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ABSTRACT

Earth Observation (EO) data analysis is vital for monitoring environmental and
human dynamics. Recent Multimodal Large Language Models (MLLMs) show po-
tential in EO understanding but remain restricted to single-sensor inputs, overlook-
ing the complementarity across heterogeneous modalities. We propose EarthMind,
a unified vision-language framework that handles both single- and cross-sensor
inputs via an innovative hierarchical cross-modal attention (i.e., HCA) design.
Specifically, HCA hierarchically captures visual relationships across sensors and
aligns them with language queries, enabling adaptive fusion of optical and Synthetic
Aperture Radar (SAR) features. To support cross-sensor learning, we curate Fusio-
nEO, a 30K-pair dataset with diverse annotations, and establish EarthMind-Bench,
a 2,841-pair benchmark with expert annotations for perception and reasoning tasks.
Extensive experiments show that EarthMind achieves state-of-the-art results on
EarthMind-Bench and surpasses existing MLLMs on multiple EO benchmarks.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have revolutionized vision-language understanding
by integrating powerful language models (OpenAI, 2023; Team et al., 2023) with visual encoders,
achieving remarkable performance across diverse tasks, including image captioning (Xu et al.,
2024; Chen et al., 2024a), visual question answering (Li et al., 2023; Liu et al., 2023a; Li et al.,
2024a), and visual grounding (Lai et al., 2024; Rasheed et al., 2024; Yuan et al., 2025). Earth
Observation (EO) represents a particularly critical application domain with far-reaching implications
for environmental monitoring (Wójtowicz et al., 2016) and disaster response (Van Westen, 2000).
However, the distinctive characteristics of EO imagery create a substantial domain gap that limits
the effectiveness of MLLMs trained on natural images. Recent efforts have addressed this challenge
by developing EO-specific instruction tuning datasets (Kuckreja et al., 2024; Muhtar et al., 2024;
Zhan et al., 2025; Zhang et al., 2024b; Hu et al., 2025) and specialized architectures, demonstrating
significant improvements in adapting MLLMs to remote sensing applications.

Despite these advances, existing MLLMs for EO remain fundamentally limited by their reliance on
single-sensor inputs, failing to exploit the complementary nature of heterogeneous sensing modal-
ities (Fuller et al., 2023; Liu et al., 2024a). Modern EO platforms routinely provide synchronized
multimodal data: optical sensors like Sentinel-2 capture high-resolution multispectral imagery rich in
spectral and textural information, while SAR sensors like Sentinel-1 deliver all-weather, day-night
observation capability. These modalities exhibit natural complementarity—optical sensors excel in
clear conditions with detailed spectral signatures but suffer from cloud occlusion and illumination
dependency, whereas SAR penetrates atmospheric interference but exhibits lower signal-to-noise
ratios and speckle noise. As illustrated in Fig. 1, this fundamental trade-off underscores that no
single sensor can comprehensively capture scene information, necessitating advanced and effective
cross-sensor fusion strategies for robust and comprehensive EO data understanding.

However, achieving effective cross-sensor fusion presents challenges. The fundamental heterogeneity
between optical and SAR data, rooted in distinct imaging principles and signal characteristics, makes
naive approaches like token concatenation ineffective. While traditional fusion methods (Zhang
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To the le� and center, there are dense blocks 
of rectangular buildings. Along the bo�om 
edge there is a wide road from le� to right. 
On the right side there is a rail corridor. 

There are some buildings located at the 
top le� of the scene.

There are some buildings located at the 
le� part of the scene.

Please describe the image in detail.
Human Human

GeoChat(CVPR'24)

GeoChat(CVPR'24)

Op�cal GeoPixel
(ICML'25)

Op�cal GeoPixel
(ICML'25)

SAR

SAR

EarthMind(Ours) Op�cal       + SAR EarthMind(Ours)

Please segment the buildings.
Op�cal

SAR

Op�cal       + SAR

(a) Inputs (b) Image-level Conversa�on  (c) Pixel-level Grounding
Figure 1: From a single Optical or SAR image, GeoChat (Kuckreja et al., 2024) and GeoPixel
(Shabbir et al., 2025) give inaccurate VQA or segmentation results. EarthMind first utilize cross-
sensor information to boost several tasks.

et al., 2025a; Schmitt et al., 2017; Li et al., 2022) show promise in specific contexts, they remain
constrained by task-specific architectures and lack the flexibility for diverse vision-language tasks.

To address these limitations, we present EarthMind, a unified MLLM tailored for EO that seamlessly
integrates both single-sensor and cross-sensor data. This integration enhances representational
capacity, enabling the model to couple global scene context with local spatial detail and thereby
supporting tasks ranging from high-level reasoning to fine-grained pixel-level grounding. At the heart
of EarthMind is the hierarchical cross-modal attention (i.e., HCA) design, a lightweight mechanism
that equips MLLMs with adaptive cross-sensor fusion. By learning spatially adaptive weights tied to
sensor density and query relevance, HCA mitigates modality imbalance and preserves complementary
SAR cues otherwise suppressed by optical bias. To overcome the scarcity of paired cross-sensor
data, we further introduce FusionEO, a 30K-sample instruction-tuning dataset generated through an
automated pipeline, ensuring the semantic diversity and task coverage required for effective training.

Additionally, we introduce EarthMind-Bench, a large-scale benchmark for evaluating cross-sensor
MLLMs in EO scenarios. It enables flexible evaluation with both single- and multi-sensor inputs,
spans tasks from image-level understanding to pixel-level segmentation, and covers reasoning from
perception to high-level analysis. Comprising 2,841 expertly annotated pairs, EarthMind-Bench
provides a unified platform to rigorously assess MLLM capabilities in interpreting and reasoning
over EO data. Overall, the effectiveness of EarthMind is demonstrated in two key aspects:

• It successfully exploits cross-sensor complementarity to enhance diverse EO understanding
tasks—including dense captioning, VQA, and segmentation—achieving state-of-the-art
performance on our multi-sensor EarthMind-Bench with only 4B parameters.

• It also demonstrates superior performance on single-sensor benchmarks across various tasks,
spanning image-level classification and VQA, region-level visual grounding, and pixel-level
referring expression segmentation.

2 RELATED WORK

Earth Observation MLLMs. Building upon the success of general image MLLMs, numerous
works (Hu et al., 2025; Kuckreja et al., 2024; Zhan et al., 2025; Zhang et al., 2024b;a; Muhtar
et al., 2024; Luo et al., 2024; Shabbir et al., 2025; Soni et al., 2024) have attempted to transfer these
capabilities to the EO domain. A key challenge is the scarcity of instruction-tuned EO datasets.
RSGPT (Hu et al., 2025) addressed this by proposing the first large-scale EO image-text paired
dataset, enabling conversational tasks such as image captioning and VQA. GeoChat (Kuckreja et al.,
2024) and SkyEyeGPT (Zhan et al., 2025) extended capabilities to region-level visual grounding
through region-centric instruction data. LHRS-Bot (Muhtar et al., 2024) leverages large-scale EO
imagery aligned with OpenStreetMap annotations to improve pretraining. To enhance complex
reasoning, SkysenseGPT (Luo et al., 2024) introduces the FIT-RS dataset focusing on spatial entity
relationships. GeoPixel (Shabbir et al., 2025) pushes the boundary to pixel-level grounding through
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Text-Guided Attention Adaptive FusionCross-Sensor Attention
Paired
Data X Vs

Q: 
Please describe this 
satellite image.

