-
chitectures (Gerken et al., 2022; Brehmer et al., 2024) while
others suggest the opposite (Wang et al., 2024; Abramson
et al., 2024). One challenging aspect to conclusively settle
the matter is that there is no good theoretical understanding
of how the equivariant and the purely augmentation-based
training dynamics compare.

Motivated by this observation, this paper derives equivariant
neural tangent kernel (NTK) theory (Jacot et al., 2018) for
group convolutional architectures. The NTK provides a
powerful tool to analytically study the training dynamics of
neural networks in the large width limit by analyzing the
behavior of the kernel, in particular its trace, eigenvalues and
other properties (Geiger et al., 2020; Mok et al., 2022; Engel
et al., 2024; Tsai et al., 2023). A particularly important
feature of the NTK is the fact that in the infinite width limit,
it becomes constant throughout training (Jacot et al., 2018).
Furthermore, at infinite width, the NTK can be computed by
layer-wise recursion relations. These simplifications allow
for complete analytic control over the training dynamics. In
particular, the network output of an arbitrary input and at
an arbitrary point in training time converges to a Gaussian
process over initializations whose mean- and covariance
functions can be computed analytically. This result has led
to a number of theoretical and practical insights (Geiger
et al., 2020; Jacot et al., 2020; Yang & Hu, 2021; Yang et al.,
2021; Franceschi et al., 2022; Day et al., 2023) into the
initialization and training of neural networks.

We derive recursive relations which determine the NTK of
an equivariant neural networks for the first time. In particu-
lar, we study the NTK of group convolutional layers (Cohen
& Welling, 2016). These layers are in some sense universal.
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Specifically, they have the unique property that they arise
from imposing an equivariance constraint on dense fully-
connected layers and are therefore the most general linear,
equivariant transformations (Kondor & Trivedi, 2018) and
have been used in a wide array of applications (Chidester
et al., 2019; Celledoni et al., 2021; Moyer et al., 2021).

These NTK recursion allows us to clarify the relation be-
tween the training dynamics of pure data augmentation and
equivariant architectures in the large width limit. Specif-
ically, non-equivariant architectures trained with full data
augmentation converge to certain group convolutional archi-
tectures in the infinite width limit. This result holds for any
input, in particular off-manifold, and at any training time.
Thus, at least in the infinite width limit and in expectation
over initializations, the training dynamics of data augmen-
tation is identical to the one of certain group convolutional
architectures.

NTKs have also been shown to be interesting kernel func-
tions in their own right. Since they are induced by neural
network architectures, they allow to transfer the intuition
gained in the extensive literature on the design of neural
networks to kernel machines and have shown to outperform
more traditional kernel functions (Arora et al., 2019; Li et al.,
2019; Lee et al., 2020). In our experiments, we show that
group equivariant kernels outperform their non-equivariant
counterparts for both regression and classification as well
as for discrete roto-translations and continuous rotations. In
summary, our main contributions are

* We derive layer-wise recursive relations for the neural
tangent kernel and neural network Gaussian process
kernel of group convolutional layers, the correspond-
ing lifting layers, point-wise nonlinearities and group-
pooling layers.

* We specialize our general results to the case of
roto-translations in the plane as well as the three-
dimensional rotation group SO(3). We derive and
implement the kernel relations for these cases, allow-
ing for efficient computations. The code is provided
publicly at https://github.com/PhilippMi
sofCH/equivariant—-ntk.

* We prove that in the infinite width limit, a standard con-
volutional or fully connected network trained with full
data augmentation yields the same expected network
function as a corresponding group convolutional net-
work trained without data augmentation . This result
holds for all training times as well as off manifold. We
show empirically that this holds approximately at finite
width.

* We verify experimentally that the NTKs of finite-width
equivariant networks converge to our equivariant NTKs

as width grows to infinity. Furthermore, we demon-
strate the superior performance of equivariant NTKs
over other kernels for medical image classification and
quantum mechanical property prediction.

2. Related Work

Neural Tangent Kernel. Gaussian processes can be
viewed as Bayesian neural networks as first pointed out
by (Neal, 1996) and this relation extends to deep neural
networks as shown in (Lee et al., 2018). Neural tangent ker-
nels allow description of training dynamics, see the seminal
reference (Jacot et al., 2018) and (Golikov et al., 2022) for
an accessible review. In (Lee et al., 2019), NTK theory was
used to show that wide neural networks trained with gra-
dient descent become Gaussian processes and generalized
in a more rigorous and systematic manner by (Yang, 2020).
NTKs can be used to derive parametrizations that allow
scaling networks to large width (Yang & Hu, 2021). They
can also be used to theoretically analyze GANs (Franceschi
et al., 2022), PINNs (Wang et al., 2022b), backdoor at-
tacks (Hayase & Oh, 2023), pruning (Yang & Wang, 2023)
and spectral learning biases (Bordelon et al., 2020; Canatar
et al., 2021). Recently, corrections to infinite width limit
have been studied by (Huang & Yau, 2020; Yaida, 2020;
Halverson et al., 2021; Erbin et al., 2022) using techniques
inspired by perturbative quantum field theory. The NTK
kernel for convolutional architectures was derived in (Arora
et al., 2019). Our results can be thought as a generalization
thereof to general group convolutions.

Equivariant Neural Networks. Equivariance has been
an important theme of deep learning research over the last
years, see (Gerken et al., 2023) for an accessible review.
Equivariant deep learning is part of the larger area of ge-
ometric deep learning (Bronstein et al., 2017), in which
more general geometric properties of the different parts
of the learning problem (e.g. the data (Dombrowski et al.,
2024), model (Weiler et al., 2023) and optimization proce-
dure (Amari, 1998)) are studied. Herein, we focus on group
convolutional layers (Cohen & Welling, 2016) which are the
unique linear equivariant layers. A comprehensive summary
is given in (Cohen, 2021). These architectures have found
wide-spread application in computer vision (Chidester et al.,
2019; Celledoni et al., 2021; Moyer et al., 2021), medical
applications (Bekkers et al., 2018; Chidester et al., 2019;
Pang et al., 2023) as well as natural science use cases (Nicoli
et al., 2020; Liao & Smidt, 2023; Bekkers et al., 2024).

Learned vs. Manifest Equivariance. While equivariance
can be enforced on the training data via data augmenta-
tion, the imposed symmetry does in general not extend to
out-of-distribution data (Moskalev et al., 2023). This is in
accordance with the tighter upper bound on the generaliza-
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tion error of equivariant networks compared to purely data-
augmented ones that was found in (Wang et al., 2022a). By
analyzing the spectrum of the NTK in a toy problem, (Perin
& Deny, 2024) found that non-equivariant neural networks
are unable to generalize symmetries learned in one class
via data augmentation to another, only partially augmented
class. They further show how the qualitatively different
NTK spectrum of a CNN improves generalization for the
task under consideration. In (Gerken & Kessel, 2024), the
effect of data augmentation on infinitely wide neural net-
work ensembles was studied. The authors found that the
resulting Gaussian process is equivariant at all training times
and even off the data manifold. In contrast, our results do
not require data augmentation but derive an NTK for mani-
festly equivariant group convolution layers. This allows us
to find a connection between the ensemble means of data-
augmented and equivariant networks, which complements
the previously mentioned results focusing on individual net-
works.

3. Background

This section gives a brief overview of NTK theory (for an
optional broader introduction, see Appendix A) as well as
of equivariant neural networks with a particular emphasis
on group convolutional neural networks (GCNNs).

Neural Tangent Kernels. The NTK can be computed by
layer-wise recursive relations (Jacot et al., 2018) starting
from the definition

£ T
, ONO (z) (ONY ()
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of the layer-¢ NTK. The NTK of the full network is given
by O(z,2') = ©F)(z,2') for a network depth L. Here,
6 are the parameters of the layer ¢ and we adopt the
convention that expectation values are over the initialization
distribution unless otherwise stated. In the limit of infinitely
wide hidden layers, not only do analytic expressions exist
for (1), but ©) (x, 2') also stays constant during training.
Hence it is often referred to as the frozen NTK (Geiger
et al., 2020). As customary in the NTK literature, we treat
activations and preactivations as distinct layers and refer to
N as the layer-/ features with A'(z) = N'(F)(z). This
allows us to treat linear- and nonlinear layers on an equal
footing. Since (1) is proportional to the unit matrix, we can
treat it as a scalar.

We can find a recursion relation between ©(“+1) and ©()
by separating the ¢ = ¢ + 1 contribution from the sum and
computing the ¢’ < ¢ contributions in terms of derivatives

through the layer £ + 1 using the chain rule,
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Note that according to the NTK’s definition (1), it holds that
©(®) = (. The recursions (2) have been computed explicitly
for a number of layers, e.g. fully connected (Jacot et al.,
2018), nonlinear (Jacot et al., 2018), convolution (Arora
et al., 2019), and graph convolution (Du et al., 2019). An
efficient implementation for many layers is available in the
Jax-based Python package neural-tangents (Novak
et al., 2020).

For evaluating the expectation values in (2), it is convenient
to introduce the neural network Gaussian process (NNGP)
kernel

K®(z,2) =E {N(f)(z) (N(e)(x/)>—r:| NG,

whose name originates in the fact that at initialization, the
neural network converges in the infinite width limit to
a zero-mean Gaussian process with covariance function
K@) (z,2") (Neal, 1996; Lee et al., 2018). In the infi-
nite width limit, K is proportional to the unit matrix, so
we will treat it as a scalar as well. The NNGP can also
be computed recursively layer-by-layer. For the { = 0,
the NNGP is the covariance matrix of the input features
KO (z,2")=xz2'T.

