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Figure 1: (a) In-context learning in NLP [6], with different text prompts for corresponding tasks:
translation and sentiment analysis. (b) In-context learning in 2D vision [4], with 2D visual prompts
for different tasks: segmentation and inpainting. (c) Our proposed in-context learning for 3D point
clouds, with 3D visual prompts for different tasks: reconstruction, denoising, registration, etc.

Abstract

With the rise of large-scale models trained on broad data, in-context learning has
become a new learning paradigm that has demonstrated significant potential in
natural language processing and computer vision tasks. Meanwhile, in-context
learning is still largely unexplored in the 3D point cloud domain. Although masked
modeling has been successfully applied for in-context learning in 2D vision, directly
extending it to 3D point clouds remains a formidable challenge. In the case of
point clouds, the tokens themselves are the point cloud positions (coordinates) that
are masked during inference. Moreover, position embedding in previous works
may inadvertently introduce information leakage. To address these challenges, we
introduce a novel framework, named Point-In-Context, designed especially for
in-context learning in 3D point clouds, where both inputs and outputs are modeled
as coordinates for each task. Additionally, we propose the Joint Sampling module,
carefully designed to work in tandem with the general point sampling operator,
effectively resolving the aforementioned technical issues. We conduct extensive
experiments to validate the versatility and adaptability of our proposed methods in
handling a wide range of tasks.
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1 Introduction

In recent years, large-scale models [1, 32, 15, 5] with enormous parameters pre-trained on broad
data have emerged in computer vision and natural language processing. Capable of handling diverse
tasks simultaneously, these models can be adapted for new tasks when prompted. Text-to-image
generation models such as DALL-E [34] and language models like GPT [33] are examples of this
development, representing significant progress toward general intelligence. However, training these
models is resource-intensive, which makes full fine-tuning [18, 21, 20] or even parameter-efficient
tuning techniques [50, 17, 25] such as prompt tuning impractical for many users.

In-context learning, originating from natural language processing (NLP) [33, 35, 6], holds potential as
the mainstream approach for efficient model adaptation and generalization. Unlike other methods that
necessitate model parameter updates for new tasks, in-context learning incorporates domain-specific
input-output pairs, known as in-context examples or prompts, into a test example. In NLP, the prompt
can be a machine translation pair or sentiment analysis, as shown in Fig. 1 (a). This allows the
model to produce optimal results without requiring any parameter updates for previous tasks. Several
works [4, 38, 39, 48] explore in-context learning in computer vision. The visual prompt [4] is the
first to adopt a pre-trained neural network for filling missing patches in grid-like images, as shown
in Fig. 1(b). Other studies investigate the effect of visual prompts or generalization to more vision
tasks. The above methods adopt Mask Image Modeling (MIM) architecture [ 13, 3] for in-context
task transfer. Inspired by MIM, Masked Point Modeling (MPM) is proposed recently and is widely
used in different point cloud tasks [44]. To our knowledge, no work has explored in-context learning
for 3D point cloud understanding using the MPM framework.

Our work is the first to explore in-context learning for 3D point cloud understanding, as shown in
Fig. 1(c). Given the absence of previous works, we propose a benchmark based on the ShapeNet [7]
and ShapeNetPart [42], encompassing four different tasks: point cloud reconstruction, denoising,
registration, and part segmentation. Meanwhile, we benchmark several representative baselines [27,

, 26, 12], including individual models for each task and the models equipped with shared backbone
with multiple task heads. Then, to tackle the benchmark mentioned above, we present the Point-In-
Context (PIC) to explore in-context learning for 3D point clouds.

A straightforward extension of the 2D MIM architecture to point clouds for in-context learning may
encounter two primary obstacles. First, using the conventional position embedding approach could
potentially lead to information leakage, attributed to the use of invisible center points'. Second,
unlike 1D word embeddings or 2D images, 3D point cloud data, which are inherently unordered [27],
present the risk of having their positional information become disarrayed when partitioned into a
patch sequence. Consequently, it is indispensable to devise a new sampling and grouping strategy for
3D point cloud data. In response to this issue, we propose a simple yet effective solution, termed
joint sampling. This technique involves recording the indices of sampled center points and using the
K-nearest neighbor strategy to sample both the input and target concurrently. In addition, leveraging
the mask point transformer architecture, we explore two distinct baseline methodologies for PIC,
which encompass separating inputs and targets akin to the Painter strategy [38] and concatenating
inputs and targets in a manner analogous to the MAE approach [13] for reconstruction. Contrary
to the focus of few-shot learning on a single specific task, our objective is to explore the in-context
ability of the generative model, facilitating the execution of tasks commensurate with the 3D prompt.