Hierarchical Cross-modal Attention

Figure 2: An overview of EarthMind, which supports both single-sensor and multi-sensor EO data
understanding, including high-level image reasoning and pixel-level grounding tasks. The framework
facilitates cross-sensor fusion through Hierarchical Cross-modal Attention (HCA), which selectively
combines complementary features from optical and SAR data guided by both cross-modal visual
relationships and input query relevance.

an automated pipeline for generating grounded conversations. Beyond optical data, EarthDial (Soni
et al., 2024) incorporates diverse modalities including multispectral, hyperspectral, and SAR data
to improve generalization. Despite these advances, current MLLMs remain limited in leveraging
multi-sensor inputs for comprehensive EO understanding.

Earth Observation Multimodal Benchmarks. The rapid development of EO MLLMs has stimulated
dedicated evaluation benchmarks. RSIEval (Hu et al., 2025) provides human-annotated captions and
VQA pairs for remote sensing evaluation. LHRS-Bench (Muhtar et al., 2024) introduces hierarchical
taxonomies for multi-dimensional assessment. VLEO-Bench (Zhang & Wang, 2024) focuses on
real-world applications including urban monitoring and disaster relief. Beyond conversational tasks,
VRSBench (Li et al., 2024b) and GeoChat-Bench (Kuckreja et al., 2024) incorporate grounding
tasks for localization evaluation. HnstD (Pang et al., 2025) targets hallucination detection, while
FIT-RSRC (Luo et al., 2024) evaluates object relationship reasoning. XLRS-Bench (Wang et al.,
2025) leverages ultra-high-resolution imagery, and GEOBench-VLM (Danish et al., 2024) proposes a
multi-task geospatial benchmark. Despite these advances, none explicitly assess MLLM performance
under multi-sensor scenarios, where complementary cues across heterogeneous modalities are critical
for robust EO understanding.

3 METHOD

From dense urban mapping to natural terrain analysis, EO applications require models that can
natively fuse heterogeneous sensors for reliable scene understanding and decision-making. To this
end, we present EarthMind, a unified vision-language framework that accepts either single-sensor
or paired multi-sensor inputs and produces task-appropriate outputs, including natural-language
responses and pixel-accurate masks. Sec. 3.1 outlines the overall architecture, which consists of
multiple visual encoders, a vision-language projector, an LLM, and a lightweight mask decoder.
Sec. 3.2 introduces our core multi-sensor fusion module, Hierarchical Cross-modal Attention (HCA).
Sec. 3.3 describes the paired cross-sensor instruction-tuning corpus FusionEO and training objectives.
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3.1 EARTHMIND ARCHITECTURE

Fig. 2 illustrates the architecture of EarthMind. Our model employs a visual encoder Ev for global
semantic perception and a grounding encoder Eg for fine-grained spatial understanding. A vision-
language projector (VLP) transforms visual features into a token sequence XV aligned with the
language space. These visual tokens, combined with input text tokens, serve as input to the LLM,
which generates text predictions accordingly. To enable dense prediction tasks, we introduce a special
token “<SEG>” that guides the mask decoder Dm to produce fine-grained segmentation maps.

Our framework supports flexible visual input by treating heterogeneous EO data as video-like
sequences. Inspired by recent advances in video-language models (Maaz et al., 2023; Shu et al.,
2024), we adopt a unified data formatting strategy: single- and dual-channel SAR images are
padded to form pseudo-RGB frames, while multispectral bands are grouped in triplets to construct
multi-frame sequences. This approach mimics temporal video structure and enables shared encoder
processing, allowing our model to exploit cross-frame dependencies and spectral complementarity.

3.2 CROSS-SENSOR FUSION

Motivation. Given multi-sensor visual inputs, we extract sensor-specific image tokens: XV
o ∈ RP×D

for optical and XV
s ∈ RN×D for SAR modalities, where D denotes the LLM’s embedding dimension.

The most straightforward fusion approach is concatenating these tokens into a joint representation
X̂V ∈ R(P+N)×D. However, this naive concatenation presents two critical limitations. First,
the increased sequence length results in quadratic computational overhead due to self-attention
mechanisms. Second, despite equal representation in the input, LLMs exhibit strong bias toward
optical tokens, potentially overlooking valuable SAR information. This bias likely stems from the
predominance of RGB images in pre-training data.

To quantitatively measure this modality imbalance, we introduce the Modality Attention Score (MAS):

Am
ℓ =

∑
i∈I
∑

j∈Tm
αℓ
i,j∑

i∈I
∑

k∈I αℓ
i,k

(1)

where I denotes all visual tokens, Tm ⊂ I represents tokens from modality m, and αℓ
i,j denotes the

self-attention weight from token i to j at layer ℓ in LLM. MAS quantifies the proportion of attention
allocated to each modality.

Our empirical analysis (Sec. 5.4) reveals that standard MLLMs with concatenation fusion consistently
exhibit higher Aoptical

ℓ than ASAR
ℓ across layers, confirming the modality bias. This motivates our

Hierarchical Cross-modal Attention module, which explicitly models cross-sensor interactions for
balanced and efficient multi-modal fusion.

Hierarchical Cross-modal Attention. We propose a hierarchical attention mechanism that captures
both cross-sensor complementarity and text-guided relevance for effective multimodal fusion. Our
approach operates in two stages: (1) bidirectional cross-modal attention between optical and SAR
features, and (2) text-guided attention to align visual features with task requirements.

Stage 1: Cross-Sensor Attention. To ensure spatial alignment between modalities with different
resolutions, we apply adaptive pooling to align optical features with SAR dimensions, yielding
X̂V

o ∈ RN×D. We then compute bidirectional attention maps:

Ao2s = Softmax

(
X̂V

o (XV
s )⊤√

D

)
, As2o = Softmax

(
XV

s (X̂V
o )⊤√

D

)
(2)

where Ao2s
ij captures attention from optical token i to SAR token j, and vice versa for As2o

ij .