Using the definition (3) of the NNGP, we can determine the
structure of the NTK recursive relations from (2). For linear
layers, the first expectation value will evaluate to the NNGP,
while the second expectation value will be proportional to
the unit matrix due to the initialization with independent
normally distributed parameters. For nonlinear layers, the
first expectation value vanishes and the second expectation
values will depend on the derivative of the nonlinearity.

Group Convolutions. Group convolutions (Cohen &
Welling, 2016) act on feature maps f : G — R™» where
nin denotes the number of input features to the network.
In the example of image inputs, this feature map would
be f : Z? — R3 where Z? is the pixel grid, R3 is the
space of RGB colors, and the feature map f is supported on
[0, h] x [0, w] for imagesize h X w. Let L?>(X,Y’) denote
the set of square integrable functions from X to Y. The ¢-th
neural network layer N'¥) : L2(G, R™n) — L2(G,R™)
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maps an input feature map f : G — R™» to an output
feature map N (f) : G — R™. A particular instance of
such a layer is the group convolution layer which in NTK
representation is given by

WED(f)](g) = /G dh k(g RN O (D) (h),

“

with filter x : G — R™¢™+1 with support S, C G. Here,
we integrate over the group with respect to the Haar measure.
For finite groups, the integral becomes a sum over group ele-
ments. Due to the invariance of the Haar measure, the layers
(4) are equivariant with respect to the regular representation

(preg(9)f)(h) = f(g7'h)  gheG. (5

1
\/’IM|S,.€|

Since the input features typically have domain X C R"i»
which is not the symmetry group G, the first layer of a
group convolutional neural network (GCNN) is a lifting
layer which maps a feature map with domain X equivari-
antly into a feature map with domain G (Cohen & Welling,
2016)

NO()(9) = == [ do vlplg™)2) (@), ©

Nin |S X

where p is a representation of G on X. We assume here
and in the following that X is a homogeneous space of G,
i.e. that any two elements of X are connected by a group
transformation.

As is common for other network types as well, the non-
linearities in group convolutional networks are applied
component-wise across the different group elements,

WED()(9) = o (N ()](9)) o

for nonlinearity . Due to this component-wise structure,
the layers (7) are equivariant with respect to the regular
representation (5) as well.

By combining lifting- and group-convolution layers with
nonlinearities, one can construct expressive architectures
which are equivariant with respect to the regular representa-
tion, i.e. which satisfy

N(Preg(g)f) = ﬁreg(g)/\/(f) s

Many practical applications necessitate an invariant network

N(preg(9)f) =N(f), g€G. ©)

Such a transformation property can be achieved by append-
ing a group pooling layer to a GCNN,

1
vol(G) /Gdg WODIg). (10

Using these layers, a wide variety of equivariant- and invari-
ant networks with respect to a general symmetry group G
can be easily constructed.

geG. (8

NED(f) =
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This section presents our recursive relations for the NTK and
the NNGP for group convolutional layers. These recursions
allow for efficient calculation of these kernels for arbitrary
group convolutional architectures and thus provide the nec-
essary tools to analytically study their training dynamics
in the large width limit. Specifically, we derive recursion
relations for group convolutions (4), lifting layers (6) and
group pooling layers (10) by evaluating the derivatives and
expectation values in (2).

4.1. Equivariant NTK for Group Convolutions

Since the domain of the feature maps in GCNNSs is the
symmetry group G, the layer-¢ NNGP and NTK kernels do
not only depend on the input feature maps f and f’ but also
on the group elements g, ¢’ at which the feature maps are
evaluated, i.e.,

K. =B [WO0le) (WOl |

[Z AND(H](g (8[N(‘>(f')](g’)>T]
PrIGH) 86") :

=1

(13)
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For these kernels, we derive the following recursion relation:

Theorem 4.1 (Kernel recursions for group convolutional
layers). The layer-wise recursive relations for the NNGP
and NTK of the group convolutional layer (4) are given by

1
KGO = g [ K 1) (1)

041 041 1 ¢
OIS = KIS+ iy [ an© (0.0,
| (12)
Proof. See Appendix B.
Given G-invariant filter supports S,;, these recursive defi-
nitions imply an invariance of the kernels in their group-

indices under right-multiplication by the same group ele-
ment h € G,

=KV ) (13)
etV (1, ). (14)

KO0 ()
O () =

While the kernels of feature maps on the group carry g, g'-
indices, the kernels of the input features carry x, z’-indices,

= f@)f'(2"),

K9 (1, ) e(f,f)=0. (15

s

Using this, we also derive the following recursion relations:
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Theorem 4.2 (Kernel recursions for the lifting layer). The
layer-wise recursive relations for the NNGP and NTK of the
lifting layer (6) are given by'

KTV ) = W| TES L na(f ), (16)
011, ) \s e XA
+ Ké’f;”(ﬁ ), (17)

where the regular representation pig is defined in (5).
Proof. See Appendix B.

The group pooling layer (10) maps feature maps on GG onto
channel-vectors. Therefore, the kernels lose their g, g'-
indices in this layer, as is reflected in the following result:

Theorem 4.3 (Kernel recursions for group pooling layer).
The layer-wise recursive relations for the NNGP and NTK
of the group pooling layer (10) are given by

(Vol / dg / dg' K, (e f)

(18)

(m /@/@@ 7.

19)

KU (f, 1) =

Ot (f, 1) =

Proof. See Appendix B.

The final layer necessary to compute kernels of GCNNs
are the nonlinearities (7). Since these act pointwise on the
feature maps, the recursive relations are the same as those
for nonlinearities in MLPs (Jacot et al., 2018):

Corollary 4.4 (Kernel recursions for nonlinearities). The
layer-wise recursive relations for the NNGP and NTK of the
nonlinear layer (7) are given by

(£) K(Z), , /
A (ff) = (K(e 8:;}?) (% o J{,f JJ)) (20)
EYD () =E

(u’v)~N(0,A“)/(f,f’))[a(u)o(v)]
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OV (. 1) = KTV (. 1108 (£, ). (23)

21

Using these results, the NTK and NNGP can be straightfor-
wardly computed for any GCNN architecture. In particular,
consider the transformation of the kernels under transfor-
mations of the inputs, i.e. consider K (preg(h) f, preg(h) f')
and O (preg(h) f, preg(h') f'). From the recursion relations

In practice, the lifting layer is usually the first layer, thus
£=0.

for the lifting layer in Theorem 4.2, we have the transforma-
tion property

K (preg (W) f prea (W) ') = K20 o (L F) (24)
0L (preg(W) f preg (1)) = O3, oo (f 1) (25)

This left-multiplication is preserved by the recursions of
both the group convolutions in Theorem 4.1 and the non-
linearities in Corollary 4.4. Therefore, before any pooling
layer, we have

K‘(gi)]’(preg(h)fapreg(hl)f) K}(f)lg h!— 1 (f f) (26)
O (prea(W) f pres(B) ) = O s o (£, F) @T)

reflecting the equivariance of the network. The recursions
of the group-pooling layer in Theorem 4.3 average over
the group and the kernels become invariant after the group
pooling layer

Kw%wm%wwﬁ: O @8
9(@ (preg(h)f7 pre%(hl)f ) = (fa f ) ) (29)

as expected from an invariant network. Note that these
transformation properties of the kernels are independent for
both arguments.

4.2. Roto-Translations in the Plane

The kernel recursions provided in the previous section are
valid for general symmetry groups G. In this section,
we will specialize these expressions to the case of roto-
translations in the plane with rotations by (360/n)°. In this
case, G = C,, X R? where G is the semidirect product
of the cyclic group (), and the translation group in two
dimensions R?. It was shown that adding this rotational
symmetry to conventional CNNs boosts performance con-
siderably for important applications such as medical image
analysis (Chidester et al., 2019; Bekkers et al., 2018; Pang
et al., 2023). Due to the semidirect product nature of the
symmetry group, the group convolutional layers can be writ-
ten as a stack of n conventional convolutions which are
summed over the rotation group. Details and explicit ex-
pressions for the lifting-, group convolutional- and group
pooling layers in this case can be found in Appendix C.1.

The kernel recursion of ordinary CNN-layers can be written
in terms of the operator (Xiao et al., 2018)

MMMW&=§T/&MHﬁHﬂ76m
K Sk

for which efficient implementations in terms of convolu-
tions are available in (Novak et al., 2020). In Appendix C.2,
we present explicit expressions for the NNGP and NTK
recursions of roto-translation equivariant convolutions in
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terms of A, retaining the efficiency of the non-rotation-
equivariant kernel computations. We provide implementa-
tions of these recursions for n = 4 as new layers based on
the neural-tangents package.

4.3. Rotations in 3d

Spherical signals subject to rotations in 3d are a further
important use case with numerous applications in quantum
chemistry (Duval et al., 2023), weather prediction (Bonev
et al., 2023) and 3d shape recognition (Fuchs et al., 2020).
The group convolutions for the corresponding symmetry
group SO(3) can be computed efficiently in the Fourier do-
main, in terms of coefficients in a steerable basis of spherical
harmonics Y;!, or Wigner matrices D!, respectively (Co-
hen et al., 2018; Cohen & Welling, 2017). Due to the con-
tinuous nature of the SO(3) group, comprehensive data aug-
mentation is not feasible, thus making group convolutional
networks the natural choice to incorporate such symmetries.
In Appendix D.1, we provide a summary of the necessary
Fourier space relations for SO(3)-equivariant networks.

The kernel forward equations (11), (12) simplify to purely
algebraic equations in terms of Fourier coefficients

L

K-

/ dR / dR K p (f, /)P, (R)DL, (R, (B)

and analogously for the NTK. Note that the kernels have
two group indices, thus necessitating a double Fourier trans-
form. Detailed relations for lifting-, group convolutional-
and group pooling layer in the Fourier space are provided
in Appendix D.2. Again, these layers are implemented
in the neural-tangents package and the necessary
generalized FFTs are provided by the JAX-based package
s2fft (Price & McEwen, 2024).

