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Abstract

As tracking data becomes more readily available in many domains such as sports,1

animal tracking, and autonomous vehicles, so does the need for effective informa-2

tion access and retrieval of those growing datasets. To that end, we develop the3

Argoverse Trajectory Retrieval Benchmark for contextual trajectory retrieval of4

driving scenarios. The goal of this task is to find similar trajectories from within a5

large dataset given a query trajectory. This task is challenging because there are6

many dimensions of variation in which two trajectories can be similar, such as7

vehicle kinematics, social causality, and road configurations. To our knowledge,8

this is the first standardized benchmark for trajectory retrieval of driving scenarios.9

We also provide an evaluation of baseline approaches based on representation10

learning and relevance feedback, and highlight several areas for improvement for11

which machine learning can play a large role in future work.12

1 Introduction13

Behavioral tracking data is growing rapidly in many domains, including sports analytics [9, 44, 41],14

pedestrian crowds [26, 33, 36], traffic scenes [11, 15, 8], and animal behavior [6, 17, 45]. As15

behavioral track datasets grow, it becomes increasingly important to develop retrieval systems to16

organize and access information from the data. In this paper, we focus on traffic scenes collected in17

contexts involving autonomous vehicles (AVs). AV fleets have gathered millions of miles of such log18

data [11, 15, 8]; having effective information retrieval systems is important for extracting value from19

the data and accelerating the development of AV technologies.20

An effective retrieval system can impact numerous applications, similar to the ubiquity of use cases21

that exist for web search systems [7, 29]. One use case that motivates our work is dataset curation.22

For instance, suppose we found an example of an unusual and rare driving maneuver, such as the23

one depicted in Figure 1a. We can then use our trajectory retrieval system to obtain similar scenes24

for many possible downstream tasks that can: 1) reveal a better understanding of how often such25

maneuvers arise; 2) refine our taxonomy of driving behaviors; 3) construct training data to train26

forecasting models that can more accurately capture such behavior; or 4) create simulations that27

include such scenarios for safety-critical testing of rare events. Similar retrieval needs arise in related28

fields such as sports analytics [41, 14, 51].29

When designing retrieval systems, especially when using machine learning, it is important to establish30

standardized benchmarks. To that end, we present the Argoverse Trajectory Retrieval Benchmark,31

which is, to our knowledge, the first standardized retrieval dataset and task for traffic scenes. Our32

dataset consists of 2,795 scenarios from the Argoverse Motion Forecasting 1.1 validation set [11].33

Each scenario has been augmented with relevance labels for 13 complex retrieval intents pertaining to34

the focal agent and both its social and map contexts. The remaining 240,000+ training and validation35

scenarios are available for unsupervised methods. We believe that this dataset and retrieval task will36

stimulate research in designing retrieval systems for behavioral tracking data.37
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and Benchmarks. Do not distribute.



(a) Query trajectory (b) Relevant traj. for intent s1 (c) Relevant traj. for intent s2

Figure 1: (a) Query trajectory with the focal agent in red. The task is to retrieve trajectories similar to
this one. (b) Relevant trajectory for the intent of “turn then change lanes”. (c) Relevant trajectory for
the intent of “decelerate for moving lead vehicle”. Both retrievals are valid for the query, depending
on the underlying intent. One challenge with this task is inferring the underlying (hidden) intent.

Benchmarking for traffic scene retrieval poses new design decisions compared to more conventional38

retrieval domains such as text. The first is defining a suitable similarity measure for retrieval. While39

such query/item similarity measures are commonly used in retrieval [29], defining such a measure for40

traffic scenes is challenging. For multi-agent systems like autonomous vehicles, there can be many41

reasons why two scenes are similar, such as the kinematics of the ego agent (e.g. a significant juke),42

atypical maneuvers (e.g. k-point turn), an agent’s interactions with nearby actors (e.g. yielding to a43

jaywalker), or the road configuration itself. Importantly, the notion of similarity can differ depending44

on who is using the retrieval system. For instance, an engineer focused on behavioral understanding45

and motion prediction for other actors may define similarity by quantifying social influence between46

actors. Conversely, an engineer focused on motion planner for the AV would likely key in on the47

maneuver executed by the ego vehicle.48

A second challenge is how to model and evaluate longer “information gathering” retrieval sessions49

that can optionally include relevance feedback. Many of the use cases we have in mind do not fall into50

the categories for short retrieval sessions such as navigational queries (e.g., the home page of Argo51

AI) or very specific informational queries (e.g., the number of bridges in Pittsburgh) [7]. For instance52

in Figure 1, the query trajectory (left) by itself is not enough to distinguish between two possible53

intents (center, right) without any input from the user. We find in our experiments that catering to54

multiple definitions of similarity simultaneously without any user feedback is very difficult for a55

retrieval system, and in fact user feedback may be crucial for developing a practical retrieval system.56

To summarize, our contributions are:57

1. We present the Argoverse Trajectory Retrieval Benchmark, which enables studying trajectory58

retrieval for multi-agent systems in a standardized way. We discuss design decisions and59

provide a benchmark for public use at our dataset page.160

2. We establish a suite of baselines, including both hand-crafted feature-based approaches and61

learned embeddings with state-of-the-art model architectures for AV trajectories.62