To derive modality-specific importance scores, we aggregate attention weights across spatial dimen-
sions:

αo
i =

1

N

N∑
j=1

As2o
ji , αs

i =
1

N

N∑
j=1

Ao2s
ji (3)

Here, αo
i represents how much attention the i-th optical token receives from all SAR tokens, indicating

its importance from the SAR perspective.
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Stage 2: Text-Guided Attention. We incorporate task-specific guidance by computing visual token
relevance to the text prompt. Given text embeddings XT ∈ RL×D aligned with visual features
through the projector:

Ao2t = Softmax

(
X̂V

o (XT )⊤√
D

)
, As2t = Softmax

(
XV

s (XT )⊤√
D

)
(4)

We aggregate these scores to obtain text-relevance weights:

βo
i =

1

L

L∑
j=1

Ao2t
ij , βs

i =
1

L

L∑
j=1

As2t
ij (5)

Adaptive Fusion. The final fusion weights combine cross-modal complementarity and text relevance:

γo
i = λ · αo

i + (1− λ) · βo
i , γs

i = λ · αs
i + (1− λ) · βs

i (6)

where λ is a learnable parameter balancing the two attention mechanisms. The fused representation
is computed as:

XV
fused,i = wo

i · X̂V
o,i + ws

i ·XV
s,i (7)

where [wo
i , w

s
i ] = Softmax([γo

i , γ
s
i ]) are the normalized fusion weights. This produces final multi-

modal tokens XV
fused ∈ RN×D for LLM input, effectively reducing sequence length while preserving

cross-modal information.

3.3 TRAINING

Dataset Curation. Although large-scale visual instruction tuning datasets exist for single-modality
remote sensing imagery, paired optical–SAR data with rich text annotations remain scarce. To
address this gap, we construct a diversified set of QA pairs FusionEO to facilitate effective training.
Specifically, we design a three-stage pipeline: (1) Metadata preparation. We leverage dataset-
specific metadata (e.g., modality, category, geographic location, and relevant attributes) to provide
essential contextual information. These metadata are then converted into concise captions through
rule-based processing. (2) RoI-based summarization. To enrich the textual context with visual
grounding cues, we incorporate region-level information from segmentation annotations. Foreground
objects or localized regions of interest (RoIs) are explicitly highlighted in the images, thereby reducing
hallucination risks. Mask-rendered images, together with the short captions from Stage 1, are then
used as inputs to GPT-4o to generate more detailed and descriptive captions. (3) Self-instruct VQA
generation. Finally, we extend the caption data into diverse VQA samples. GPT-4o is prompted
in a few-shot manner, using seed examples to guide the generation of varied and semantically rich
question–answer pairs. Additional implementation details are provided in Appendix G.

Training Objective. EarthMind is trained via instruction tuning across diverse supervision formats,
including VQA and segmentation tasks. For VQA tasks, we apply standard supervised finetuning
way, minimizing the token-level cross-entropy loss over the ground-truth responses. For segmentation
tasks, we use a combination of pixel-wise cross-entropy Loss and Dice Loss.

4 EARTHMIND-BENCH

We observe that existing EO benchmarks cannot evaluate the performance of MLLMs under multi-
sensor input. To address this limitation, we propose EarthMind-Bench, a new benchmark constructed
from high-quality paired data with optical (including both RGB and multispectral) and SAR images
across various public datasets, including BigEarthNet-MM (Sumbul et al., 2021), OpenEarthMap-
SAR (Xia et al., 2025), DFC2023 Track2 (Persello et al., 2023), WHU-OPT-SAR (Li et al., 2022),
MSAW (Shermeyer et al., 2020), and MultiResSAR (Zhang et al., 2025b). We curate 2,841 samples
from their test sets, and design a suite of 10 tasks spanning perception and reasoning, enabling a
comprehensive evaluation of MLLMs in EO scenarios, as shown in Fig. 3.

To comprehensively evaluate MLLMs in EO scenarios, we design a suite of perception and reasoning
tasks. The perception tasks assess fundamental understanding, ranging from coarse-grained problems
such as scene classification, object existence detection, and hallucination detection to more chal-
lenging tasks including object counting, image captioning, and referring expression segmentation.
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Referring Expression Segmentation
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Object Counting Route Planning

GT:  Go straight up to the intersection and 
turn right. Turn left at the third building and 
walk to the third building.

GT： Yes. The area has a flat terrain, is close to 
the river and has a mature transportation.

Urban Assessment

GT: Mudsides, since there are many mountains 
and the terrain is undulating.

Disaster Forcasting

(A): Urban      (B)： Village  

(A): No       (B): Yes  

(A): No       (B): Yes  
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GT: GT:  This satellite image depicts a bustling
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[Q]  How to get point    from point    ?

(A): top     (B): left    (C): bottom    (D): right 

Spatial Relationship

[Q]  Where is the road from the building? 

[Q]  What natural disasters occur in this area? 

[Q]  Is this area suitable for urban development?

Figure 3: Examples of EarthMind-Bench. There are ten tasks to evaluate the multi-sensor fusion
ability of LMMs, covering perception and reasoning levels. The LLMs are asked to solve the problem
(with the ground-truth answers marked in blue) based on optical, SAR or optical-SAR fusion settings.

Building upon this foundation, the reasoning tasks are divided into spatial and causal categories.
Spatial reasoning requires models to infer spatial relationships between objects or to perform route
planning by generating a feasible path between a start and an end point. Causal reasoning, on the
other hand, focuses on tasks such as disaster forecasting and urban development assessment, where
models are expected not only to produce predictions or judgments but also to provide explanatory
evidence supporting their reasoning.

For text generation tasks, we report average accuracy on multiple-choice questions and adopt GPT-
based scoring to evaluate the quality of open-ended responses. For mask generation tasks, segmenta-
tion quality is measured using mean Intersection-over-Union (mIoU). All annotations are produced
by human experts and further subjected to a rigorous verification process, as described in Appendix E.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

EarthMind builds upon InternVL2 (Chen et al., 2024b) and SAM2 (Ravi et al., 2024), adopting a
progressive learning way including three steps. First, we enhance the instruction-following capability
using 1.7M general image-text data, which covers image-level captioning, VQA, region-level object
understanding and text-driven segmentation. Second, we introduce 1M EO-specific multimodal data
to adapt EarthMind to the remote sensing domain. Third, we utilize our synthesized multi-sensor
conversation corpus, and selectively retain examples from earlier stages to mitigate catastrophic
forgetting. We fine-tune EarthMind with a learning rate of 4e-5 and a batch size of 2, training only
the vision-language projector, the LLM via LoRA (Hu et al., 2022), and the mask decoder. All
experiments are conducted on 8 NVIDIA A100-80G GPUs. More details about training datasets and
details can be seen in Appendix G.

5.2 BENCHMARKS

In addition to our proposed EarthMind-Bench, we evaluate EarthMind on several widely-used EO
benchmarks to assess its capability across diversified multi-sensor tasks. We conduct evaluations at
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Table 1: Experimental results on EarthMind-Bench, in which different evaluation settings are
employed to compare multi-sensor understanding ability. “M-Avg”: the average performance of
multiple-choice tasks; “O-Avg”: the average performance of open-ended tasks. “Referring Segmen.”
refers to the referring expression segmentation task, which is evaluated by mIoU. † denotes proprietary
models. Bold means the best performance.