5. Data Augmentation Versus Group
Convolutions at Infinite Width

The recursive relations presented in the previous sections
give analytical access to the training dynamics of equivari-
ant neural networks. In particular, they allow for a more
in-depth theoretical understanding of the similarities and
differences of data augmentation and manifest equivariance
than previously possible.

It is known that ensembles of independently initialized neu-
ral networks trained with data augmentation yield equivari-
ant mean predictions (Gerken & Kessel, 2024; Nordenfors
& Flinth, 2024). It is however unclear how these equivariant
functions relate to trained manifestly equivariant networks.
Using the recursive relations from Section 4.1, it is possible
to show that non-equivariant networks trained with data aug-

mentation in fact converge to group convolutional networks
in the ensemble mean.

5.1. Data Augmentation at Infinite Width

In the infinite width limit, the training dynamics under gra-
dient descent can be solved exactly (Jacot et al., 2018). This
enables us to explicitly study data augmentation, showing
that data augmentation and kernel averaging yield the same
mean predictions, as detailed in the following

Theorem 5.1. Let ui"® and p, be the mean predictions
after t training steps of infinite ensembles of two neural
network architectures N*'¢ and N'. Let N'*8 be trained
on the fully G-augmented training data of N and assume
that the NTKs of the two architectures are related by

of. f) =

el > O™ (f, preg(9)f) . (32)

geG

aug

Then, y; ° and i, converge in the infinite width limit to the
same function for all t for quadratic losses, up to quadratic
corrections in the learning rate.

Proof. See Appendix E.

The proof of Theorem 5.1 proceeds inductively over training
steps. At initialization, both mean functions are identically
zero (Neal, 1996; Lee et al., 2018). The updates for the two
networks can be written in terms of the NTK and shown
to agree by splitting the sum over augmented training data
into a sum over samples and a sum over GG and using the
assumption (32).

In fact, the same argument can be used to show that the
individual networks N8 and A/ (as opposed to their en-
semble averages) agree if their empirical NTKs satisfy (32)
as long as the networks are identical for all inputs and equiv-
ariant at initialization. This would for instance be the case
if N'(z) = N?8(x) = 0 for all z at initialization.

5.2. Kernel Averaging Yields GCNN-Kernels

Theorem 5.1 shows equivalence of augmented and non-
augmented networks if the NTKs of both architectures are
related by group-averaging. Consider the case of training an
MLP on augmented data. Then, (32) prompts us to consider
the group-average of its NTK to find the architecture which
results in the same mean predictions if trained without data
augmentation. By iterating the recursive kernel-relations
found in the previous section, one can in fact show that this
architecture is a GCNN, as detailed in the following

Theorem 5.2. Let NC be an MLP acting on feature maps
with output in R and architecture

./\/FC:FC(L)oao~-~oFC(3)OUOFC(1), (33)
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where FC denotes a dense MLP layer and o a point-wise
nonlinearity. Let NGC be a G-invariant GCNN with archi-
tecture

NEC€ = GPoolo GConv(SE) oo o GConv(SE~2) o0 - -
---0GConv(S?) oo oLifting(S}), (34)

where S are the supports of the convolutional filters with
Sl = X, the domain of the input feature maps, and the
other S’ are invariant under G. Then, the G-averages
of the kernels of the MLP are given by the kernels of the
GCNN,

G N 1 !
KSLI) = i [ 49 K5 Uenael) ) G9)

1
7(;)/(19 O (S, preg(9)f') - (36)

GC N
@ (f7f)_V01(

Proof. See Appendix E.

Together with Theorem 5.1, this theorem shows that by
augmenting an arbitrary deep MLP at infinite width, one
obtains a specific equivariant architecture, namely a GCNN
with the same depth L and an additional group-pooling
layer. This result singles out group convolutional layers
among other equivariant layers and mirrors the fact that
group convolutions are the unique linear equivariant layers
under the regular representation. Note that according to
Theorem 5.1 the equivalence between augmented and equiv-
ariant networks holds throughout training and even out of
distribution.

5.3. Augmenting a CNN

Consider a generalization of the roto-translation symme-
try discussed in Section 4.2, namely a general semidirect
product group, G = K x N with N a normal subgroup
of G. For N a translation group, this covers cases such as
CNNs in two and three dimensions with additional rotation
or reflection symmetry (Cesa et al., 2022).

The semidirect product structure of G allows a splitting of
the full equivariance, namely training a K x N-invariant
GCNN is equivalent to training an N-invariant GCNN on
K-augmented data. In order to see this, we show the corre-
sponding kernel averages for Theorem 5.1 to hold:

Theorem 5.3. Let N5*N be the K x N-invariant GCNN
with architecture (34) and K -invariant filter supports S
which for the GConv-layers decompose as Sﬁ = Kﬁ X Nﬁ,
K! C K, N C N. Let NN be the N-invariant GCNN
with architecture (34) and filter supports NX. ... N3 and
SL. Then, the NNGPs and NTKs of these networks are

related by
KN 1) = iz [ K el ) G)
O (1.1 = ey [k O (o)) 38)

Proof. See Appendix E.

Remark 54. For K = C, and N = R2?, ie. roto-
translations in the plane, NV becomes an ordinary CNN
and N'E >N is of the form discussed in Section 4.2. Accord-
ing to Theorem 5.3, the kernels of the rotation-equivariant
network are then given by averaging the kernels of the CNN,

% D KN preg(r)f') - (39)

reCy,

ST ONN(f, preg(r)f)  (40)

reCy

KO (f, 1) =
O () =

if the spatial filter shapes agree for both networks and are
rotation-invariant.

Taken togenther with Theorem 5.1, this shows that training
an N-invariant GCNN on K-augmented data results in a
K x N-invariant GCNN. For the special case of NV a transla-
tion group and K a rotation group, this means that training
a CNN on rotation-augmented data is equivalent to training
a roto-translation equivariant GCNN on unaugmented data.
In Section 6, we will show that this still holds approximately
for finite-width networks and ensembles.

5.4. Distribution of Ensemble Members

Consider training two ensembles of networks with (a) data
augmentation on a non-equivariant architecture and (b) no
data augmentation on an equivariant architecture. Then, the
distributions of the individual networks in these ensembles
do not agree since most of the augmented networks will not
be equivariant. However, our results show that the ensemble
mean of (a) converges to the ensemble mean of (b) with
a specific GCNN architecture. This establishes a highly
non-trivial relation between data augmentation and GCNNs.

6. Experiments

In the following, we validate the theoretical results of the
preceding sections experimentally for various datasets (Ci-
far10, QM9, MNIST, and histological data), tasks (regres-
sion and classification), and groups (SO(3) and Cy x R?).

Kernel Convergence for C; x R2  Figure 1 confirms
that the Monte-Carlo estimate of the NTK converges to our
analytical expression as the width increases. Our MC esti-
mates are obtained by replacing the expectation values in (1)
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Figure 1. Convergence of the Monte-Carlo estimates of the
NTK to their infinite-width limits for G = C; x R?. Plot-
ted is the relative error averaged over the components of a 3 X 3
Gram matrix for networks with a ReLU or an error function non-
linearity. Bands show =+ one standard deviation of the estimator.
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Figure 2. NTK for image classification. Test accuracy of the aris-
ing NTK kernel methods in the infinite width and infinite training
time limit for different training set sizes. The results for both a
conventional CNN and a C; x R2-invariant GCNN are shown.

by the sample mean of 1000 initializations of the network.
We considered GCNNs with one lifting- and four group-
convolution layers interspersed with ReLLU nonlinearites,
followed by a group-pooling layer. The convergence of the
NNGP is shown in a similar plot in Appendix F.1.

Medical Image Classification with C; x R%2. We show
that rotation-equivariant NTK-predictors outperform non-
equivariant NTK-predictors on a dataset of histological im-
ages (Kather et al., 2018) containing nine distinct classes of
tissues. Specifically, we compare a CNN architecture with
the corresponding rotation-invariant GCNN architecture, in
which we replace each of the five convolutional layers with
a group-convolutional- or lifting layer, respectively and used
a group-pooling layer instead of a SumP ool layer. Figure 2
shows the improved scaling behavior of the equivariant
kernel with training set size upon using the infinite-time

MAE (meV)

102 10°
Training Set Size

Figure 3. NTK for molecular energy prediction. Molecular en-
ergy MAEs of the NTK kernel methods in the infinite width and
training time limit for different training set sizes. The results are
for both a conventional MLP and a SO(3)-invariant GCNN.

solution of the NTK-dynamics under MSE loss,
p(z) = O(z, X)0(X, X) 1Y, (41)

where X represents the training images, scaled down to
32 x 32 pixels, ) are the training labels, given by e, — él
for class ¢, and O(X, X) is the Gram matrix of the NTK.
We refer to Appendix F.2 for more details.

Molecular Energy Regression with SO(3). We bench-
mark the NTK-predictor resulting from an SO(3)-invariant
network on the QM9 dataset (Ramakrishnan et al., 2014) by
predicting molecular energies Uy from atom configurations
utilizing (41). Comparing this to the corresponding MLP
kernel, we observe a considerable performance boost for the
invariant kernel over a range of training set sizes, as shown
in Figure 3. For preprocessing, we construct spherical sig-
nals from the atom configurations as described in (Esteves
et al., 2023). For each atom : of the at most 29 atoms, the
environment is represented by pairwise Gaussian smearing
over atoms with the same atomic number z

- Ziz —
fi,z,P(‘r)_ Z Hrinpe

Jjizj=z

%(H:ﬁ'm_l)z , (42)

Choosing p € {2,6} and considering all of QM9’s five
atom types leads to 29 spherical per-atom signals with 5 x 2
channels each. Each of those per-atom signals are then
either processed by a two layer SO(3)-equivariant network
with group pooling on top or by a two-layer MLP. The per-
atom outputs are eventually summed and fed into a final
fully-connected layer similarly as in (Cohen et al., 2018).
The input signals are constructed at a resolution of 12 x 11
on the sphere, corresponding to a bandlimit of L = 6, which
are then downsampled to a bandlimit L = 3 for the group
layer. We provide further details in Appendix F.3.
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Figure 4. Convergence of finite-width ensembles trained with
data augmentation to ensembles of GCNNs on MNIST. L2-
distance between the logits of the equivariant- and non-equivariant
ensemble trained with data augmentation for different ensemble
sizes on out of distribution data. For larger ensembles, the distance
decreases.