Our main contributions are as follows. 1) We introduce a simple yet effective general framework for
3D visual prompting. Given two pairs of point clouds, we demonstrate that multiple 3D point cloud
tasks can be treated as task-aware prompting, as seen in 2D image and NLP tasks. 2) We create a
new benchmark, including four different point cloud tasks for 3D in-context learning, and evaluate
several representative baselines. 3) Our comprehensive study addresses various 3D prompt examples,
sampling methods, and masking strategies. Moreover, we show that the choice of in-context examples
greatly impacts performance for 3D in-context learning.

2 Related Work

3D Point Cloud Classification. Deep neural networks have been proposed for the 3D point cloud
classification task. Both PointNet [27] and its improved versions [28, 30] are pioneers of point-based

Previous MPM methods [44, 26] embed position with the masked center points during pre-training.



methods in 3D point cloud analysis, which adopt multi-layer perceptron (MLP) to handle point clouds
directly. Several graph-based methods, [22, 16] exploit geometric properties and propose different
dynamic kernels. In particular, DGCNM (] designs EdgeConv, which dynamically computes each
layer output. Recently, several work&] adopt pure transformer-based architecture to model the
global context. Point Transformet, 12, 43] applies the vectorized self-attention mechanism to
construct a point Transformer layer for 3D point cloud learning. Meanwhile, PointMYRdjrectly

applies a pure residual MLP network to the 3D point cloud analysis. Recently, several works have
explored the vision language modefss] and joint 2D and 3D trainingdl, 47] via transformer
architectures. However, these approaches are only designed for a single task, so they cannot be used
directly for in-context learning.

Masked Image Modeling (MIM) For 2D and 3D Vision. The GPT and BERT serie§][have

greatly enhanced natural language processing performance through masked modeling and ne-
tuning downstream tasks. BEIiE][is the rst to propose matching image patches with discrete
tokens via d-VAE B4] and pre-train a standard vision transformer,[10] using masked image
modeling B]. MAE [13] then directly reconstructs the raw pixel values of masked tokens and
achieves high ef ciency with a high mask ratio. For 3D point cloud pre-training using MIM, several
works [44, 26, , 29, 19] aim to improve feature representation. Point-BER1] [adopts a
BERT-like archltecture while Point-MAE’[] transfers the MAE-like framework for pre-training.
These methods use standard transformer networks to process 3D point clouds and achieve competitive
performance on various downstream tasks. Our approach follows a similar point MIM pipeline
but explores the in-context ability of point transformers and MIM, which has not been investigated
previously.

In-Context Learning. In-context learningd3, 35, 6] is a new learning paradigm in large language
models like GPT-3. This paradigm enables an autoregressive language model to perform inference
on unseen tasks by conditioning the input on speci ¢ input-output pairs, known as "context." This
powerful paradigm allows users to customize a model's output to t their downstream datasets
without modifying the often inaccessible internal model parameters. Recent research in natural
language processing has demonstrated the ef cacy of in-context learning across a range of language
tasks, including machine translation, sentiment analysis, and question-answering. Recently, several
works [4, 38, 39, 48, 36, 2] explore in-context learning in computer vision. The visual proript [

is the rst pure vision model, which was pre-trained to |l missing patches in images that are made
of academic gures and infographics. Then, Paint&i peneralizes visual in-context learning as
learning to paint the image via different task prompts. The following works explore the effect of task
prompts. Recently, SegGP3Eq] extends Painter by learning a generalized one-shot segmentation. In
contrast, our method explores the effect of 3D prompts on in-context learning in the point cloud and
proposes new baselines for benchmarking 3D in-context learning.

3 Method

In this section, we rstintroduce the task settings of in-context learning in the 3D point cloud, which
is motivated by 2D visual in-context learning. Then, we elaborate on the dataset construction and
task de nitions. Next, based on the MPM framework, we point out the information leakage issue and
propose a joint sampling strategy. Finally, we build two distinct baselines using the MPM training
methodology.

3.1 Modeling In-Context Learning in 3D Point Cloud

In-context Learning in 2D. During training, the 2D in-context Iearning model§ fake two pairs

as inputs, including reference pair (or task prompt p&t),= fl;; TXg and query inputsQl =

fl; ,Tkg, whereRK is the task prompt containing one imalgeand one target. Qk represent
current input |magézJ Here,k represents the task index whilandj indicate d|fferent example
indexes. Whem = j, we term the prompt as an ideal prompt. During training, both Visual Profhpt [
and Painter38] combine two pairs of images that perform the same task into a grid-like image and
randomly mask portions, following MAEL[]. During the inference stage, only example pairs and a
query image are provided. They are combined into a grid-like image with a quarter mask to mask the
Tjk, and a pre-trained model is used to restore the missing parts.