Model Size M-Avg O-Avg Scene
Class.

Object
Exist.

Halluci.
Detect.

Object
Count.

Spatial
Relation.

Referring
Segmen.

Image
Caption

Disaster
Forecast.

Route
Plann.

Urban
Assess.

Full mark – 100 5 100 100 100 100 100 100 5 5 5 5
Evaluation on Optical modality

GPT-4o† (OpenAI, 2024) - 64.1 2.63 67.8 79.9 86.4 34.0 52.3 - 4.58 1.75 2.01 2.18
GPT-4V† (OpenAI, 2023) - 55.4 2.12 60.2 72.9 75.9 39.0 29.2 - 3.28 1.54 1.82 1.86

GeoChat (Kuckreja et al., 2024) 7B 35.5 1.78 40.9 51.8 46.8 18.9 19.0 - 1.92 1.73 1.33 2.14
LHRS-bot (Muhtar et al., 2024) 7B 41.3 1.84 45.5 58.3 58.3 25.2 19.4 - 2.56 1.75 1.55 1.50
Skysensegpt (Luo et al., 2024) 7B 39.8 1.45 47.4 56.8 56.7 26.8 11.1 - 1.68 1.40 1.18 1.55
GeoPixel (Shabbir et al., 2025) 7B 53.0 2.06 55.3 67.8 73.6 33.5 34.7 46.8 2.80 1.80 1.68 1.95

EarthDial (Soni et al., 2024) 4B 58.3 2.13 58.2 72.4 75.9 40.6 44.2 - 2.82 1.95 1.66 2.10
EarthMind 4B 61.7 2.82 64.3 77.5 83.6 50.1 33.1 56.0 3.35 3.37 2.01 2.55

Evaluation on SAR modality
GPT-4o† (OpenAI, 2024) - 47.8 2.40 35.2 71.4 72.9 22.8 36.6 - 2.89 3.05 1.65 2.04
GPT-4V† (OpenAI, 2023) - 44.4 2.22 30.9 73.3 67.1 31.0 19.9 - 2.63 2.98 1.40 1.85

GeoChat (Kuckreja et al., 2024) 7B 34.3 1.45 28.6 49.8 46.8 27.9 18.5 - 1.78 1.65 1.25 1.56
LHRS-bot (Muhtar et al., 2024) 7B 35.1 1.71 28.9 56.3 48.5 23.5 18.1 - 1.86 1.70 1.45 1.83
Skysensegpt (Luo et al., 2024) 7B 34.2 1.55 23.5 53.8 49.2 33.8 10.7 - 1.76 1.70 1.35 1.38
GeoPixel (Shabbir et al., 2025) 7B 44.6 1.80 35.2 59.0 65.7 30.5 32.8 35.9 2.08 1.97 1.45 1.68

EarthDial (Soni et al., 2024) 4B 49.4 1.95 40.6 65.3 69.2 35.7 36.4 - 2.26 2.09 1.60 1.86
EarthMind 4B 61.3 2.64 64.4 77.4 74.6 46.8 43.1 53.0 3.10 3.25 1.89 2.30

Evaluation on Optical-SAR Fused modality
GPT-4o† (OpenAI, 2024) - 61.1 2.28 64.8 79.6 86.2 31.6 43.5 - 3.68 1.59 1.82 2.03
GPT-4V† (OpenAI, 2023) - 46.0 1.93 30.2 64.8 62.4 32.8 39.8 - 2.89 1.48 1.57 1.79

EarthMind 4B 70.0 3.02 65.5 84.4 88.1 52.4 59.7 59.8 3.80 3.37 2.21 2.70

Table 2: Quantitative performance of EarthMind on public benchmarks. For image-level evaluation,
we report accuracy on AID, UC-Merced, RSVQA-HRBEN, and the VQA task of VRSBench.
For region-level evaluation, we report CIDEr scores on DIOR-RSVG and Acc@0.5 on the Visual
Grounding task of VRSBench. For pixel-level tasks, mean Intersection over Union (mIoU) is reported.

Method Image-level Region-level
AID UC RSVQA VRS-VQA RSVG VRS-VG

GPT-4o (OpenAI, 2024) 74.7 88.8 - - - -
LLaVA-1.5 (Liu et al., 2023a) 72.0 84.4 63.1 76.4 - 5.1
GeoChat (Kuckreja et al., 2024) 72.0 84.4 72.3 76.0 30.9 49.8
EarthGPT (Zhang et al., 2024b) - - 72.0 - 232.8 -
EarthMarker (Zhang et al., 2024a) 78.0 86.5 - - 379.3 -
EarthDial (Soni et al., 2024) 88.8 92.4 72.5 - - -

EarthMind 97.2 95.0 74.0 78.9 428.2 55.6

Method Pixel-level
RRSIS-D RefSegRS

LAVT (Yang et al., 2022) 56.8 47.4
RIS-DMMI (Hu et al., 2023) 60.3 52.2
Caris (Liu et al., 2023b) 62.1 42.7
RM-SIN (Liu et al., 2024b) 64.2 42.6
CroBIM (Dong et al., 2024) 64.5 59.8
GeoPixel (Shabbir et al., 2025) 67.3 -

EarthMind 82.2 62.6

three granularities: (1) Image-level: classification on AID (Xia et al., 2017) and UCMerced (Yang
& Newsam, 2010), and VQA on RSVQA-HRBEN (Lobry et al., 2020) and VRSBench (Li et al.,
2024b); (2) Region-level: captioning and visual grounding on DIOR-RSVG (Zhan et al., 2023) and
VRSBench; (3) Pixel-level: referring expression segmentation on RefSegRS (Yuan et al., 2024b) and
RRSIS-D (Liu et al., 2024b). Additionally, we evaluate multi-sensor understanding on SAR (Wang
et al., 2019), BigEarthNet (Sumbul et al., 2019), and SoSAT-LCZ42 (Zhu et al., 2019) datasets.

5.3 RESULTS

EarthMind-Bench. EarthMind-Bench supports evaluation under three settings: Optical only, SAR
only, and Optical–SAR fusion. For multispectral images, baseline models are evaluated using only
RGB channels due to their inability to process multi-channel inputs, while EarthMind can leverage
the full spectral information. We compare EarthMind with state-of-the-art EO-specific MLLMs and
proprietary models such as GPT-4V (OpenAI, 2023) and GPT-4o (OpenAI, 2024). Tab. 1 summarizes
the results, from which we highlight three key findings: 1) Fine-grained and open-ended tasks
remain challenging for existing MLLMs. While coarse-grained tasks like scene classification
are largely solved, tasks such as object counting and spatial relationship understanding still exhibit
significant performance gaps. In particular, referring expression segmentation proves difficult for
most models due to the lack of pixel-level reasoning ability. 2) Most models generalize poorly to
SAR inputs. Performance under SAR-only settings lags behind Optical settings for nearly all models,
likely due to training data limitations. In contrast, EarthMind demonstrates strong generalization
to SAR inputs, benefiting from multi-sensor training. 3) Effective fusion requires learning cross-
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Table 3: Quantitative performance on multispectral and SAR benchmarks. Evaluation follows the
protocol of (Soni et al., 2024). † indicates that the results on benchmarks were reproduced using their
official weights.