Data Augmentation Versus Group Convolutions at Fi-
nite Width. In Section 5, we proved that networks trained
with data augmentation converge in expectation to group
convolutional networks at infinite width. We also verify
empirically that the mean predictions agree progressively
with increasing ensembles size at finite width, supporting
approximate validity away from the theoretical limit. To this
end, we train ensembles of CNNs and GCNNs with symme-
try group Cyy x R? as discussed in Remark 5.4 on CIFAR10
and MNIST using the MSE-loss against smoothed one-hot
labels as for the medical images above. For implementing
the GCNNSs, we used the escnn-package (Weiler & Cesa,
2019). As shown in Figure 4 for MNIST, the outputs of both
ensembles converge to the same vector for large ensemble
sizes throughout training and even out of distribution. For
further details on the model architectures, out of distribution
data, as well as results on CIFAR10 and histological images,
see Appendix F.4.

7. Conclusion

This paper provides recursive relations for the NNGP and
NTK for group convolutional neural networks allowing us
to theoretically establish an interesting equivalence between
equivariance-based to data-augmentation-based training dy-
namics. We also show that equivariant kernels outperform
their non-equivariant counterparts as kernel machines.

A careful comparison of equivariant GCNNs and equivari-
ant data augmentation, beyond the invariant case analyzed
in Section 5, would be an interesting subject for further re-
search. In particular, Theorem 5.1 can be straightforwardly
extended to the equivariant case, as demonstrated in Ap-
pendix E. However, Theorems 5.2 and 5.3 rely on the group

pooling layer and are thus specialized to invariant GCNNGs.
An equivariant extension would require new layers beyond
those presented here since in the infinite-width limit, the
NTK of an MLP becomes proportional to the unit matrix in
the output channels, trivializing the feature map.
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A. Basics of Neural Tangent Kernel Theory

A neural network NV : R™n — R™out which is trained using continuous gradient descent

a0 oL
a T “3)
on a loss function £ with learning rate 7 evolves according to
dN (2) RS oL
=— C] i), 44
a - ; ) g @9
where the sum runs over the training samples z; and ©, € R"out *"out jg the NTK
ON(z) (ON()\ "
no_
O¢(z,2") = 50 50 . 45)

For finite-width networks, ©; depends on the initialization and the training time and is referred to as the empirical NTK.
At infinite width, ©; becomes independent of the initialization (it still depends on the initialization distribution) since it
approaches its expectation value over initializations

’ T
@(w7x,) = EGNpinit [8A8/éx> (GN(I‘ )> ‘| . (46)

00

It furthermore becomes constant throughout training and proportional to the unit matrix (Jacot et al., 2018) in the NTK
parametrization. For this reason, we drop the ¢-subscript on this frozen NTK and treat it as a scalar. In the following, we will
always mean (46) when we refer to the NTK unless otherwise stated. The NTK parametrization of a linear layer has an
additional 1/,/Tan in prefactor and uses independent standard Gaussians as initialization distributions. Hence, an MLP
layer is given by

1
V/ Nfanin

NO(z) =o(NED(2)) = o( WN“—2>(x)+b> , (47)

with nonlinearity o, weights W and bias b.

B. Proofs: Kernel Recursions for GCNN-Layers

In this section, we provide proofs for the theorems given in Section 4.1 in the main text.

Theorem 4.1 (Kernel recursions for group convolutional layers). The layer-wise recursive relations for the NNGP and NTK
of the group convolutional layer (4) are given by

KD, |5 | dh K8 (£ ) (11)

oL II(r. 1) = Kg?;”<f,f’>+| 5 /.4 @;’2 ol f). (12)

Proof. We first compute the NNGP recursion relation. For group-convolution layers, the definition (3) of the NNGP reads
KD (. ) =E [W““’(f)](g) WED]())] (48)

= / dndl’ E [ (7 )k (g ) E [NOWINO (D] . @9

where we have again dropped the 1/,/n;-prefactors and channel dependencies since these converge to the expectation value

in the infinite width limit. Next, we shift the integration variables by g and g’ which leaves the Haar measure invariant by its
definition

KD (G5 = o /G dhdh’ E [0 (s (0] B [INO (D) g INO ()g')] - (50)
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Since the kernel components are sampled independently from standard Gaussians at initialization, we only obtain a
contribution to the integral when h = h’ and £+ has support at this point, i.e.

K1) =5 [ anE [WODahINOlen)] 61
Kk JS,.

Comparing to (3) shows that the right-hand side is just the NNGP K “)( f, [') of the previous layer evaluated at group
indices gh and g’h. This proves the NNGP recursion relation stated in the theorem.

For the NTK recursion relation, we start by specializing the general expression (2) to group-convolution layers and adapting
it to the functional framework used for feature maps

oL (£, 1)

B NED () SNED ()] (g)
‘/sﬂdh E[ CHRCIEERE }
(

o [ SNV ()](9) / SINO(N]@G) SNO(G) | SNV (F)](9)
+ [ dgdg' E = = ~ 52
J qaas l SN (1)](3) ; sw@ () or @ () ) SINO(N(G) o
CIENED
According to the layer definition (4), the derivatives evaluate to
SINUFD(](g) 1 0
5K(€+1)<h) - m[’j\/ (f)](gh) (53)
SN ()](9) L
= 54
WORNG e o
Therefore, (52) becomes
1
003 (1.5 = 5 [ anE[WODIemINO (1]
/ dgdg Oy (f. f)E |V (g s (g 1g’>] (55)
! 1 !/
where we have dropped the channel-prefactors as usual. The last line is just the NTK recursion to be proven. O

Theorem 4.2 (Kernel recursions for the lifting layer). The layer-wise recursive relations for the NNGP and NTK of the
lifting layer (6) are given by*

(12+1) © /
K f7 |S ‘ de KP(Q)fﬂ p(g’ )fb(f’ f ) s (16)
ol ) ,
Opg (1] |S | Js 4z 8,95, p(g)af f)
Kéf?’(f, ), -

where the regular representation p,.cg is defined in (5).

?In practice, the lifting layer is usually the first layer, thus £ = 0.
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Proof. The NNGP of the lifting layer (6) is given by

KD 1) = B [INED (] ) WD (1)](9)] 57)
= & [ et B stole™ (ol )] B [WODI@NO ] )
= o [ 4sds’ BIs@n)]E [NODIpa)0)NO (] pl5)) 59
=5 [ 4 B[O ot )] ©0)

)
7/ d Kp(a)w plg’ )w(f’f ) 6D
where we have moved the regular representation through A¥) onto f by using equivariance. This proves the NNGP
recursion-relation.

According to (2), the NTK recursion evaluates to

: SNV ()](g) SINUHD ()] (g
Oy (1) = /Sﬁde[ 5,.;<é+1>(x)g 5m<€+1>(x)g ]

oy | SNV DN N SN (]9
+ f 04 B| Sy O 0 e | “
The derivatives in this expression are given by
§ N(ZJrl) 1
[ 5,4“15‘2])(9) = =W Wlke(9)) (63)
SN D 1 .
(E[ N }‘)f])gg) = =™, (64)
Plugging this back into (62) yields the desired NTK recursion relation,
1
0L (1 1) = o /S do E [N O ()](p(9)2) W (1)](p(g)2)|
b [ @i’ 60 (18 [ plg )R (g ) (65)
1
= K;ij:l)(f7 f/) S/{ / dz @p(g)m p(g’ )m’(faf ) (66)
O

Theorem 4.3 (Kernel recursions for group pooling layer). The layer-wise recursive relations for the NNGP and NTK of the
group pooling layer (10) are given by

1
KT = Goae /dg/dg K (18)

1
O (f, 1) = = Gl / dg / dg' 0% ( (19)

Proof. Since we integrate over the entire domain of the input feature maps N')(f) : G — R™ in the pooling layer (10),
are the output features A'() (f) € R™+1 a channel-vector. Therefore, the NNGP of the group pooling layer is given by

KO 1) =B [N (N “*”(f’)} (67)
() ’
(G / dg / dg’ E Hlg) WO ()9 (68)
1 “
= vol(G))2 /dg/dg Koo (f, 1) (69)
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The NTK recursion (2) is in this case

NED(f) e SN ()
e+1) (0)
(. £) /dg/d El VORI o T S ) 70
(1’)
= vol /dg/dg Oy (i f), (71)
which is the NTK-relation to be shown. O

C. Equivariant Kernels for Roto-Translations in the Plane

In this appendix, we provide explicit expressions for the kernel recursions of lifting-, group convolutional- and group pooling
layers for the special case of roto-translations in the plane, i.e. for the symmetry group G = C,, x R2. In this case, the
general expressions in Theorems 4.1, 4.2 and 4.3 simplify and can be written in terms of the A operator (30) which can be
computed efficiently in terms of ordinary 2d convolutions. However, before discussing the kernel recursions, we will first
establish a simplifying notation for the GCNN layer-definitions.

C.1. GCNNs for G = C,, x R?