3. We propose an initial retrieval system that leverages learned embeddings and conduct an63

evaluation on both the standard and interactive (with relevance feedback) retrieval settings.64

4. We conclude with a thorough discussion of our findings and directions for future work.65

2 Related Work66

Information Retrieval. Broadly speaking, information retrieval is the study of how to access specific67

pieces of information within a data repository [29]. The canonical setting is: given a query, retrieve68

a ranked list of (relevant) results. To date, information retrieval has been studied in many contexts,69

including web search [7, 29], media retrieval (e.g., music or images) [31, 13, 49], and recently70

in sports analytics [41, 14, 51]. Sports play retrieval is perhaps the most related to traffic scene71

1https://github.com/ezhan94/argoverse-trajectory-retrieval-benchmark
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retrieval, although sports settings tend to be much more structured (fixed number of players, two72

teams, well-specified objectives, etc.). Furthermore, while some sports trajectory data is publicly73

available [44] there are currently no standardized retrieval datasets or benchmarks.74

Our task is reminiscent of classic retrieval tasks that involve multiple intents or subtopics [32, 39, 55].75

In such tasks, two new considerations arose. The first is to be able to “cover” all the different intents76

or subtopics in order to have some minimal coverage over all intents in a single static ranking [55].77

The second is to study interactive ranking settings where users provide so-called relevance feedback78

[38, 57], after which the retrieval system responds by returning a modified ranking.79

Learning to Rank: Benchmarks & Methods. Existing benchmarks for information retrieval largely80

fall under the category of “learning to rank”, where there is a set of supervised labels of the form81

(query, item, relevance level), in addition to a large repository of items [12, 35, 50]. Some datasets82

may also include information about global query types or genres [3], or query-specific information83

like intent and subtopics [32]. A related set of benchmarks is based on collaborative filtering, where84

one is also provided user information [2, 20].85

This availability in data has led to significant interest in developing learning algorithms for retrieval86

(see [27] a broad overview). For retrieval over multiple or ambiguous intents, prior work includes87

learning for static rankings [54, 42] as well as for dynamic rankings that utilize relevance feedback88

[5, 52]. These prior work largely use engineered features based on text or metadata (e.g., URL), which89

can be hard to translate well to our setting. More recent methods that study continuous tracking data90

typically utilize learned embeddings [47, 21, 51], which we will also use to establish our baselines.91

Trajectory Datasets & Benchmarks. The rapid growth of AV research opportunities has led to the92

release of many high-quality large-scale trajectory datasets. These datasets are typically focused on93

perception issues (detection, segmentation, and tracking) or on issues related to motion forecasting94

and have widely used benchmarks focused on these tasks. Significant examples include nuScenes95

[8], the Waymo Open Dataset [48, 15], Lyft Level 5 Dataset [23], and Argoverse [11]. We chose96

to build our retrieval benchmark on top of the Argoverse Motion Forecasting dataset because it has97

been widely used by the research community as evidenced by the active leaderboard with more than98

225 unique teams as of June 7, 2021. Trajectory benchmarks in other domains include behavior99

recognition, such as for laboratory animals [6, 17, 45] and human poses [37, 43]. Recent work by100

Segal et al. [40] is closely related to our proposed benchmark. Segal et al. proposed a method for101

learning spatio-temporal tags for driving scenes that could then be used for search, and present results102

on an internal dataset (SDVScenes).103

Trajectory Representation Learning & Modeling. Modern research on trajectory modeling via104

representation learning has concentrated on forecasting of future behaviors (e.g., sequential generative105

modeling) [25, 56, 10, 18, 34], detection of pre-specified behavior categories (e.g., classification)106

[22, 1, 17], and open-ended knowledge extraction (e.g., unsupervised learning such as clustering)107

[4, 30, 16]. The study of methods for information access and retrieval of tracking data has received108

comparatively much less attention, with some exceptions for pose retrieval [47].109

3 Contextual Multi-Intent Trajectory Retrieval110

3.1 Problem Description111

Let τ denote a traffic scene trajectory, which can track multiple agents as well as contain contextual112

information (see Section 4.1). Let S denote the set of possible intents, i.e. notions of similarity. A113

query is a trajectory-intent pair (τ, s), s ∈ S. Our retrieval task is to find and rank trajectories in a114

retrieval setR that are similar to τ with respect to intent s. We will denote Q as the set of queries.115

The key challenge with our task is that the relevance of a retrieval depends on the intent s, but s is116

hidden from the retrieval system (see Figure 1 for an example). Furthermore, the set of intents S is117

also not known ahead of time and can be extended to include new intents in the future.118

3.2 Quantitative Evaluation119

Retrieval systems will be evaluated on how well they rank the trajectories inR for queries in Q. Let120

rel(τ, s, τq) be a scoring function that rates how relevant trajectory τ is to query (τq, s), with higher121

scores being more relevant. The ranking metric we use to evaluate a ranked retrieval {τ1, . . . , τn} is122
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Figure 2: High-level summary of the Argoverse trajectory data format. See [11] for complete details.