Figure 2:(a) The pre-training pipeline used in previous works.When performing Masked Point
Modeling (MPM), these works/4, 26, 45] use the center position of the target patches for position
embedding, which results in information leaka@®. Joint Sampling module. When selecting the

center points for the input and target point clouds, the same indexes are used, which are sampled
from the input point cloud(c)(d) Different combination forms of input and target point clouds,

which respectively denote the input form of our two baselines, PIC-Sep and PIC-Cat.

In-context Learning in 3D Point Cloud. Motivated by 2D in-context learning, we design a similar
procedure for 3D in-context learning. During training, each input sample contains two pairs of point
clouds that perform the same task as in 2D-context learning. Each pair consists of an input point
cloud and its corresponding output point cloud for the given task. Similar to PointMEEWe

adopt the farthest point sampling and K-nearest neighbor (KNN) techniques to convert the point
clouds into a sentence-like data format. These point patches are subsequently encoded into tokens.
During the inference, the input point cloud is a combination of example input and query point cloud,
while the target point cloud consists of an example target along with masked tokens, as shown in
Fig. 1(c). Based on differemR¥, given inputP*, the model outputs a corresponding targét

3.2 Dataset and Tasks De nition

ShapeNet In-Context DatasetsSince there is no previous benchmark for 3D in-context learning,

in order to establish the rst benchmark for 3D in-context learning, we carefully curate datasets
and de ne task speci cations. Firstly, we obtain samples from publicly available datasets, such
as ShapeNet’], ShapeNetPart/[’] and transform them into the "input-target” format as stated in
Sec.3.1. Additionally, to augment the sample size for the part segmentation task, we conduct several
random operations, including point cloud perturbation, rotation, and scaling, on the ShapeNetPart.
Consequently, we construct an extensive dataset encompassing all four types of tasks (mentioned
below), comprising 217,454 samples. Each sample comprises an input point cloud and its correspond-
ing target for a speci c task. Then, we standardize the inputs and outputs to solely contain only the
point cloud's XYZ coordinates. For reconstruction and denoising tasks, our aim is to create a clean
and aligned point cloud; whereas for the registration task, our aim is to create a clean, registered point
cloud. Additionally, the output of the part segmentation task is several point clusters, representing
different parts of the object.

Reconstruction. The objective of this task is to reconstruct a complete dense point cloud using only
a sparse set of points. To evaluate the model's reconstruction capability, we establish ve levels for
input point clouds, which contain 512, 256, 128, 64, and 32 points respectively.

Denoising. In this task, the input consists of a point cloud with Gaussian noise. The objective is
to remove the noise surrounding the point cloud, resulting in a clear and distinct object shape. To
evaluate the model's performance across different noise levels, we establish ve noise levels ranging
from 100 to 500 noisy points.

Registration. The objective of this task is to restore a rotated point cloud to its original orientation. It
is assumed that during both training and inference, the query point cloud and prompt are synchronized
in terms of the rotation angle. To avoid coupling with the outputs of the denoising and reconstruction



Figure 3:Overall scheme of our Point-In-Context Top: Training pipeline of the Masked Point
Modeling (MPM) framework. During training, each sample comprises two pairs of input and target
point clouds that tackle the same task. These pairs are fed into the transformer model to perform
the masked point reconstruction task, which follows a random masking pr&etssm In-context
inference on multitask. Our Point-In-Context could infer results on various downstream point cloud
tasks, including reconstruction, denoising, registration, and part segmentation.

tasks, we set the registration task's output as both an upright and an upside-down point cloud.To
provide a comprehensive evaluation, we de ne ve levels for the registration task. As the level
increases, the range of optional rotation angles also increases.

Part Segmentation.The goal of this task is to segment an object into several components, typically
2-6 components. ConventionallyGxdimensional one-hot code is assigned to every point to classify
them, whereP is the total count of categories. However, for in-context learning, we need to keep the
input and output in the same space, which only contains XYZ coordinates, making it a regression task.
To achieve this, we convert tlie component labels tB discrete points containing XYZ coordinates

that are uniformly distributed within a cube. Thus, the output of this task is clusters of points.