Due to the semidirect-product structure of G, any element g € G can be written uniquely as a product of a translation and a
rotation, g = tr with t € R? and r € C,,>. We can therefore write a feature map V() on G as a stack of n feature maps on
R?,

NO(g=tr) = NO(1). (72)

Using this representation, the lifting- and group convolutional layers can be written in terms of ordinary two-dimensional
convolutions as (Cohen & Welling, 2016)
1

N )] (t) = W dex k(p(r~")(z—1t)) f(z) (73)

1

\% né|SN| r'GZCn R2

where p is the fundamental representation of SO(2) on R?, given by two-dimensional rotation matrices.

INED (] (8) = At K1y (p(r ) = ))INO (P (), €>1, (74)

Finally, for invariant problems like classification, the group pooling layer (10) is central to making the network invariant.
For C,, x R?, it is given by

WD ()] =

Z /dm INO (] (z). (75)

\/n| supp(N rGCn

C.2. Kernel recursions for G = C,, x R?
In analogy to the notation introduced in the previous section for feature maps, we write for the NNGP and NTK on C,, x R?
Ko—trg =t ([, 1) = [Ker (f, ) Ogetrgrmprr (f, f1) = (O (f, f)I(E, 1) (76)

to emphasize the dependency on the two translations ¢,# € R2. Furthermore, we repeat here the definition of the
operator (30) for convenience

MS”“(K)](t’tl)Isll/ dt K(t+t,t' +1), (77)
K Sk

Given these definitions, the recursive relations from Theorem 4.1 for group convolutions can be computed efficiently using
the following

3In an abuse of notation, we will denote both the abstract translation group element and its representation as a vector in R? by the
same symbol.
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Lemma C.1 (Kernel recursions of group convolutional layers for roto-translations). In the case G = C,, x R?, the layer-wise
recursive relations for the NNGP and NTK of the group convolutional layer (74) are given by

KD N = Ay, (KD n (PN plrr' 1)) (78)
reCp
0V (f, ) = [Kflf,fl)(f,f’)](tvt')ﬂLZ[Ap<r>sn(é5f3,w,~.(faf’))](typ(fr"l)t’), (79)
reCp
where
KO (£ V) = (KO (F, I p(r'r =) (80)
68U, (1. 1) = 0L (f, It plr'r—)t'). @1)

Proof. In order to compute the NNGP recursion relation in the notation (76), we first need to compute the unique
decomposition of a general group multiplication gh, g, h € G into a rotation and a translation. This is possible since G is a
semidirect product group. Starting from g = t,rg and h = 51, with g, 1, € R2 and rg,Th € Cy, we have

gh = tgrgtprn, = tgrgthrg_lrgrh . (82)
Since R? is a normal subgroup of G (a further property implied by the semidirect product), rgthrg_l € R2. Therefore,
tgh = tgrgthrg_l € R? and Tgh =TgTh € Cp . (83)
Since the action of ¢, on a vector z € R? is given by
pltgn)r =z + p(ry Jtn + 1y, (84)

we obtain for the NNGP recursion from Theorem 4.1,

(KD (f, )1

/ di (K (f o™+t p(r D+ 1) . (85)

This we will now write in terms of the A-operator (77). However, since the .4-operator shifts both slots of the argument
kernel by y, whereas the first argument in (85) is shifted by p(r~1)Z, while the second argument is shifted by p(r'~1)t, we
cannot write (85) directly in terms of A(K), but need to compute A at a transformed argument instead and then transform
back. To this end, first consider

s, (KO(F, £ )

i [K9( t+i,¢ +1 86
= 157 L9 IR0 ) 0

/7 —1 n
- |/ aF [KOF, Nt + Fplr'r )& + ). 87)

Therefore, we obtain for the RHS of the NNGP recursion

S Apys (KBS a (5 P (E plrr )

FEC,L
Z / Kf£r7(f f)](t+t p( / 71)(,0(1"7"*1)15'4-{)) (88)
Skl FECH
B |s1 | 2 /( s df [K2,a(f )+ 58+ p(r'r™h)E) ®9)
r reCp T)ok

L IO+ p(r)t, ¢ + p(r')E) (90)

TEC

The last line is just (85), proving the NNGP recursion relation.
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For the NTK, we start from the NTK-recursion in Theorem 4.1. The structure of the integral appearing in that recursion is
the same as the one of the integral in the NNGP recursion. Therefore, the NTK recursion is given by

OV ) = [KEV (f O, >

1 e s
g > | AEO (£ N+t E 1) oD
r 7eCy Sk
The integral can be written in terms of the .A-operator following the same steps as for the NNGP above. O

Therefore, by first computing the kernels K® and ©® and then applying the A-operator, it is possible to efficiently
compute the kernel-recursions in this case. Similarly, the recursive kernel-relations for the lifting layer can also be written
efficiently in terms of the A-operator, as detailed in

Lemma C.2 (Kernel recursions of lifting layers for roto-translations). The layer-wise recursive relations for the NNGP and
NTK of the group convolutional layer (73) are given by

(KD 1, ) = [Apmys, (KO (F )] p(rr' )2 (92)
OV (1) = (KT 1) + [Apirys, (OLL ()] (&, plrr' 1)) 93)
where
K, ) = (KO, ]t p(r'r 1)t (94)
O (f, (. t) = [0O(f, ]t p(r'r~ ). 95)

Proof. According to Theorem 4.2, the NNGP recursion is given by

¢ 1
KD ) = o / dz K9 (p(r)a +t, p(r')x +1'). (96)

Kk JS,
Comparing this expression to (85) shows that the sum over 7 as well as the r, 7’-indices on K() are absent in (96) but
otherwise the two expressions agree. Therefore, we can use the same argument as above to rewrite (96) in terms of the
A-operator and only need to drop the r, r’-indices in the definition of K () as well as pick the 7 = e contribution in the sum.
Similarly, we can show the NTK recursion relation starting form the NTK-recursion in Theorem 4.2. O

Finally, in the group pooling layer, the kernels are trivialized over their r- and ¢-indices, resulting in a kernel without spatial
indices:

Lemma C.3 (Kernel recursions of group pooling layers for roto-translations). The layer-wise recursive relations for the
NNGP and NTK of the group convolutional layer (75) are given by

1
K““’U’f'):n|supp<w><f>>| > favar (w0 w0 o)
rr'€Ch
OIS = ey S0 [ B, ©8)
rr'eCp

Proof. The integral over two copies of the group in Theorem 4.3 factorize for G = C,, x R? into integrals over the
translations in R? and sums over the discrete rotations in C,,. This immediately implies the recursions in the statement of
the lemma. O

The expressions given in the lemmata in this section can be straightforwardly implemented and therefore allow for explicit
calculations of the NTK and NNGP of realistically-sized GCNNss.
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D. Equivariant NTK in the Fourier Domain for 3d Rotations
D.1. Group Convolutions in the Fourier Domain for G = SO(3)

For compact groups, it is possible to define a Fourier transformation. The group convolution (4) then becomes a point-wise
product in the Fourier domain. For the case of G = SO(3), the Fourier transformation is given in terms of Wigner matrices
Dl

mn?

l

204+1
f(R) = Z oz 2 JnnDhnl(R) (99)
=0 mn=-—I
o = / dR f(R)D.,.(R), (100)
SO(3)

where R € SO(3) is a rotation matrix. Note that the presented convention corresponds to the one in the s2 £ ft package
(Price & McEwen, 2024).

The rotations act naturally on the sphere S? on which the Fourier transform is given in terms of spherical harmonics Y}!,,

%) l
z) =YY fLYhL(@) (101)

=0 m=—1

fl = / da f(2)Y]},(z). (102)

These Fourier transformations are e.g. used in spherical CNNs (Cohen et al., 2018) and steerable convolutional net-
works (Weiler et al., 2018), which define equivariant group convolution layers with respect to SO(3) and act on input
features defined on the sphere S2. The change to the Fourier space is motivated by the fact that group convolutions reduce
to simple multiplications of the corresponding Fourier components. For SO(3), the group convolutions (4) for filter support
Sk € SO(3) are defined as

1
N D R 27/ dS k(R71S)[N® S). 103
[ (NHI(R) S Js. i ( YINE(NHIS) (103)
Using

D,..(R")=D.,.(R), (104)
Dl (R)=(-1)"""D., . (R), (105)

/ 8712
dRDL (R)D',,(R) = ———61/ 0 O » 106
L SEPTRIDL  (B) = 57 (106)

the Fourier components (100) of the layer in (103) can be written compactly as

I = v
A+ ( - - NOAL R/ 107
[ (f)}mn \/m p;l[ (f)]mpl“ﬂnp ( )

Note that we have assumed a real-valued kernel «.

Similarly, the lifting layer (6) for features on S? is

1
[N(l)(f)](R) = W /3de Ii(R 193)f(:1:), (108)
which, in terms of the Fourier coefficients (102) becomes
VO = —— P (109)

= nlrs 2[—1—1 mbn
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Again, we have assumed a real-valued kernel « and used the relations

Y! (Rzx) Z DL, (), (110)
n=-—I1
Vi (x) = (1)L, (2), (111)
/ de Y (2) Y5 (2) = 0 G - (112)
S2

D.2. Kernel Recursions for G = SO(3)

As we have seen in Section D.1 SO(3) group convolutions are frequently computed in the Fourier domain. In this section,
we show how also the kernel recursions from Theorems 4.1 and 4.2 for group-convolution layers and lifting layers can be
computed in the Fourier domain corresponding to the spherical convolutions presented in Section D.1. In the following
we will assume filters x with global support S, = SO(3) or S, = S2, respectively. The reason is that equations (106)
and (112) otherwise have to be replaced by expressions including the Wigner’s 3; symbols. Due to the current lack of an
efficient JAX-based implementation providing their computation, we decided to restrict ourselves to the more efficient case
of global filters.