Method Multispectral
BigEarthNet SoSAT-LCZ42

GPT-4o (OpenAI, 2024) 49.0 15.5
Qwen2.5-VL†(Bai et al., 2025) 36.2 18.9
EarthDial (Soni et al., 2024) 69.9 60.7

EarthMind 70.4 58.3

Method SAR
Small Medium Large Single Multiple

GPT-4o (OpenAI, 2024) 0.70 0.90 3.20 1.20 0
GeoChat†(Kuckreja et al., 2024) 2.61 4.92 6.95 2.58 1.40
EarthDial (Soni et al., 2024) 12.14 26.02 35.56 26.03 6.06

EarthMind 13.58 28.55 36.78 27.45 6.99

Table 4: (Left) Comparison of our proposed HCA methods with naive fusion methods on EarthMind-
Bench, including Scene Classification (SC), Object Existence (OE), Hallucination Detection (HD),
Object Counting (OC), Spatial Relationship (SR) and Referring Expression Segmentation (RS).
(Right) Modality Attention Gap (Optical - SAR) across layers. For concatenation, the gap is
computed from MAS using Eq. 1. For HCA, the gap is derived from the learned fusion weights (wo

i
and ws

i ) during cross-modal attention. Lower gaps indicate better modality balance.

Method SC OE HD OC SR RS Avg

Single Modality 64.4 77.5 83.6 50.1 43.1 56.0 62.5

Concatenation 64.2 77.9 83.3 49.6 34.2 57.6 61.1

Element-wise Average 64.7 79.3 85.4 49.8 36.9 57.0 62.2

Native Attention 65.0 79.9 85.2 49.8 38.7 58.2 62.8

HCA 65.5 84.4 88.1 52.4 59.7 59.8 68.3
1 5 9 13 17 21 25 29 32

0.0

0.2

0.4

0.6

0.8

1.0
Concatenate Gap HCA Gap

modal complementarity, not just stacking modalities. As the only open-source model with explicit
fusion capability, EarthMind is compared against GPT-4 variants which feed both Optical and SAR
data as pseudo-RGB inputs using the official multi-image interface. Results show that GPT-4 models
experience performance degradation compared to Optical-only inputs, particularly on fine-grained
tasks like Route Planning, Object Counting, and Spatial Relationship Understanding, where SAR data
provides robust structural cues under adverse conditions. In contrast, EarthMind effectively captures
cross-modal complementarity, yielding consistent improvements over single-modality inputs.

Public Benchmarks. We evaluate EarthMind on mainstream EO benchmarks (Tab. 2). EarthMind
consistently delivers strong performance across multi-level understanding tasks. On image-level
tasks (AID, UC-Merced, RSVQA-HRBEN, VRSBench-VQA), it significantly outperforms previous
models, including GPT-4o, despite using only 4B parameters. For region-level tasks, EarthMind
achieves 428.2 CIDEr on DIOR-RSVG and 55.6% accuracy on VRSBench visual grounding. On pixel-
level benchmarks, it achieves top results on both RRSIS-D and RefSegRS, surpassing specialized
segmentation models. Beyond RGB data, EarthMind demonstrates competitive results on SAR and
multispectral benchmarks (Tab. 3), showing strong generalization to diverse EO scenarios.

5.4 ABLATIONS

EarthMind significantly enhances multi-sensor EO data understanding through the proposed Hierar-
chical Cross-modal Attention (HCA) module and the curated FusionEO dataset. We examine each
component below, with additional analysis in Appendix H.

The effectiveness of HCA. To evaluate the effectiveness of our HCA module, we conduct ablations
on the multi-sensor setting by comparing with the better single-modality performance (optical or
SAR) and three fusion configurations: (1) Concatenate: visual tokens from different modalities are
directly concatenated and passed to the LLM; (2) Element-wise Averaging: visual tokens are summed
and averaged to obtain fused representations; (3) Naive Attention: token importance is computed
using cosine similarity between paired SAR and optical features. We report both multiple-choice task
performance and referring expression segmentation results on EarthMind-Bench.

As shown in Tab. 4, our method significantly outperforms all naive fusion methods, especially on
challenging tasks like object counting and spatial relationship reasoning. These fine-grained tasks
require detailed visual perception and reasoning, making them more susceptible to poor optical
image quality and thus benefiting from complementary information provided by SAR imagery. To
understand the underlying mechanism, we calculate the Modality Attention Score (MAS) proposed in
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Figure 4: (a) Visualization of learned attention weights of optical and SAR under the different queries.
(b) Statistics of attention weights in different tasks. (c) The ablations of the proposed FusionEO data.

Eq. 1 and visualize the results for HCA and naive concatenation across different layers. The analysis
reveals a dramatic attention imbalance in naive concatenation: optical tokens receive significantly
higher attention than SAR tokens, creating a substantial attention gap throughout all layers. This
confirms that the model is nearly blind to SAR information. In contrast, our HCA method significantly
reduces this attention gap, achieving a more balanced distribution. This rebalancing is particularly
pronounced in shallow layers where fundamental perceptual representations are established, enabling
the model to effectively leverage complementary information from both modalities.

We also visualize a typical case in Fig. 4 (a), which reveals interesting findings. First, low-quality
regions in optical images receive low attention weights, where SAR can provide complementary
information. Moreover, the attention weights are highly relevant to the query: for global tasks like
classification, the model primarily relies on the optical modality for scene understanding, while for
fine-grained tasks like segmentation, SAR modality gains increased importance, especially in query-
relevant regions. For instance, when segmenting roads, the model learns to leverage complementary
information from both modalities, with SAR providing crucial structural details that may be obscured
or ambiguous in optical imagery. We further calculate the task-specific fusion weights using Eq. 7
and visualize the results in Fig. 4 (b) to elaborate this phenomenon, where optical modality dominates
in semantic-rich tasks while SAR modality begins to contribute significantly in fine-grained tasks.

The effectiveness of FusionEO. Our proposed FusionEO employs a three-stage curation pipeline.
To validate its effectiveness, we report the performance scaling on EarthMind-Bench in Fig. 4
(c). As shown, our curated data achieves consistent performance gains with increasing data scale.
Compared to Stage 1 data which contains coarse-grained information, the RoI information injection
in subsequent stages provides more fine-grained supervision. Building upon this foundation, our final
dataset generates diversified QA pairs, thus achieving the best generalization performance.