3.3 Point-In-Context Models

MPM For 3D In-Context Learning. Following previous works4, 3¢], we adopt the masked point
modeling framework for point clouds and propose Point-In-Context (PIC), where we treat the points

in MPM as image tokens in MIM, allowing us to leverage the transformer for processing both types

of data. As shown in Fig 3, during training, we aim to reconstruct the masked points, aided by the
input and visible target 3D points. During the inference stage, given query point clouds as input,
depending on the task prompted by the example pair, it can generate the corresponding target, such as
reconstruction, denoising, registration, or part segmentation outputs of the query point cloud.

Information Leakage. Though MPM PG, 45] exists as a base framework for us, simply adapting it

to point clouds is not feasible. As shown in Fig. 2(a), previous pre-training pipelines embed positional
information with the center point coordinates of all patches, even for those that are masked out
(invisible). Since the patches masked out in the target are invisible in our setting, such an operation
will cause information leakage, which does not satisfy the requirements. Furthermore, we nd that
the sine-cosine encoding sequence will signi cantly reduce the model performance compared to
learned embedding, and even lead to the collapse of the training. The reason is that valuable position
information is missing, making it impossible for the model to locate the patches that need to be
reconstructed during the processing. Unlike 2D images, 3D point cloud patch sequences have no
xed position (unordered property’[/]), so we need to align the patch sequences generated from the
input and target point clouds.

Joint Sampling (JS) Module. To handle the above issues, we colldctentral points from each

input point cloud and retrieve their indexes, which we then use to obtain the central points of every
patch in both the input and target point clouds. The process is shown in Fig. 2(b). The key of our
JS module is the consistency between center point indices of corresponding patches in both target
and input point clouds. In other words, the order of the input token sequence and the target token
sequence are well-aligned. Such a desigh compensates for the missing positional embedding of the



Table 1: Comparison of task-speci ¢, multitask, and in-context learning models on four 3D point

cloud tasks. For reconstruction, denoising, and registration, we report Chamfer Distdriosg
(x1000). For part segmentation, we report miOU.

Reconstruction CB* Denoising CD# Registration CD¥# Part Seg.
Models Venues
L1 L2 L3 L4 L5 Avg.[ L1 L2 L3 L4 L5 Avg.[ L1 L2 L3 L4 L5 Avg.[mIOU"
Task-speci ¢ models (trained separately)
PointNet[27] [CVPR'17| 3.7 3.7 3.8 39 4.1 39|41 40 41 40 42 41|53 59 69 7.7 85 69| 77.45
DGCNN [40] TOG'19 | 3.9 39 4.0 41 43 40|47 45 46 45 47 46|62 6.7 73 74 7.7 7.1| 76.12
PCT [12] CVvM21 |24 24 25 26 3.0 26|23 22 22 22 23 22|53 57 63 69 7.2 6.3| 79.46
ACT [9] ICLR21 |24 25 23 25 28 25|22 23 22 23 25 23|51 56 59 60 7.0 59| 8124
Multitask models: share backbone + multi-task heads
PointNet[27] |CVPR'17|87.2 86.6 87.3 90.8 92.2 88.87.8 22.0 25.6 30.4 33.2 2585.4 22.6 24.9 25.7 26.9 25.115.33
DGCNN [40] TOG'19 |38.8 36.6 37.5 37.9 42,9 37’65 6.3 65 6.4 7.1 6.5125 149 17.9 19.7 20.7 17.116.95
PCT [12] CVM'21 |34.7 44.1 49.9 50.0 52.3 46.21.2 10.3 10.7 10.2 10.5 10.B4.4 26.0 29.6 32.8 34.7 29.516.71
Point-MAE [26] [ECCV'22| 55 55 6.1 64 64 6.056 54 56 55 58 56114 12.8 14.8 16.0 16.9 14.55.42
ACT [9] ICLR23 |74 66 65 66 7.0 6873 6.8 7.0 6.8 7.2 7.012.2 14.4 19.4 25,5 29.0 20.112.08
I2P-MAE [47] |CVPR'23|17.0 16.0 16.7 17.2 18.5 17.20.6 20.4 20.1 18.3 18.8 19.82.5 31.3 31.1 31.6 31.2 31/522.60
ReCon [29] ICML'23 |12.4 12.1 12.4 12.5 13.1 12.80.4 24.5 27.2 29.2 32.5 26.94.7 16.3 19.2 21.5 22,5 188 7.71
In-context learning models

Copy 155 153 152 156 155 154149 155 157 155 155 154155 157 156 148 154 154 24.18
Point-BERT [44] CVPR'22| 288 285 292 286 308 292292 293 298 296 299 29&291 295 294 295 298 294 0.65
Our PIC-Cat 32 36 46 49 55 43/39 46 53 6.0 6.8 5310.011.4 13.8 16.9 18.6 14.178.95
Our PIC-Sep 47 43 43 44 57 47|63 72 79 82 86 7.686 9.2 10.2 11.3 12.4 10{374.95

target while avoiding information leakage. Therefore, it facilitates the model to learn the inherent
association between input and target and streamlines the learning process. Subsequently, all point
clouds search for neighborhoods containhgpoints based on the center points corresponding to
each patch.