the normalized discounted cumulative gain (NDCG):123

NDCG =
DGC

iDCG
, DCG =

n∑
i=1

rel(τi, s, τq)

log2(i+ 1)
, (1)

where iDCG is computed with respect to the ideal/optimal ranking of n trajectories inR. NDCG is124

bounded between 0 and 1 is larger for retrievals that rank more relevant trajectories higher. We will125

compute NDCG and average them over all queries in Q.126

3.3 Relevance Feedback127

Achieving a high NDCG score can be difficult without knowing the hidden intent, as intents can have128

very different meanings and correspond to different types of trajectories (Figure 1). To address this129

challenge, we introduce one round of relevance feedback in our benchmark to allow retrieval systems130

to infer the hidden intent, outlined below:131

1. Query (τq, s), retrieval system receives τq , s is hidden.132

2. Retrieval system returns initial set {τ1, . . . , τm}.133

3. Relevance feedback given to retrieval system {rel(τ1, s, τq), . . . , rel(τm, s, , τq)}.134

4. Retrieval system returns new set {τ1, . . . , τn}, which can have overlap with the initial set135

{τ1, . . . , τm}, and is then scored with NDCG.136

These steps simulate a user providing feedback to the retrieval system to allow it to hone in on the137

hidden intent. In principle, multiple rounds of feedback are possible, but our benchmark will only138

include one. Instructions for this step will be provided on our dataset page (see appendix).139

4 The Argoverse Trajectory Retrieval Benchmark140

We design our benchmark with the following goals in mind:141

1. Multi-intent trajectory retrieval is challenging in domains where data is plentiful, as there142

can be many dimensions in which two trajectories are similar. To this end, we derive our143

dataset from the Argoverse Motion Forecasting 1.1 dataset [11], a real-world dataset for144

trajectory forecasting that contains rich map information with each trajectory (see Figure 2).145

We describe this process in Section 4.1.146

2. Our retrieval task is already very challenging even for simple notions of similarity, so we147

consider simple intents with scoring functions rel(τ, s, τq) = rel(τ, s) to focus on whether148

or not we’re retrieving trajectories for the right intent (the original query trajectory will not149

affect the score). We describe the labeling process for our intents in Section 4.2. Future150

iterations of our dataset can consider more complex intents.151

3. Lastly, we highlight that the set of intents S is not fixed. As more data is obtained and152

annotated (e.g. maps for drivable areas, maps for ground height, etc.), new intents will153

ultimately be introduced. Ideally, retrieval systems should adapt and be somewhat robust to154

new intents. To simulate this scenario, we select a subset our intents to only appear in the155

test query set, described in Section 4.3.156

The Argoverse Trajectory Retrieval Benchmark dataset will consist of train/test query setsQtrain/Qtest,157

train/test retrieval setsRtrain/Rtest, the intent set S , and relevance labels rel(τ, s). We summarize key158

information about our dataset in Table 1 and Figure 3.159
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Intent in S All Qtrain Qtest Rtrain Rtrain

Turn then change lanes 393 18 18 178 179
Straight then turn 354 18 19 164 153

Decelerate then turn 176 10 7 85 74
Turn then decelerate 133 39 10 38 46

Decelerate for stationary LV 251 25 10 115 101
Decelerate for moving LV 425 65 8 173 179

Decelerate to a stop 610 82 15 260 253
Decelerate after intersection 237 76 14 75 72

Test intent #1 228 0 12 (104) 112
Test intent #2 526 0 12 (258) 256
Test intent #3 815 0 21 (393) 401
Test intent #4 305 0 20 (136) 149
Test intent #5 245 0 17 (113) 115

Total # trajectories 2,795 100 50 1,323 1,322
Avg. # intents/trajectory 1.68 3.33 3.66 1.58 1.58

# trajectory-intent queries n/a 321 170 n/a n/a

Table 1: # of trajectories with each intent (counted if rel(τ, s) > 0) for all query and retrieval sets. LV
= leading vehicle. Qtrain contains no trajectories with test intents whileRtrain does, but the labels are
not provided. Summary statistics are included in the last 3 rows. We only consider a trajectory-intent
pair as a query if rel(τ, s) = 2.

(a) Co-occurrence matrix (b) Relevance labels per intent (c) Intents/trajectory distribution

Figure 3: (a) Co-occurrence matrix of all intents of 2,795 trajectories. The matrix is not symmetric
because it is row-normalized, i.e. cell oij is the percentage of trajectories with intent si that also have
intent sj . The order of intents is same as in Table 1. (b) Counts of relevance 2 (blue) and relevance 1
(red) labels for each intent. The order of intents is same as in Table 1. (c) Distribution of the # of
intents per trajectory in log-scale. Trajectories have at most 7 intents in our dataset.