6 CONCLUSION

In this work, we propose EarthMind, a unified framework for multi-sensor Earth Observation data
understanding, specifically designed for optical and SAR data fusion. We introduce the Hierarchical
Cross-modal Attention (HCA) module, which adaptively selects task-related cross-sensor repre-
sentations for enhanced LLM reasoning. EarthMind handles diverse EO tasks from image-level
understanding to pixel-level segmentation. We develop FusionEO, a 20K paired instruction-tuning
dataset, and curate EarthMind-Bench, the first benchmark for multi-sensor fusion in MLLMs. Exten-
sive experiments demonstrate that EarthMind achieves state-of-the-art performance while consistently
outperforming existing MLLMs across diverse EO benchmarks, validating its effectiveness and strong
generalization.
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ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics in all aspects of this research. This work
presents several ethical considerations that we address below.

Dataset Usage and Privacy. All datasets used in this research are publicly available and have been
used in accordance with their original licensing terms and usage agreements. The Earth Observation
imagery used does not contain personally identifiable information, as the spatial resolution is insuf-
ficient to identify individuals. We have properly cited all data sources and maintained the original
train/test splits to ensure fair comparison with existing work.

Dual-Use Technology Considerations. While Earth Observation technologies can have beneficial ap-
plications in environmental monitoring, disaster response, and agricultural planning, we acknowledge
that remote sensing capabilities could potentially be misused for surveillance purposes. However,
our work focuses on advancing scientific understanding of multi-sensor data fusion for legitimate
environmental and scientific applications. The datasets and benchmarks we develop are intended for
the research community to advance Earth system science.

Environmental Impact. We acknowledge that training large models requires significant compu-
tational resources with associated carbon footprint. To mitigate this impact, we have designed our
architecture to be efficient (4B parameters) compared to larger alternatives, and we provide detailed
computational requirements to help researchers make informed decisions about resource usage.

Bias and Fairness. Our training data is sourced from publicly available Earth Observation datasets
that may contain geographical biases toward certain regions. We acknowledge this limitation and
encourage future work to ensure more global representation in Earth Observation datasets.

Open Science. To promote transparency and reproducibility, we commit to releasing our code, model
weights, and detailed experimental protocols upon publication, enabling the research community to
verify and build upon our contributions.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive details across multiple components of our work.
The EarthMind architecture and Hierarchical Cross-modal Attention (HCA) module are fully de-
scribed in Sec. 3 with complete mathematical formulations. Implementation details, including model
configurations, training hyperparameters, and optimization settings, are provided in Appendix F. The
FusionEO dataset construction pipeline is detailed in Sec. 3.3 with the three-stage automated curation
process fully specified. EarthMind-Bench construction and evaluation protocols are comprehensively
documented in Sec. 4 and Appendix E. All public datasets used in our experiments are properly cited
with their official splits maintained to ensure fair comparison. Code for model training, evaluation
scripts, and data processing pipelines will be made available upon publication to facilitate reproduc-
tion of our results. The computational requirements and training infrastructure details are specified in
Appendix D to aid in replication efforts.
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A OVERVIEW OF APPENDIX

• B: The Use of Large Language Models (LLMs).
• C: Discussions and Broader Impact.
• D: Details of EarthMind.
• E: Details of EarthMind-Bench.
• F: Experimental Settings.
• G: Training Dataset.
• H: More Ablation Studies.
• I: More Visualization Results.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR policies on LLM usage, we disclose that no Large Language Models were
used in any aspect of this research work. All content, including research conception, methodology
development, experimental design, code implementation, data analysis, result interpretation, and
manuscript preparation, was conducted entirely by the authors without LLM assistance. The authors
assume full responsibility for all content, claims, and conclusions in this paper.

C DISCUSSIONS AND BROADER IMPACT

In this section, we illustrate the limitations, the distinction between our method and existing ones, as
well as the broader impact.

Limitation and Future Work. Training EarthMind requires considerable computational resources
due to its use of multiple visual encoders for multi-level understanding. A promising direction is
to optimize the architecture via Mixture-of-Experts or knowledge distillation to reduce redundancy.
Additionally, a modality-aligned encoder that jointly embeds heterogeneous sensor inputs into a
shared semantic space could further improve efficiency. Moreover, our EarthMind-Bench currently
contains only optical-SAR data; future work will incorporate additional sensing modalities such
as multispectral, hyperspectral, and infrared imagery. Furthermore, benchmarking diverse fusion
scenarios involving more than two modalities would better reflect real-world EO challenges.
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Table A: (Left) Comparison of EarthMind with existing EO LMMs. EarthMind supports both multi-
granular and multi-sensor understanding. (Right) Comparison of EarthMind-Bench with existing EO
benchmarks in terms of multi-sensor support, granularity, and task level. “S” denotes single-modality
input; “M” indicates multiple modalities (used independently); “F” represents paired sensor fusion.
“MC” and “OE” refer to multiple-choice and open-ended formats, respectively.

Method Multi-Granular Multi-Sensor
Image Region Pixel Handling Fusion

RSGPT (Hu et al., 2025) ✓ ✗ ✗ ✗ ✗

GeoChat (Kuckreja et al., 2024) ✓ ✓ ✗ ✗ ✗

EarthGPT (Zhang et al., 2024b) ✓ ✓ ✗ ✓ ✗

Earthmarker (Zhang et al., 2024a) ✓ ✓ ✗ ✗ ✗

LHRS-bot (Muhtar et al., 2024) ✓ ✗ ✗ ✗ ✗

SkyEyeGPT (Zhan et al., 2025) ✓ ✗ ✗ ✗ ✗

Skysensegpt (Zhan et al., 2025) ✓ ✗ ✗ ✗ ✗

EarthDial (Soni et al., 2024) ✓ ✗ ✗ ✓ ✗

GeoPixel (Shabbir et al., 2025) ✓ ✗ ✓ ✗ ✗

RSUniVLM (Liu & Lian, 2024) ✓ ✓ ✓ ✗ ✗

EarthMind ✓ ✓ ✓ ✓ ✓

Benchmark Multi
Sensor

Multi
Gran.

Multi
Level

Task
Type

RSIEval (Hu et al., 2025) S ✗ ✓ MC + OE
HnstD (Pang et al., 2025) S ✗ ✗ MC + OE
GeoChat-Bench (Kuckreja et al., 2024) S ✗ ✗ OE
VRSBench (Li et al., 2024b) S ✗ ✗ MC + OE
LHRS-Bench (Muhtar et al., 2024) S ✗ ✓ MC
VLEO-Bench (Zhang & Wang, 2024) S ✗ ✓ MC + OE
FIT-RSRC (Luo et al., 2024) S ✗ ✓ MC
UrBench (Zhou et al., 2025) S ✓ ✓ MC
XLRS-Bench (Wang et al., 2025) S ✓ ✓ MC + OE
GEOBench-VLM (Danish et al., 2024) M ✓ ✓ MC + OE

EarthMind-Bench M + F ✓ ✓ MC + OE

Comparison with Existing Works. The key distinction of our work from existing models is that
EarthMind is the first to address both multi-sensor fusion and multi-granular tasks simultaneously.
For multi-sensor capability, our model can flexibly support single or multiple visual inputs; for multi-
granular understanding, it can handle multiple levels of granularity, from pixel-level segmentation and
region-level semantic understanding to image-level scene classification. As summarized in Tab. A,
achieving fine-grained, multi-sensor comprehension in EO remains largely unresolved by existing
approaches.