In terms of the Fourier coefficients defined in (31), the recursive Kernel-relations for the spherical convolution layer (103)
are specified in the following

Lemma D.1 (Kernel recursions of SO(3) group-convolutions in the Fourier domain). The layer-wise recursive relations for
the NNGP and NTK of the group convolutional layer (107) for G = SO(3) and global filters are given by

l

KD, PO s = T 1511 O, Zl( DT TV | A (113)
p——
l
[ (€+1)(f f/)}mnm mt = [ (£+1 (f f/)]mnm 'n’ + 2l + 15”/5”1*n/ Zl( )’ﬂ p[eé(fvf )}mp m/(—p) * (114)
p——

Proof. We identify elements of SO(3) with 3 x 3 rotation matrices R, S, . ... Then, the recursive relations for the group

convolution layer from Theorem 4.1 are

1
KGR (f ) = = / dS K ps(f, 1) (115)
81 Jso(3) ’
1
O () = KU + g [ 45 O (1) (116)
812 Jso(3)

The Fourier coefficients of the NNGP are given by a double Fourier integral of the form (31), so the recursion (115) becomes
1 /
KWt =gz [ ASARAR KL (. £ D RIDE o (R). 1)
[SO@3)®

Plugging in the Fourier expansion of the kernel KY R s rs(fs f') yields

oo

1 2p+12p" +1
KD (f, ey — / / / 4
[ (f f )]mn m/n’ 871'2 [SO(S)]3dS dR dR Z 871'2 871'2

p,p’=0

D P
< 3> KO D (RS)DY, (R'S) | Dhy(R)Dh (R). (18)

qr==—pq’,r'=—p’

Using (106), (105) and

l
RS)= Y D, (R)D..(S), (119)

p==1
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we can simplify the expression to

2
[K(€+1)(f f,)}mn R 871.2 Z Z Z 71 6pl5m(15nu5l/p’5m’q/5n’u’5pp'57lv_7t/57‘7_7”
p,p'=0¢,r==pq’ ,r'=—p’
YA PaP
< [KO(F,. b0 e (120)
l
L - N T O O 121
2z+1 tOn, ;_:l( )OS W (<) (121)
Renaming the summation index » — p yields the desired result. The computation for the NTK is analogous. [

Similarly, for the lifting layer (108) for features on the sphere, the kernel recursions can be expressed in terms of the Fourier
coefficients (102) according to the following

Lemma D.2 (Kernel recursions of spherical lifting layer in the Fourier domain). The layer-wise recursive relations for the
NNGP and NTK of the lifting layer (109) for features on S? to features on SO(3) with global filters are given by

82

2
U+l 1) (=)™ 610, e [KO, )]s (122)

KD = 12 (

1

- ) 8
[OUFD(F, It o = KED(F L L+ — Ar (

2
) VS OGN (12

Proof. Starting from the recursive relations for the lifting layer in Theorem 4.2, the recursions in real space for G = SO(3)
are

!/ 1 !
K0 =4 [ do K p (8 (124)
T )52
1
Ol (12 1) =Ky 1) + 4 /S [z O p (£ 1), (125)

Expressing the Fourier coefficients of the NNGP according to (31) gives
¢
[ Z+1)(f f )]mn ,m’'n’ = 47T /Szd‘73 //SO(B ]QdeR, Kl(%g)c R'x (fvf ) mn(R) m'n’ (R/) (126)

We can now plug in the Fourier expansion of the kernel on S?

l

Ko Z > Z KO, Y @)YE (), (127)

LU=0m=—Im/=—U
to obtain

00 P p’

— , 1
[K(Hl)(f’fl)m”m’”':zm/sdx//[so( JARAR (S0 ST 3T KOy (R (R
2 3 2

p,p'=0g=—pq'=—p
x DL (R)DL,..(R'). (128)
Using (106), (112), (110) and (111) one can rewrite and simplify the expression as

1 y
[ €+1)(f’ f )]mn m'n’ — 47T Z Z Z 2[ +1 2ll ¥ 1( ) 5lp5’fﬂq6n7'6l/p'57n’q’6n'7'/6pp’ 67'7—7"

p,p'=0g,r=—pq',r'=—p

x [KO(f,. ey (129)
1 82 \?
= ir (21—}—1) (=1)"61,1:0y, 7n/[K(e)(f I’ )}mm,, (130)
which is the claimed result. .
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E. Proofs: Data Augmentation Versus Group Convolutions at Infinite Width

In this section, we provide proofs for the theorems given in Section 5 in the main text.

Theorem 5.1. Let pi;"® and i, be the mean predictions after t training steps of infinite ensembles of two neural network
architectures N*'¢ and N'. Let N'*"8 be trained on the fully G-augmented training data of N and assume that the NTKs of
the two architectures are related by

o(f, f' |G\ > O™E(f, prea(9) ) - (32)

geG

Then, 113" and i, converge in the infinite width limit to the same function for all t for quadratic losses, up to quadratic
corrections in the learning rate.

Proof. For a neural network N\, we can expand the change AN in output due to one training step of gradient descent in the
learning rate 7

ANea(F) = Neoaf) = NilF) = O — 80T 20D 1 o) REN
Ntrain T ]
i n. (a/é;(f)) aj\géfl) L'(Ni(fi)syi) + O(?), (132)
train i—1

O:(f.fi)

where ©; is the empirical NTK at training step ¢, y; are the training labels and £’ is the derivative of the per-sample loss
with respect to the output of the network. Taking the mean and the infinite width limit yields

Bt (D) = =725 3 O 1) £/l £, ). (133)
rain i=1

since we have assumed that £’ is linear in its first argument.

The network A28 on the other hand is trained using full data augmentation over G, so we can decompose the sum over
training samples into a sum over the training samples in (133) and a sum over GG. Note that since we assume full data
augmentation and a finite training set, we restrict to G being finite in this section. We obtain

Mtrain

ST O (f pres(9) FL (1 (pres(9) i) vi) - (134)

geG i=1

M) =~

As mentioned in the main text, we will prove the statement inductively over training steps t. At¢ = 0, the mean output
of all neural networks is zero in the infinite width limit (Neal, 1996; Lee et al., 2018). For the induction step, assume that
pe® = py. Then, pit5 = p, oy if Apg§ = Ap, . Since the ensemble mean of networks trained with data augmentation
is exactly equivariant (Gerken & Kessel, 2024; Nordenfors & Flinth, 2024), we have ;"% (preg (9) fi) = 1 2 (fi) = po(fi)

by the induction assumption. Therefore,

Mtrain

AR() = = EE;; 2; O (S, preg(9) Fi) £ (1o i), y3) - (135)

Using assumption (32) concludes the proof,
At (f) = —nmifn@ (fs F)L (o (fi)s i) = Dpg g () - (136)
O

24



Equivariant Neural Tangent Kernels

As mentioned in Section 7, Theorem 5.1 can be generalized to equivariantly data-augmented networks trained on

Ntrain

U U {(0res(9) fis Bre(9)vi)}, (137)

i=1 geqG

where the targets y; : G — R™vt are signals on the group.

Theorem E.1. Let ;13" and y, be the mean predictions after t training steps of infinite ensembles of two neural network
architectures N8 and N'. Let N*"¢ be trained on the fully equivariantly G-augmented training data of N and assume
that the NTKs of the two architectures are related by

L =13 Zezuhgq (f, preg(h).f'). (138)

heg

Then, ;"8 and j1, converge in the infinite width limit to the same function for all t for quadratic losses, up to quadratic
corrections in the learning rate.

Proof. This theorem is a straightforward extension of Theorem 5.1, which is why we only highlight the differences. Similarly
to (132), the change in the output after one training step on unaugmented data is given by

MNtrain

[AN 1 (N(g) = — DD gy (f )L (N[0, wil9)) + O(r) (139)

Ntrain i=1 ¢g'€G

where L is the pointwise per-sample loss. Again, £’ is the derivative with respect to the output of the network at a given
point. As before, we assume that £’ is linear in its first argument, allowing us to simplify the expectation of the infinite-width
version of (139) to

Mtrain

(A1 (H)](g) = S 0y £) L (£, wilg)) - (140)

ntraln i=1 ¢g'€G

In a similar fashion, we derive the update of a network trained on fully equivariantly augmented data and obtain

Mtrain

AN = =t 3o D O3S WL ([ (res 1IN, s (Wyid(9) - (14D

g’,heG i=1

Using the equivariance property of the ensemble mean again (Gerken & Kessel, 2024), ie. p;"(preg(h)fi) =
Preg(h) g "8 (fi), and shifting the summation as g’ — hg’, we obtain

AN =~ 303 O (AL (™ AN i) (142)
raimn /heG i=1

RS Z( PN fmreg(mfi)) LN wle) . (143)

[ ere e heG
where we have used that [u;"® (preg (R) fi)](hg') = (17 "% (f:)](¢") and analogously for y;.
Using (138) and following the same inductive argument as in the proof of Theorem 5.1 concludes this proof. O
Theorem 5.2. Let N¥€ be an MLP acting on feature maps with output in R and architecture
NFC =FCBH 6500 FC® 050 FCW | (33)
where FC denotes a dense MLP layer and o a point-wise nonlinearity. Let NGC be a G-invariant GCNN with architecture

NEC = GPoolo GConv(SE) oo GConv(SE~2) o0
--0GConv(S3) oo oLifting(S}), (34)
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where St are the supports of the convolutional filters with S} = X, the domain of the input feature maps, and the other S°
are invariant under G. Then, the G-averages of the kernels of the MLP are given by the kernels of the GCNN,

KO 1) = i [ 49 KU sl ) G3)
1

(
1.1 = g [ 49 O UL b)) (36)

Proof. In order to proof the kernel equalities, we will construct the kernels for the fully connected architecture (33) and the
group convolutional architecture (34) by explicitly iterating the recursion relations.
The iteration starts with the input kernels which for the fully-connected network are