4.1 Constructing the Dataset160

Our dataset is derived from the Argoverse Motion Forecasting 1.1 dataset [11], which extracts161

planar trajectories and centerlines from sequences of LiDAR and camera images (see Figure 2).162

Each trajectory is 5 seconds long and tracks K > 1 agents at 10 Hz (T = 50). We let xk
t ∈ R2163

denote the k-th agent’s planar (x, y) coordinates at time t. Similarly, denote Xt := {x1
t , . . . ,x

K
t },164

Xk := {xk
1, . . . ,x

k
T}, and X = {X1, . . . ,XT} = {X1, . . . ,XK}. X1 will always denote the focal165

agent and is visualized in red, while all other agents in teal (see Figure 1). Each trajectory also166

contains contextual information C = {C1, . . . ,CT}, some of which may change over time (e.g.167

nearest centerline to focal agent) while others remain static (e.g. lane connectivity graph). We refer168

to the original Argoverse paper [11] for the complete details. In summary, our trajectories τ consist169

of tracking information X and contextual information C: τ = (X,C).170

We filter the Argoverse Motion Forecasting validation set that initially contains 39,472 trajectories171

using automatic labeling functions to find "interesting" trajectories that contain more complex ma-172

neuvers and/or social interactions. We filter for features such as large acceleration, large deceleration,173

leading vehicles, traffic control, etc., and refine the validation set down to 2,975 trajectories that we174

label with intents in Section 4.2. This filtering step will be included with our code release.175
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Figure 4: Interface for label-
ing trajectories. Annotators are
shown a video of a trajectory on
the left and asked to label the rel-
evance of each intent on the right,
including test intents (redacted in
this figure). Options are high rel-
evance (2), low relevance (1), or
no selection (0). There is an ad-
ditional option at the bottom to
remove a trajectory.

4.2 Labeling Trajectories with Intents from S176

We focus on intents that describe or lead to complex behaviors, such as intents with an "A THEN177

B" structure (e.g. turn THEN change lanes, then THEN decelerate) and intents that capture social178

interaction (e.g. decelerate for leading vehicle). In total, S contains 13 intents in S , listed in Table 1.179

We annotate all trajectory-intent pairs by labeling rel(τ, s) as one of 3 degrees of relevance: {0, 1, 2}180

for {not, somewhat, highly} relevant. The labeling details are as follows:181

1. Initially, 2 domain expert each labeled roughly half of the 2,975 filtered trajectories using182

the interface depicted in Figure 4. An option to remove a trajectory was available to address183

issues like trajectory jitter or over-segmentation.184

2. Trajectories with more than 2 labeled intents were then labeled again by the other expert.185

3. For trajectories that were labeled twice, we considered labels to be in agreement if they were186

the same, were 0 and 1 (defaulted to 0) or were 1 and 2 (defaulted to 2). Roughly 80% of187

double-labels were in agreement.188

4. For labels that were in disagreement (0 and 2), the domain experts resolved them together.189

Label statistics are summarized in Table 1 and visualized in Figure 3. 175 of the initial 2,970190

trajectories were ultimately removed, bringing the final total to 2,795 trajectories. 1,144 trajectories191

were labeled by both experts while 1,651 have a single set of labels. Labeling took 30hrs combined.192

4.3 Query Selection and Train/Test Split193

We first split the 2,795 labeled trajectories into query and retrieval sets. For queries, we manually194

select 150 trajectories that have multiple intents (at least 2 intents with a high relevance label of195

2) and such that the intents have good coverage over the intent set S. The remaining trajectories196

comprise the retrieval set.197

Next, we splitQ andR into train and test sets such that only 8 of the 13 intents appear inQtrain, while198

all 13 are represented in Qtest. This simulates the real-world scenario of having to adapt to newly199

encountered intents. Then we split the retrieval set intoRtrain andRtest such that they have similar200

distributions over intents. Refer to Table 1 for full details about our query and retrieval sets.201

Our dataset will provide all relevance labels rel(τ, s) for the 8 train intents for trajectories in Qtrain202

and Rtrain. Queries in Qtest will be provided with masked intents, and retrieval systems will be203

evaluated on how well they rank the trajectories inRtest via NDCG score.204

5 Baseline Experiments205

Defining a similarity measure between two trajectories can be challenging due to dealing with many206

modalities (maps, trajectories, logged metadata, etc.). Traditional methods that rely on feature207

engineering and feature matching may have trouble scaling as more data is collected. Recent work208

has instead focused on learning embedding functions that encode input data into a lower-dimensional209
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vector (or embedding) space. The advantage is that similarity can be more intuitively understood210

as distance in embedding space, but we lose the ability to interpret what information is retained in211

the embeddings. Nevertheless, learning trajectory embeddings have been shown to be effective for212

many downstream tasks [24, 18, 46], and so we establish our retrieval baselines in this way. Our main213

evaluation results are described Table 2, which we will discuss throughout this section.214

5.1 Retrieval via Nearest Neighbors in Embedding Space215

Algorithm 1 Nearest-Neighbor((τq, s),R, n,d(·), fθ)
1: Inputs: query (τq, s), retrieval setR, top-n trajectories
2: Inputs: distance function d(·), embedding function fθ
3: Compute query embedding zq = fθ(τq).
4: Compute embeddings zi = fθ(τi) for τi ∈ R.
5: Rank τi ∈ R in increasing order of d(zi, zq).
6: Output: top-n closest trajectories to query