Broader Impact. EarthMind offers significant impact to both the large multimodal model (LMM)
community and practical applications. Methodologically, it demonstrates how vision-language
models can be extended to handle multi-granular tasks via the proposed Hierarchical Cross-modal
Attention mechanism, which adaptively allocates attention to task-relevant regions and modalities.
This architectural design extends beyond Earth Observation and can be generalized to other domains
requiring fine-grained spatial reasoning, such as medical imaging and autonomous driving. For
the EO community, EarthMind contributes both algorithmically and empirically: it introduces an
effective multi-sensor fusion framework and proposes a scalable training pipeline, accompanied by a
comprehensive benchmark and instruction-tuning dataset. These contributions can benefit various
downstream applications in remote sensing, including disaster forecasting, infrastructure monitoring,
and environmental assessment.

D DETAILS OF EARTHMIND

EarthMind is built upon the InternVL-2 framework (Chen et al., 2024b). In InternVL-2, each image
is divided into multiple patches at pre-defined scales. Each patch is processed by the visual encoder
and encoded into 256 tokens. For instance, an image with 4 patches (plus a global image token)
yields (4 + 1) × 256 visual tokens in total. To support multi-sensor input, non-optical imagery
(e.g., SAR or multispectral data) is transformed into a synthetic video-like sequence by stacking
pre-processed frames. This sequence is then concatenated before the input query, following the
protocol of multi-frame vision-language models.

In addition, we extend the tokenizer by introducing a special “[SEG]” token for pixel-level grounding.
The hidden state of the final LLM layer corresponding to the “[SEG]” token serves as the semantic
prompt for mask generation. During inference, if the “[SEG]” token is not generated, we interpret it
as an indication that the queried object is not present in the image.

E DETAILS OF EARTHMIND-BENCH

Overview. We present a more detailed analysis of EarthMind-Bench in Fig. A. Subfigures (a–c)
illustrate the distribution of task categories, while (d) and (e) report the number of samples per
task. Notably, our benchmark includes 438 referring expression segmentation samples paired with
corresponding binary masks, highlighting its support for fine-grained pixel-level grounding. We
further visualize the word clouds of questions (f) and answers (g), showing that EarthMind-Bench
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Open-ended Questions

Multiple-Choice Questions

( a ) ( b ) ( c )

( d ) ( e )

( f )  ( g )

Figure A: Detailed data statistics of the EarthMind-Bench.
covers a wide variety of object types and semantics, enabling comprehensive evaluation across
perception and reasoning tasks.

Data Annotations. Among the 10 subtasks in EarthMind-Bench, annotations for Scene Classification
and Referring Expression Segmentation are directly inherited from their original datasets. For the
remaining 8 tasks, we rely on human annotations. We recruit 8 domain experts in geoscience, each
assigned to annotate a specific task. After the initial annotation phase, all experts cross-validate each
other’s work and score the quality of samples. Only high-quality samples with consensus are retained
in the final benchmark. To reduce the annotation burden, we first leverage GPT-4o to generate detailed
image descriptions, which annotators can reference when constructing question-answer pairs. To
ensure consistency and annotation fidelity, we also provide strict task-specific annotation guidelines
for all subtasks, which are shown as follows:

• 1. Object Existence. Determine whether a specific object or class exists in the image (e.g.,
Is there a bridge in the image?”). Guideline: The object should be clearly visible and occupy
a non-trivial area. If heavily occluded or ambiguous, mark as Not present.”

• 2. Hallucination Detection. Detect whether the model falsely recognizes objects that do
not exist. Guideline: Ask for fine-grained distinctions between semantically similar objects
(e.g., “Is there a train or a bus in the image?”). Confirm that the mistaken object does not
exist even under partial occlusion.

• 3. Object Counting. Count the number of objects from a given category (e.g., “How
many buildings are visible in the image?”). Guideline: Only count objects that are visually
distinguishable and not clustered into ambiguous shapes. Accept a small margin of error
(±1) in complex scenes.

• 4. Spatial Relationship. Identify relative positions between objects (e.g., What is next to
the waterbody?”). Guideline: Use cardinal or contextual spatial relations (e.g., to the left

3
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of,” adjacent to,” surrounded by”). Annotators should verify object co-existence and relative
proximity.

• 5. Route Planning. Generate or select feasible navigation routes from a start to a target
location. Guideline: Ensure the proposed path avoids obstacles (e.g., rivers, buildings),
follows terrain constraints (e.g., avoid steep hills), and adheres to logical movement (e.g.,
roads preferred over fields).

• 6. Image Captioning. Generate descriptive sentences summarizing the content and layout
of the image. Guideline: Captions should mention key objects, land types, spatial layout,
and human-made structures if visible. Avoid hallucination and be concise yet informative.

• 7. Disaster Forecasting. Assess the likelihood of disaster based on visual evidence (e.g., “Is
this area prone to flooding?”). Guideline: Use cues such as terrain (lowlands), proximity to
water, lack of infrastructure, or signs of previous disaster impact. Avoid speculative answers.

• 8. Urban Development Assessment. Evaluate whether an area is suitable for urban
development. Guideline: Consider factors such as flat terrain, absence of natural barriers,
existing road access, and land cover type. Annotators should justify suitability with visual
cues.

Evaluation Metrics. For multiple-choice tasks, we evaluate model performance using standard
accuracy, measuring the percentage of predictions that exactly match the ground-truth option. For
open-ended tasks, inspired by (Zhou et al., 2024), we adopt a GPT-4-based evaluation protocol that
assesses the alignment between the model-generated answers and human annotations. As illustrated
in Fig. B, we prompt GPT-4 to score the responses based on semantic similarity and correctness,
following a structured rubric to ensure consistent evaluation across tasks.

Evaluation Prompt For EarthMind-Bench open-ended Task

###Task Description: You are required to evaluate a respondent's answer based on a 
provided question, some scoring points,
and the respondent's answer. You should provide two scores. The first is the accuracy score, which 
should range from 1 to 5. The
second is the relevance score, which should also range from 1 to 5. Below are the criteria for each 
scoring category.
###Scoring Criteria: Please rate the similarity between the **predicted caption** and the 
**ground truth** based on the following criteria:1 - Completely unrelated (content is very different)  
2 - Slightly related, but most descriptions do not match  
3 - Somewhat similar, with a few common details but also clear differences  
4 - Mostly matching, only a few minor differences  
5 - Highly consistent, both descriptions describe the same content in detail
##INSTRUCTION: 
Output Scores in JSON Format: Present the scores in JSON format as follows...

Figure B: The illustration of open-ended task evaluation prompt.