1

KOG = Sy

/wfmﬁmm eFcO(f, Y =0, (144)

since the different points in the domain X of the input function take the role of different channels when the image tensor is
flattened. The first layer of the FC-network is a fully-connected layer. These update the kernels according to (Jacot et al.,
2018)

KFCED(f, f1) = KO£, f') (14)
OFCERN(f, 1) = KFCED(f, 1) + 05CO(F, 1) (146)

In order to write kernel transformation like this more compactly, we will collect all relevant kernels at layer £ into an R*
vector EFCU) (£, f7) according to

EFC(@ (f7 f/) = KFC([) (f/7 f/) 9 (147)
ercO(f, 1)

where the components K¥C(f, f) and K¥CO(f ') are needed for the nonlinear layers below. In the ="C-notation,
(145), (146) can be summarized by a function G : R* — R* mapping ZFC) (£, f/) = EFCEHD (£ #7), defined by

k1 k1
ko | ko
g ks | = ks . (148)
(C) ko + ©
Therefore, the kernels of the first fully-connected layer take the form
1 [
ZFC(1) " — G(=FC(0) N d f(x)f'(z ] 149
(1.1) = 0E 1) = s [ | P (149)
f@)f'(x)
In the architecture (33), fully connected layers are alternated with nonlinearities, which act according to (Jacot et al., 2018)
KFC(Z) f, f KFC(@) f, f/
WO = (greolfs ) gren b)) (>0
KFC(E+1) (fa f/) = IE:(u,v)'\f./\/(O, AFC@(F,51)) [0’(7_[,)0’(’0)] (151)
KO (£ £) = By uyono, arc (5, gy 107 (w)e’ (v)] (152)
@FC(Z-‘,—l)(f’ f/) _ KFC(f-i-l) (f’ f/)@FC(Z) (f7 f/) ) (153)

on the kernels. We will denote the corresponding action on the ZF©-vectors by a function F, : R* — R*. Therefore, a
fully-connected layer followed by a nonlinearity can be written as

=L, 1) = Fo(GETCOU ). (154)
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Hence, in this notation, the kernels of the entire FC network are given by
=) = 6(F (-0 (7o (9O 1)) ) - (155)

Next, we compute the kernels of the GCNN. The input kernels in this case are

EZCO (1) = f@)f(x), 0SSOt f) =o. (156)

According to (34), the first layer of the network is a lifting layer whose recursion relation was given in Theorem 4.2. Again,
we define an R*-vector to collect all kernel components necessary for computing the kernels of the network,

Kog (f.1)
GC(£)
_GC(K _ Kgg (f, 1) 157
(F.1) = Ko | (157)
o5 (1. 1)
In terms of 25 the kernels of the lifting layer are given by (note that the filter of the lifting layer has global support by
assumption)
K (galFof)
1 Kég(n ,)(W(f 1) L fi(i(%)gc)}fgpgg’)%
=GC) _ (9)z0(g')z _ p(g)z) f'(p(g")x
=0 =9 | S [ K%ﬁg e || T e Jot= | Foehairbim | - a9
Gelo) " gy flp(g)x) ' (p(g')x)
p(g)m,p(g’)x
For later convenience, we note here that
1 i)l )
—GC(1) no_ " plh)z g h)x
S =y 8 | e oty ) (1%
Flp(h)z) f'(p(g~ h)x)
N
_ F@) f (plg™")z
w0 L | e s (o~)2) (160

= EFCO(F, preg(9) ') (161)

where we shifted the integration variable in the second step and used (149).

After the lifting layer, we act with a point-wise nonlinearty whose recursion relations are given in Corollary 4.4. Since this
transformation is independent for the different g, g’-components, we can write it using the same function F, introduced
above as

=GC(£+1) =GC(¢
Epo ) = FES0 () (162)
A GCNN layer transforms the NNGP and NTK according to Theorem 4.1. We can write this in terms of = "GC“) as
_Gcw+n =GC(¢)
=g.9' (7 |Sf| / dhe G(Eqgn, grn, (£ 1)) (163)

with G as introduced in (148). The final pooling layer acts according to Theorem 4.3, which we can write as

HGc(e) /HGC(f
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With the expressions (162), (163) and (164), we can write the kernels of the entire network as

1
(faf - Vol /dg/dg |SL| SthL g( <|S£’2|/S£2dhL2 g<]:o<
1 = !
CH] dh3 g( -(2 ShCL(i)L ahshs,g'hphr o h5h3(f7f))) )))) . (165)

In order to simplify this expression, we shift h3 and absorb ghyhy_o - - - hs into it. This will not change the integration
domain of h3 since S? is by assumption invariant under G. Then, the integrals over hr, hr o, ..., hs become trivial and
cancel against their 1/|S’|-prefactors. We are left with

=) = Gonye L o g( ( (( = dha G (7 (”Sﬁﬁj1h3<f,f>>)--->>>).

(166)

Finally, we trivialize the ¢’-integral by shifting g~! to absorb ¢’. Thus, we obtain

EGc(f,f’)=V011(G) /G dgg<fa<g<fa<- |513| dhgg( P Eathy (£ 1) - )))) (167)

ﬁ(G)/dg g (]—} (6 (% (-9 (FEO S presle) ) -+))) ) (168)
[ a0 = b)), (169)

1
vol(G)

where we used (161), trivializing the integral over hs, and then identified ZFC from (155). The statement follows by taking
the second and fourth components of (169). O]

Theorem 5.3. Let NX*¥ be the K x N-invariant GCNN with architecture (34) and K -invariant filter supports Sﬁ which
for the GConv-layers decompose as S = K’ x NY, K C K, N° C N. Let NN be the N-invariant GCNN with
architecture (34) and filter supports N L y..., N3 and S}. Then, the NNGPs and NTKs of these networks are related by

K

KRN (g f) =

i Lk K L)) @

@KIXN(f’f/) _

i kO LB, 39)

Proof. In this proof, we will use the same notation as in the proof for Theorem 5.2 above and use results from there as
well. We start by considering the kernels ZX*~ of N/E*N by specializing (165) to the case G = K x N. Due to the
semidirect product structure of G, there is a unique decomposition g = kn for each g € G into k € K and n € N. Since by
assumption the filter supports S on G also factorize over K and N, we can split all G-integrations in (165) over N and K
and obtain

—~KxXN / 1 1 / / / // / 1 .
= , = dk d dk dn/ ———— d d Fo
1) = Ral® e ol S S0 e S0 TREINE Y0 0 9

1 —KxN(1)
|K3HN3| stj3 /Nsdmg g ( (HknJLmL jama,k'n’jrmp--jzms (f’ f/>)) T : (170)

In order to trivialize the integrals over K, as was done with the integrals over GG in (166), we need to rewrite the first group

28



Equivariant Neural Tangent Kernels

index of 2K %N (1) guch that all j, appear next to each other. To this end, we introduce several unit elements
knjLmy - jrmzjsmsjams = knjmy, - - jrmzjsjs ja msjsms (171)
EN
= knjime -+ jrjsjs (jsjs) "' majss j3  msjs ms (172)
. EN EN
= kjr e ga (oo gs) M mgn s (Groa e gs) tmp gy msjams . (173)
EN EN eEN

We perform the same rewriting also on the second group index of ZX*N (1) Since NV is a normal subgroup of G, knk~' € N
forall k € K, n € N and the Haar measure on N is invariant under shifts of the form n — knk~!. Furthermore, the
integration domains N are by assumption invariant under this transformation. Hence, we shift n, n’ and the m by

n—jp - gan(ip - js) 7" (174)
n/—>jL"'j3n/(jL"'j3)71 (175)
me = Joo -+ jame(jo_a---j3) " 0> 3. (176)

With this (170) becomes

=KXN N 1 / /
=N ) = el Vol /dk/dn/dk /d |KL||NL| KLdJL/NLdng<

—KxN(1) /
|K3 |N3| /K'sdjd /N3dm3 g (“kJL janmy - ms,k’jL“'jsn/mL"'ms(f’f ))> ’ ) (177)

]‘ / !
= (vol(K) vol /d’“/d”/d’“/d |N | NLdng<

1 . —KxN(1)
’ |K3HN3| Kdd]3 [Vsde g (Fa(‘:'j?,nmL"‘M3,k/k}71j3n/'erL“'7”3(f’ f/))> (178)
= L dk d d d g
= Vol(K vol N |NL\ wp
1 . —~KxN(1) ’
' W KSdJ?’ Nsdmg g (Fo(Hjanmems,k_ljBn’mL-~~m3 (f’ f ))) o ’ (179)
Here, we shifted j3 — (kjr - - - j5) in the first step, trivializing the integrals over jy,, .. ., j5 which then cancel against their

1/|K|-prefactors. In the second step, we first trivialized the integral over k' by shifting ¥’ — &’k and then canceled it
against its 1/ vol(K)-prefactor.

Next, we perform another manipulation on the group indices of ZX*N(1) by first inserting suitable unit elements,
. 1. 1 . 1 . 1 .
J3Nmy, M3 = j3njs  jsMmrjs - jsmr—2js - Jj3smsjs Js, (180)
eN eN eN eN

and similarly for the second group index of ZX %N (1)~ After shifting

n—jstngs, o0l —=gytnljs, ome = jytmes €023, (181)
in (179), we obtain
1
—KxXN /
= = dk | d d d
= Sy e S [ v ng(
1 . =K xN(1) ’
: |K2HN2| K3d]3 A3dm3 g(]:U(‘_"nmL“'msjg,k*ln’mL--*mgjg(f7f))) : (182)
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Figure 5. Convergence of the Monte-Carlo estimates of the NNGP to their infinite-width limits for G = C, x RZ. Plotted is the
relative error averaged over the components of a 3 X 3 Gram matrix for networks with a ReLLU or an error function nonlinearity. The
bands correspond to + one standard deviation of the estimator.