We define an embedding function as216

fθ parameterized by θ that encodes a217

trajectory τ into a lower-dimensional218

embedding vector z = fθ(τ). The in-219

formation retained in the embedding220

ultimately depends on the auxiliary221

task used to train the model (e.g. fore-222

casting vs. autoencoding). fθ itself223

can take on many forms and contain224

multiple components, such as hand-crafted features, sliding window operations [53], recurrent neural225

networks [24], and graph attention networks for capturing social interactions [18].226

Given an embedding function fθ, we can design a ranked retrieval system that returns the top-n227

trajectories in the retrieval set with embeddings closest to the query embedding with respect to228

some distance function (a common choice is Euclidean distance: dEuclidean(zi, zj) = ‖zi − zj‖2,229

[41]). This algorithm is outlined in Algorithm 1 and has time complexity O(|R| log n) per query if230

implemented with a heap. Note that the algorithm does not take into account a hidden intent and231

always returns the same retrievals for each query trajectory.232

We consider 4 embeddings functions fθ, described below:233

1. FEAT - a naive embedding function that simply computes 15 domain-specific features, such234

as average speed of the focal agent, the curvature of its trajectory, and its distances to other235

agents. There are no parameters to be learned for this embedding function.236

2. AE - a simple autoencoder for the focal agent trajectory X1 implemented with a recur-237

rent neural network for both the encoder and decoder. Other agents {X2, . . . ,XK} and238

contextual information C are ignored.239

3. WIMP [24] - a state-of-the-art model for trajectory forecasting that encodes all agents as240

well as the nearest centerline to the focal agent. We use the same model architecture but241

train it to reconstruct the focal agent trajectory X1.242

4. VNET [18] - VectorNet, another state-of-the-art model trained for trajectory forecasting243

(forecast next 3sec given a 2sec history) that includes a graph attention network for encoding244

all contextual map information and also a node reconstruction task in its objective. We use245

the node embedding for the focal agent full 5sec trajectory.246

The embedding functions are developed using the Argoverse Motion Forecasting 1.1 training set.247

We evaluate nearest-neighbor retrieval using NDCG and the query and retrieval sets constructed in248

Section 4.3 and report our results in Table 2 (rows with m = 0, “standard” columns). We observe249

that NDCG decreases as the number of retrievals n increases because retrieving a larger optimal250

set is more difficult. Out of all the embeddings, WIMP performs the best. We hypothesize that251

this is the case because WIMP is trained to reconstruct the focal agent trajectory and all queries252

pertain to said focal agent. On the other hand, VectorNet is trained for trajectory forecasting and253

performs the worst. We reason that this occurs because VectorNet embeddings must retain some254

information about possible futures (and also information for node completion), which can be irrelevant255

for comparing embeddings of trajectory histories. We note that the hand-crafted FEAT embedding256

performs reasonably well, although noticeably worse than the best learned embedding. We conclude257

that embeddings trained for trajectory reconstruction are better suited for our retrieval task.258

5.2 Triplet Loss Fine-tuning with Qtrain,Rtrain259

In our next set of experiments, we use the relevance labels given in Qtrain and Rtrain to fine-tune260

embeddings with a triplet loss. Our motivation is that having trajectories with the same intent labels261
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Query NDCG standard (Section 5.1) triplet fine-tuning (Section 5.2)
Set n m FEAT AE WIMP VNET FEAT AE WIMP VNET

Qtrain

10 0 .379 .349 .391 .230 .385 .370 .385 .243
30 0 .352 .334 .374 .231 .367 .359 .376 .238
50 0 .345 .330 .368 .231 .361 .358 .371 .236

Qtrain

10 5 .411 .425 .410 .236 .399 .429 .414 .256
30 5 .365 .367 .366 .209 .352 .377 .375 .219
50 5 .343 .346 .348 .203 .336 .361 .360 .203

Qtest

10 0 .337 .355 .371 .273 .334 .331 .355 .273
30 0 .310 .324 .343 .261 .318 .318 .336 .257
50 0 .305 .310 .328 .254 .311 .313 .331 .250

Qtest

10 5 .409 .429 .436 .236 .378 .394 .396 .272
30 5 .353 .373 .390 .208 .339 .359 .365 .246
50 5 .332 .343 .367 .202 .324 .343 .351 .238

Table 2: NDCG scores for queries in Qtrain,Qtest and retrievals from Rtrain,Rtest respectively. n
is the # of retrievals, m is the # of trajectories for relevance feedback. 1) NDCG decreases as n
increases, as retrieving a larger optimal set is more difficult. 2) Utilizing relevance feedback leads
to clear improvement for all embeddings except VNET. 3) Triplet fine-tuning does not lead a clear
improvement. 4) There is generally not a big difference in performance between train and test queries,
but the difference is larger for fine-tuned embeddings, possibly because of overfitting to training
intents. 5) Overall, WIMP embeddings without fine-tuning appear to be the best for our retrieval task.