Point-In-Context Model Architecture. We use a standard transformer with an encoder-decoder
structure as the backbone of our Point-In-Context, and a sifnplé convolutional layer as the task

head for point cloud reconstruction. Inspired by Painte} pnd MAE [13], we explore two different
baselines for PIC and name them PIC-Sep and PIC-Cat. For PIC-Sep, we take the input and masked
target point clouds parallel to the transformer and then merge their features after several blocks, using
a simple average for the fusion operation. For PIC-Cat, we concatenate the input and target to form a
new point cloud. Then we mask it globally and feed it to the transformer for prediction. We denote
the prompt pair aRf = fP;; Tg and query inputsQ¥ = fP; ; T*g, then PIC-Sep and PIC-Cat can

be formalized as:
PSeP= Transformef{P; k P;J; ([T* k T*I;M)); 1)
PC= Transformef{l; k T/ k Ij kK T*];M); )

wherek is the concatenate operation, dvidis the masked token to replace the invisible token. These
two input forms are shown in Fig. 2(c)(d).

Loss Function. The model is trained to reconstruct the masked point patches. To this end, we use the
"2 Chamfer Distance as the training loss. Speci cally, we calculate the Chamfer Distance between
each predicted patdh and its corresponding ground truéh

X X

L(P;G) = @)

H 2
min kp gk; +

min ki K2
. mn P OK;

092G

4 Experiments

Implementation Details. We sample 1024 points of each point cloud and divide it Mte 64

point patches, each witi = 32 neighborhood points. We set the mask rati®@&s For PIC-Sep,

we merge the feature of input and target at the third block. We randomly select a prompt pair
that performs the same task with the query point cloud from the training set. We use an Adamw
optimizer [23] and cosine learning rate decay, with the initial learning rate as 0.001 and a weight

decay of 0.05. All models are trained for 300 epochs.



Figure 4:Visualization of predictions obtained by our Point-In-Context and their corresponding

targets in different tasks, such as reconstruction, denoising, registration, and part segmentation. For
part segmentation, we visualize the generated target together with the mapping back, both adding
category-speci ¢ colors for better comparisons.

4.1 Baseline Methods and Training Details

To evaluate the performance of the proposed framework, we evaluate the two variants PIC-Sep and
PIC-Cat on the dataset mentioned in Sec. 3.2, both equipped with the proposed Joint Sampling
module. We compare them with the following related methods:

Point-BERT [44] is a masked auto-encoder. Like the settings in PIC-Cat, we concapaies of
input-target point cloud tokens as a token sequence and input it to Point-BERT, which takes a token
sequence as the input and converts them into discrete point tokens from a pre-trained/dVAE [
vocabulary of size 8192.

Task-speci ¢ Models. We selected three representative methods: PointNgt DGCNN [4(],
PCT [12], and ACT [9], and individually train them on four different tasks mentioned in Sec. 3.2.
Additionally, we also designed task-speci ¢ heads for each task.

Multitask Models. For a fair comparison, we develop a multitask model based on PoiniNet [
DGCNN [4(], and PCT [.7], respectively, which are capable of multitask learning. These models
feature a shared backbone network and task-speci c heads designed to address the needs of different
tasks. This design allows simultaneous learning of all four tasks.

Point-MAE [ 26] is a masked auto-encoder. Unlike Point-BERT, Point-MAE directly rebuilds points

in each local areaACT [ 9], 12P-MAE [ 47], andReCon [29] are recent SOTA methods that involve
other modalities like image and text knowledge in the pre-training stage and enhance the performance
on different tasks after ne-tuning the models. Similar to multitask models, we use a pre-trained
encoder and combine it with different task heads for simultaneous training on the four tasks.

Copy Exampleis a baseline that utilizes the target point cloud of the prompt as its prediction.

4.2 Main Results

We report extensive experimental results of various models on the dataset we proposed in Tab. 1.
From where, we found that our PIC-Cat and PIC-Sep exhibit impressive results and are capable of
adapting to different tasks after only one training, achieving state-of-the-art results in all four tasks
amount multitask models. Besides, we visualize the in-context 3D inference results of PIC-Sep in