As in the proof for Theorem 5.2, we will now write ZX*~ ) in terms of 2V, Using the shorthand 7 = m, - - - m3 and
the analogous steps to (161), we find

) f(f((p(anh)js))w/)(f((g(ﬁmjs)w)) :
—KxN(1) R - p(nmjs)z ~in'mjs
Zngsi s U )= T [\ pr ok i) £k i) (183
flp(nmgs)a) f'(p(k~ n'mjs)x)
1 f (f((p(%m));’)(f((%(@)x)) )
_ 1 - p(nm)x) f'(p(k~in'm)x
SIS | o ) o ) (15
flp(nin)z) f'(p(k~'n'm)z)
== (f preg(R) ') (185)

where for the second equality, we have shifted x — p(j; l)x, which leaves S} invariant by assumption. Plugging (185)
into (182) trivializes the j3-integral which cancels against its 1/| K3 |-prefactor, yielding

=KxXN A 1
=00 = S o o 0 NLdng<

1 =N(1
W Nadm3 g ( ( n7£LL) 7n3,n’mL~~m3(fapreg(k)f/))) > (186)
1
= dk EN(f, preg (k) f' 187
VOI(K)/I( (fapeg( )f)7 ( )
where we have identified =V by comparing to (165). The statement of the theorem follows by considering the second and
fourth components of (187). O

F. Further Experimental Results

In this appendix, we provide further details and results of the numerical experiments presented in Section 6.

F.1. Kernel Convergence

Figure 5 shows the convergence of Monte-Carlo estimates of the NNGP to the analytical infinite-width expression derived
using the theorems in Section 4.1.
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Table 1. Architectures used for the medical image classification described in Section 6. For convolutional, group-convolutional and lifting
layers, the argument is the kernel size (all kernels are squared). Both pooling layers are global. The number of output neurons is finite and
has to correspond to the 9 classes.

CNN GCNN
Conv (3) Lifting (3)
RelLU RelLU
Conv (3) GConv (3)
ReLU RelLU
Conv (3) GConv (3)
RelLU RelLU
Conv (3) GConv (3)
RelLU RelLU
Conv (3) GConv (3)
RelLU RelLU
SumPool GPool
Dense Dense
RelLU RelLU
Dense (9) Dense (9)

F.2. Medical Image Experiments

In the infinite-width limit, the NTK becomes deterministic and time-independent under the gradient flow dynamics. In the
case of MSE loss, the differential equation describing the mean output of a network at time ¢ becomes a linear ODE, thus
allowing for an analytic expression at arbitrary time. In the limit of infinite training time, the mean is given by (41) (Jacot
et al., 2018). This relation is effectively a kernel method that can be used to generate prediction of the infinitely wide
network.

The task consists of classifying histological images (Kather et al., 2018) containing nine classes of tissues, two of which are
cancerous. The original images have a resolution of 224 x 224 pixels each and have been down-scaled to a resolution of 32
x 32 pixels to reduce the kernel evaluation time. Note that the size of the final kernel matrix, that needs to be inverted, is
independent of the resolution because we use a group pooling or SumPool layer, respectively. Since the analytic solution
in (41) only applies for MSE loss, we constructed target vectors Y = {yo, ..., yn } from classes c according to e. — él as
is standard in the NTK literature (Lee et al., 2020).

The CNN and GCNN architectures that were used are shown in Table 1. Note that the infinite-width limit refers to the
number of channels, which is why we only need to specify the kernel sizes. The same training and test data was used for
both models with a test data size of 1000 images. Both architectures have been implemented in the neural-tangents
package (Novak et al., 2020).

F.3. Molecular Energy Regression

We used the same kernel method resulting from the infinite-width and infinite-time limit as explained in Section F.2. Both
the grid on S? as well as on SO(3) are equiangular Driscoll & Healy grids (Driscoll & Healy, 1994) with resolution
2L x (2L —1)* on S% and (2L — 1) x 2L x (2L — 1) on SO(3) (parametrized in Euler angles). L is the corresponding
bandlimit defining the cutoff in the Fourier domain, i.e. only Fourier coefficients [ < L are considered. The input signals are
sampled for L = 6.

As the labels we have used the internal energies Uy of the molecules at 0 K after substracting the atomic reference energies.
The hyperparameter /3 in (42) was chosen as described in (Esteves et al., 2023) according to

cos(m/4)) — 1)?

b= log(0.05)

(188)

*In the original work by (Driscoll & Healy, 1994) the grid contained actually 2L x 2L points, but we have adapted our grid to the
convention used in the s2 £ £t package.
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Table 2. Architectures used for the molecular energy regression described in Section 6. 29 identical networks (encaptured by curly braces)
process the inputs associated to each atom. Their outputs are then summed together. For group-convolutional and lifting layers, the output
bandlimit L is stated. The pooling layer is global and the single output neuron represents the predicted energy of the network.

MLP GCNN
29 per-atom networks 29 per-atom networks

Dense Dense Lifting(3) Lifting (3)
RelLU RelLU Erf Erf
Dense Dense GConv (3) GConv (3)
combined to molecule network combined to molecule network

FanInSum FanInSum

Dense (1) Dense (1)
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Figure 6. Convergence of finite-width ensembles trained with data augmentation to ensembles of GCNNs on CIFAR10. Shown is
the L-distance between the logits of the equivariant ensemble and the non-equivariant ensemble trained with data augmentation for
different ensemble sizes on out of distribution data. For larger ensembles, the distance decreases.

The precise architectures of the MLP based network and the SO(3)-invariant network are listed in Table 2. The MAE loss
was evaluated on a test set of 100 molecules.

F.4. Data Augmentation Versus Group Convolutions at Finite Width

Figure 6 shows that large ensembles trained with data augmentation on CIFAR10 converge to GCNNs even out of distribution.
Similarly, Figure 7 shows the same behavior on the NCT-CRC-HE-100K data set of histological images (Kather et al., 2018),
downscaled to 32 x 32 pixels. Samples of the out of distribution data, whose mean and variance were normalized to 0 and 1,
respectively, are provided in Figure 8. The architectures used for the ensemble members are detailed in Table 3.
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Figure 7. Convergence of finite-width ensembles trained with data augmentation to ensembles of GCNNs on histological images
from the NCT-CRC-HE-100K data set. Shown is the L2-distance between the logits of the equivariant ensemble and the non-equivariant
ensemble trained with data augmentation for different ensemble sizes on out of distribution data. For larger ensembles, the distance
decreases. The standard deviation is estimated from 20 independent runs for each curve.

Figure 8. Examples for out of distribution data for MNIST (left) and CIFAR10 (middle) and NCT-CRC-HE-100K (right).
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Table 3. Architectures used for the ensemble members in the experiments described in Section 6. For convolutional, group-convolutional
and lifting layers, the arguments are input channels, output channels and kernel size (all kernels are squared). For max-pooling layers, the
arguments are kernel size and stride. For the GCNNSs, the max pooling is done only over spatial dimensions, not group dimensions. The
kernel sizes were selected such that the GCNNs are exactly equivariant for the respective input sizes of 28 x 28 and 32 x 32.

MNIST CIFARI10
CNN GCNN CNN GCNN
Conv (1, 4, 3) Lifting (1, 4, 3) Conv (3, 4, 3) Lifting (3, 4, 3)
RelLU RelLU RelU RelLU
MaxPool (2, 2) SpatialMaxPool (2, 2) MaxPool (2, 2) SpatialMaxPool (2, 2)
Conv (4, 16, 4) GConv (4, 16, 4) Conv (4, 16, 4) GConv (4, 16, 4)
ReLU RelLU ReLU RelLU
MaxPool (2, 2) SpatialMaxPool (2, 2) MaxPool (2, 2) SpatialMaxPool (2, 2)
Conv(l6, 32, 3) GConv (16, 32, 3) Conv(l6, 32, 3) GConv (16, 32, 3)
ReLU ReLU ReLU RelLU
Conv (32, 64, 3) GConv (32, 64, 3) Conv (32, 64, 4) GConv (32, 64, 4)
ReLU RelLU ReLU ReLU
Conv (64, 128, 1) GConv (64, 128, 1) Conv (64, 128, 1) GConv (64, 128, 1)
RelLU RelLU ReLU RelLU
Conv (128, 32, 1) GConv (128, 32, 1) Conv (128, 32, 1) GConv (128, 32, 1)
ReLU ReLU ReLU ReLU
Conv (32, 10, 1) GConv (32, 10, 1) Conv (32, 10, 1) GConv (32, 10, 1)
GPool GPool

Table 4. Architectures used for the ensemble members in the experiments described in Section F.4. For convolutional, group-convolutional
and lifting layers, the arguments are input channels, output channels and kernel size (all kernels are squared). For max-pooling layers, the
arguments are kernel size and stride. For the GCNNSs, the max pooling is done only over spatial dimensions, not group dimensions. The
kernel sizes were selected such that the GCNNs are exactly equivariant for the input size of 32 x 32.

NCT-CRC-HE-100K

CNN GCNN
Conv (3, 4, 3) Lifting (3, 4, 3)
ReLU ReLU
MaxPool (2, 2) SpatialMaxPool (2,
Conv (4, 16, 4) GConv (4, 16, 4)
RelLU RelLU
MaxPool (2, 2) SpatialMaxPool (2,
Conv (16, 32, 3) GConv (16, 32, 3)
ReLU RelLU
Conv (32, 64, 4) GConv (32, 64, 4)
RelLU RelLU
Conv (64, 128, 1) GConv (64, 128, 1)
ReLU ReLU
Conv (128, 32, 1) GConv (128, 32, 1)
ReLU RelLU
Conv (32, 9, 1) GConv (32, 9, 1)
GPool
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