closer together in embedding space will improve nearest neighbor retrieval.2 In particular, we train262

an autoencoder (genc,gdec) that minimizes the following objective:263

max(‖genc(z)− genc(zpos)‖2 − ‖genc(z)− genc(zneg)‖2 + α, 0)︸ ︷︷ ︸
triplet loss

+ ‖z− gdec(genc(z))‖2︸ ︷︷ ︸
reconstruction loss

. (2)

(z, zpos, zneg) is a triplet of embeddings where z, zpos share the same label while z, zneg do not. The264

triplet loss in (2) encourages embeddings with the same label to be closer together than embeddings265

with different labels, up to some margin α. At the same time, we aim to retain the same information266

encoded in the original embeddings by including the standard autoencoder reconstruction loss in (2).267

We construct triplets (z, zpos, zneg) by considering every trajectory-intent pair (τ, s) with rel(τ, s) = 2268

in Qtrain
⋃
Rtrain. For each pair, we sample a positive trajectory τpos from those in Qtrain

⋃
Rtrain that269

share the same label (rel(τpos, s) = 2), and similary we sample a negative trajectory (rel(τneg, s) = 0).270

Triplets are re-sampled at the beginning of every epoch (e.g. offline triplet mining).271

The new embedding function we use for our retrieval system is then z = genc(fθ(τ)) and we report272

our results in Table 2 (“triplet fine-tuning” columns). We observe that the results are inconsistent:273

NDCG can both increase/decrease compared to the “standard” embedding columns. Furthermore, we274

see that there is generally a drop in performance on the query test set, which likely occurs because275

the query test set contains test intents that were not fine-tuned with our triplet loss. We note that our276

fine-tuning step is applied after training the initial embeddings so there might be some information277

loss (that we tried to mitigate with the autoencoding loss in (2)). Future work should consider jointly278

training embeddings with the triplet loss.279

5.3 Retrieval with Relevance Feedback280

Our previous two experiments ignore a main challenge of our problem setting by disregarding that281

there is a hidden intent and will always return the same set of trajectories for each query. In our final282

experiment, we design a retrieval system that utilizes the relevance feedback procedure described in283

Section 3.3 to address this challenge. We consider a version of nearest neighbor retrieval in Algorithm284

1 that uses an updated distance function given the relevance feedback, as described in Algorithm 2.285

Let (τq, s) be our initial query andM = {τ1, . . . , τm} be our initial set of m retrievals for which286

we receive relevance feedback {rel(τ1, s), . . . , rel(τm, s)}. We construct two sets: relevant set287

2Indeed, triplet or contrast loss has been used in other related retrieval settings, such as for human poses [47].
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A = {τ |rel(τ, s) > 0, τ ∈ M}
⋃
{τq} and non-relevant set B = {τ |rel(τ, s) = 0, τ ∈ M}. We288

consider an updated distance function that prioritizes trajectories with embeddings close to the289

relevant set and far from the non-relevant set:290

dAB(z, zq) =
1

|A|
∑
τ∈A

d(z, fθ(τ))−
1

|B|
∑
τ∈B

d(z, fθ(τ)). (3)

(3) is reminiscent of the Rocchio algorithm [28] except we compute the distances to the relevant set291

rather than update the query embedding directly. Algorithm 2 summarizes our approach incorporating292

relevance feedback and has time complexity O(|R|(log n+ logm)) per query.293

We observe in Table 2 (rows with m = 5) that leveraging relevance feedback improves NDCG for all294

embeddings (except VectorNet). This matches our intuition because our approach in Algorithm 2 uses295

feedback given by the simulated user to refine the retrieval for the hidden intent. These results suggest296

user feedback, even a limited amount, can be crucial for efficient multi-intent trajectory retrieval.297

Algorithm 2 Nearest-Neighbor-with-Relevance-Feedback((τq, s),R, n,m,d(·), fθ)
1: Inputs: query (τq, s), retrieval setR, top-n trajectories, m feedback
2: Inputs: distance function d(·), embedding function fθ
3: M = Nearest-Neighbor((τq, s),R,m,d(·), fθ) using Algorithm 1.
4: Receive relevance feedback for trajectories inM.
5: Construct sets A, B, and update distance function dAB in (3).
6: Output: Nearest-Neighbor((τq, s),R, n,dAB(·), fθ) using Algorithm 1.

6 Discussion and Future Work298

We have introduced the Argoverse Trajectory Retrieval Benchmark for standardizing the challenging299

task of multi-intent retrieval in the domain of AV trajectories. We explore initial baseline retrieval300

algorithms that use trajectory embeddings and summarize our findings:301

1. Embeddings trained to reconstruct rather than forecast the focal agent trajectory are better-302

suited for queries that pertain to the focal agent (Section 5.1).303

2. Triplet loss fine-tuning with relevance labels does not appear to be effective, but a joint304

training approach has yet to be explored (Section 5.2).305

3. Incorporating relevance feedback may be key for this retrieval setting (Section 5.3).306

Our benchmark is the first iteration of what we expect to be a promising research area. There are307

many directions for future work and many more challenges to overcome as we continue to scale308

up. For instance, the trajectory data provided in Argoverse is only a small subset of the data that’s309

available, such as richer map information like ground height, agent type (vehicle vs. pedestrian), and310

the state of traffic control. As more data is incorporated, intents will grow in number and complexity311

and retrieval systems may fail to scale accordingly. Another direction for future work is to consider312

more diverse queries beyond those that pertain to the focal agent, as embeddings trained to reconstruct313

the focal agent trajectory is unlikely to be the best solution for all query types. Potential solutions may314

use multiple embeddings trained with different auxiliary tasks within their retrieval systems. A third315

direction is explore other forms of relevance feedback, such as pairwise comparisons or ranking an316

initial retrieval set. It is unclear what form of relevance feedback is the most informative for retrieval317

systems and also easy for users to provide.318

Ultimately, further progress in this research direction will come from scaling up our benchmark.319

For instance, approaches may overfit to our set of intents that all pertain to the focal agent. We try320

to prevent this by having held-out test intents, and we also expect future versions of our dataset to321

include more diverse queries. Lastly, it’s important to understand that the usefulness of retrieval322

systems is tied to the underlying data and can be subject to biases of the data. Thus, some scenarios323

may intrinsically be harder to retrieve than others. Diagnosing biases in retrieval systems could be324

another interesting direction for future work.325
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Board (IRB) approvals, if applicable? [N/A]505

(c) Did you include the estimated hourly wage paid to participants and the total amount506

spent on participant compensation? [N/A]507
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A Key Information508

Dataset page: https://github.com/ezhan94/argoverse-trajectory-retrieval-benchmark.509

All relevant information can be found at our dataset page linked above (dataset download, code,510

license, instructions for submitting a benchmark, additional supplementary materials, etc.)511

Dataset documentation and intended uses: we use the datasheets for datasets framework [19] in512

Appendix B.513

Author statement: We bear all responsibility in case of violation of rights, etc., and confirmation of514

the data license.515

Hosting, licensing, and maintenance plan: This information will be provided on our dataset page.516

B Datasheets for Datasets [19]517

B.1 Motivation518

• For what purpose was the dataset created? The task of finding “similar" scenes or519

trajectories within a large corpus of log data has proven challenging. Existing “learning to520

rank" systems do not readily port to this trajectory domain. This dataset was created to enable521

and encourage further research on trajectory retrieval in the setting of AV development.522

• Who created the dataset (e.g., which team, research group) and on behalf of which523

entity (e.g., company, institution, organization)? The prediction team at Argo AI in524

collaboration with Caltech.525

• Who funded the creation of the dataset? Argo AI.526

• Any other comments? None.527

B.2 Composition528

• What do the instances that comprise the dataset represent (e.g., documents, photos,529

people, countries)? In this work we add relevance labels to a subset scenarios of the530

Argoverse Motion Forecasting validation set. The underlying scenarios represent the planar531

centroid positions of actors in a traffic scene. Each 5s (10Hz) scenario has been derived532

from a AV log and contains at least one agent that is present for the entire 5s and performs a533

significant action.534

• How many instances are there in total (of each type, if appropriate)?. We add 13535

relevence labels to 2,795 scenarios. Label statistics are shown in Table 1 and Figure 3.536

• Does the dataset contain all possible instances or is it a sample (not necessarily ran-537

dom) of instances from a larger set?. We label 2,795 of the 39,472 scenarios comprising538

the Argoverse 1.1 Motion Forecasting validation set. 2,970 scenarios were selected using539

automatic labeling functions to find "interesting" trajectories that contain more complex540

maneuvers or social interactions. We detect features like the presence of acceleration, decel-541

eration, leading vehicles, traffic control, etc. 175 scenarios were removed during labeling.542

These scenarios eliminated for tracking errors such as id-swaps or over-segmentation of the543

focal track.544

• What data does each instance consist of? Each Argoverse scenario consists of planar545

centroid positions for actors in a traffic scene. These centroids are sampled at 10Hz and546

the full duration of the scene is 5s. A lane graph and underlying lane centerlines are also547

provided. Here we add relevance labels ∈ {0, 1, 2} for each of 13 intents to each selected548

scenario.549

• Is there a label or target associated with each instance?. For each of 2,795 there are 13550

relevance labels associated with the underlying scenario.551

• Is any information missing from individual instances? Relevance labels corresponding552

to 5 of the 13 intents are hidden for all training examples. All test set labels are also hidden.553

• Are relationships between individual instances made explicit (e.g., users’ movie rat-554

ings, social network links)? Not applicable.555
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• Are there recommended data splits (e.g., training, development/validation, testing)?556

Yes. Items are split into test queries, test retrievals557

• Are there any errors, sources of noise, or redundancies in the dataset? The underlying558

Argoverse scenarios represent a real urban driving dataset; there is an expected degree of559

tracking noise and segmentation errors. Relevance labels were provided by domain experts560

but nevertheless may contain noise due to human error or subjective judgement.561

• Is the dataset self-contained, or does it link to or otherwise rely on external resources562

(e.g., websites, tweets, other datasets)? The retrieval benchmark is built upon another563

existing dataset. However, the retrieval benchmark labels will be hosted with the requisite564

forecasting scenarios.565

• Does the dataset contain data that might be considered confidential (e.g., data that is566

protected by legal privilege or by doctorpatient confidentiality, data that includes the567

content of individuals’ non-public communications)? No.568

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,569

threatening, or might otherwise cause anxiety? No.570

• Does the dataset relate to people? No.571

B.3 Collection Process572

• How was the data associated with each instance acquired?. The underlying Argoverse573

Motion Forecasting scenarios were captured by an AV (part of the Argo AI fleet). Each AV574

is equipped with multiple cameras, lidar, and radar. Raw sensor data is processed to produce575

tracks localized on a pre-constructed map. Full details are available in [11]. The relevance576

labels provided in this work were provided by two domain expert labelers using the labeling577

tool depicted in Figure 4.578

• What mechanisms or procedures were used to collect the data (e.g., hardware appa-579

ratus or sensor, manual human curation, software program, software API)? Scenarios580

were selected through hand crafted labeling functions. Relevence scores were added using581

the web-app labeling tool shown in Figure 4.582

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., de-583

terministic, probabilistic with specific sampling probabilities)?. Scenarios for labeling584

were chosen using a set of labeling functions designed to identify complex and interesting585

scenarios.586

• Who was involved in the data collection process (e.g., students, crowdworkers, con-587

tractors) and how were they compensated (e.g., how much were crowdworkers paid)?588

Data was collected by employees of Argo AI.589

• Over what timeframe was the data collected? Source logs Argoverse scenarios were590

collected over several months in 2019.591

• Were any ethical review processes conducted (e.g., by an institutional review board)?592

Not applicable to the relevance labels outlined in this work.593

• Does the dataset relate to people? No.594

B.4 Preprocessing/cleaning/labeling595

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-596

eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of in-597

stances, processing of missing values)? 175 of the programmatically selected scenarios598

were excluded at the discretion of the labelers. Additionally, automated procedures were599

used to resolve a significant set of slightly disparate results across labelers. See section 4.2600

for details.601

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,602

to support unanticipated future uses)? All raw labels were saved but are not part of the603

publicly released benchmark.604

• Is the software used to preprocess/clean/label the instances available? No. These are605

simple heuristics outlined in section 4.2.606

• Any other comments? None.607
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B.5 Uses608

• Has the dataset been used for any tasks already? The underlying scenarios from Ar-609

goverse 1.1 have been used extensively for tracking and motion forecasting competitions.610

The new relevance labels for the retrieval task have not been used outside of the presented611

baselines.612

• Is there a repository that links to any or all papers or systems that use the dataset?613

Not applicable.614

• What (other) tasks could the dataset be used for? Our intent labels can also be used as615

the first step towards establishing a taxonomy of driving behaviors.616

• Is there anything about the composition of the dataset or the way it was collected617

and preprocessed/cleaned/labeled that might impact future uses? Our dataset does not618

include full contextual information (e.g. camera images and 3D shapes), which impacts619

what conclusions we can draw about this dataset.620

• Are there tasks for which the dataset should not be used? No. Any other comments?621

None.622

B.6 Distribution623

• Will the dataset be distributed to third parties outside of the entity (e.g., company,624

institution organization) on behalf of which the dataset was created? The benchmark625

will be publicly available under a non-commercial license.626

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Data627

will be availble for tarball download through the existing Argoverse website. Test labels are628

hidden and test performance can only be obtained via API calls to an evaluation server.629

• When will the dataset be distributed? Our current plan is to publicly release the dataset630

by July 1, 2021 on our dataset page.631

• Will the dataset be distributed under a copyright or other intellectual property (IP)632

license, and/or under applicable terms of use (ToU)? We intend to release the data633

under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International634

Public License (“CC BY-NC-SA 4.0”). Terms of use for all Argoverse data are posted at635

https://www.argoverse.org/about.html#terms-of-use636

• Have any third parties imposed IP-based or other restrictions on the data associated637

with the instances? No.638

• Do any export controls or other regulatory restrictions apply to the dataset or to indi-639

vidual instances? No.640

• Any other comments? None.641

B.7 Maintenance642

• Who is supporting/hosting/maintaining the dataset? Data will be supported and hosted643

as part of the Argoverse project by Argo AI.644

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?645

Dataset owners can be contacted via email (ahartnett@argo.ai or ezhan@caltech.edu) or via646

github issues at https://github.com/argoai/argoverse-api/issues647

• Is there an erratum? Not currently, though one can be added if errors are discovered.648

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete649

instances)? Yes and the version number will be incremented.650

• If the dataset relates to people, are there applicable limits on the retention of the data651

associated with the instances (e.g., were individuals in question told that their data652

would be retained for a fixed period of time and then deleted)? Not applicable.653

• Will older versions of the dataset continue to be supported/hosted/maintained? Dep-654

recated version of the dataset will be hosted but labeled as deprecated.655
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• If others want to extend/augment/build on/contribute to the dataset, is there a656

mechanism for them to do so? Please reach out via https://github.com/argoai/657

argoverse-api/issues.658

• Any other comments? None.659
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