F DETAILS OF EXPERIMENTAL SETTINGS

We elaborate on the training and inference details of EarthMind. Specifically, we report the hyperpa-
rameters in the fine-tuning stage, as shown in Tab. B.

G TRAINING DATASET

EarthMind is trained on large-scale natural image datasets, including LLaVA-665K (Liu et al., 2023a),
56K referring expression data (Kazemzadeh et al., 2014; Yu et al., 2016), and 214K grounding
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Hyperparameter Value

Overall batch size 64
Learning rate 4e-5
LR Scheduler Cosine decay
DeepSpeed ZeRO Stage ZeRO-2
Optimizer Adam
Warmup ratio 0.3
Epoch 1
Weight decay 0
Precision bf16

Table B: Hyperparameters of EarthMind.

Figure C: The pipeline of FusionEO curation.

conversation generation samples (Rasheed et al., 2024). These datasets cover image-level captioning,
VQA, and text-driven segmentation. We also incorporate 724K region-level descriptions from the
Osprey dataset (Yuan et al., 2024a) to improve region-level understanding capacity. Second, we
introduce EO-specific multimodal data to adapt EarthMind to the remote sensing domain. This
includes 1M VQA data from EarthGPT (Zhang et al., 2024b), 142K EO conversations from VRS-
Bench (Li et al., 2024b), 31K region-level captions from DIOR-RSVG (Zhan et al., 2023), and 21K
referring segmentation samples from RRSIS-D (Liu et al., 2024b) and RefSegRS (Yuan et al., 2024b).
Moreover, we involve 500k multi-spectral data, including BigEarthNet (Sumbul et al., 2019) and
SoSAT-LCZ42 (Sumbul et al., 2019). Third, we utilize our synthesized multi-sensor conversation
corpus (20K RGB-SAR paired dialogues) and selectively retain examples from earlier stages to
mitigate catastrophic forgetting.

Paired Multi-Sensor Training Data Curation. We construct a high-quality paired optical-SAR
training corpus from six publicly available datasets: BigEarthNet-MM (Sumbul et al., 2021),
OpenEarthMap-SAR (Xia et al., 2025), DFC2023 Track2 (Persello et al., 2023), WHU-OPT-SAR (Li
et al., 2022), MSAW (Shermeyer et al., 2020), and MultiResSAR (Zhang et al., 2025b). All optical-
SAR pairs are sampled from their training splits to avoid overlap with EarthMind-Bench.

To scale data generation, we design an automatic three-stage synthetic pipeline leveraging GPT-4o,
as shown in Fig. C: Stage 1: Metadata Preparation involves extracting modality information
(optical and SAR) and category labels (e.g., rangeland, road, building) for each image pair. Stage
2: RoI-based Summarization uses the optical image and metadata as input to GPT-4o to generate
comprehensive scene descriptions. The model produces both short captions summarizing key objects
and spatial relationships, and detailed long captions that provide fine-grained descriptions of regions
of interest and their contextual relationships. Stage 3: Self-instruct VQA Generation creates diverse
question-answer pairs based on the generated captions and multi-sensor context. These cover various
reasoning types including: (1) Object Existence (e.g., ”Is there a river in the image?”), (2) Counting
(e.g., ”How many buildings are visible?”), (3) Spatial Relations (e.g., ”What is next to the forest?”),
(4) Object Localization (e.g., ”Where is the road located?”), and (5) Scene-Level Understanding (e.g.,
”Is this area suitable for agriculture?”).

All outputs are structured in JSON format for seamless integration. This three-stage approach ensures
that the generated instruction data captures both coarse-grained scene understanding and fine-grained
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spatial reasoning across modalities. In total, we curate 30K synthetic multi-sensor samples as our
FusionEO dataset for training cross-sensor MLLMs.

Table C: Ablations on the non-rgb data processing.

Method Multispectral
BigEarthNet SoSAT-LCZ42

Three-band grouping 70.4 58.3
Single-band grouping 71.2 59.2

Method SAR
Small Medium Large Single Multiple

Zero-padding 12.14 26.02 35.56 26.03 6.06
Channel replication 11.08 25.99 34.38 25.99 4.32

Table D: Ablation study on Multi-granular joint training.

Method Image-level (Accuracy) Region-level Pixel-level (mIoU)
AID UC RSVQA VRS-VQA RSVG VRS-VG RRSIS-D RefSegRS

Only trained on Image data 97.0 95.1 73.8 77.8 - - - -
Only trained on Region data - - - - 379.6 49.8 - -
Only trained on segmentation data - - - - - - 77.6 59.3

EarthMind 97.2 95.0 74.0 78.9 428.2 55.6 82.2 62.6

Table E: Ablation study on joint multi-sensor training.

Method EarthMind-Bench
RGB SAR RGB+SAR

Only trained on RGB 68.4 30.1 28.4
Only trained on SAR 45.6 59.8 22.3

trained on paired RGB-SAR 69.0 67.5 70.6

H MORE ABLATION STUDIES

Ablation on Multi-Sensor Data Processing. One of the key strengths of EarthMind lies in its
ability to handle multi-sensor data beyond standard RGB imagery. To better understand the impact
of different preprocessing strategies, we conduct a series of experiments focused on the handling
of SAR and multispectral (MS) data. For SAR inputs with fewer than three channels, we compare
two strategies: (1) Zero padding, where the missing channels are filled with zeros; (2) Channel
replication, where existing channels are duplicated to reach three channels. For multispectral data
with more than three bands, we evaluate: (1) Three-band grouping, where every three consecutive
bands are grouped to form one RGB-like frame; (2) Single-band grouping, where each band is
treated as an individual frame, forming a multi-frame sequence. We evaluate each method under
the same training settings and report classification accuracy on the test sets of BigEarthNet (for
MS) and SAR Ship Detection (for SAR), as summarized in Tab. C. Our results show that zero
padding outperforms channel replication for SAR data, likely because copying channels introduces
redundancy and potential noise. For MS data, single-band grouping slightly improves performance
due to better spectral resolution, but incurs substantial computational overhead due to the increased
number of tokens. Considering both effectiveness and efficiency, we adopt zero padding for SAR
and three-band grouping for MS as our default configuration. In the future, we will consider involve
token reduction techniques (Liu et al., 2025) to reduce overhead cost.

Ablation on Joint Multi-Granular and Multi-Sensor Training. EarthMind is designed to be jointly
trained on both multi-granular and multi-sensor data. To validate the effectiveness of this unified
training paradigm, we conduct ablation studies along two axes: (1) Multi-Granular Training. We
compare two settings: (i) Joint training with image-level, region-level, and pixel-level data. (ii)
Independent training for each granularity using the same total amount of data. (2) Multi-Sensor
Training. We also compare: (i) Joint training with all available sensor modalities (e.g., RGB, SAR,
MS). (ii) Independent training with each modality separately. As shown in Tab. D and Tab. E,
the multi-granular co-training strategy consistently outperforms independently trained counterparts,
especially on pixel-level tasks. This suggests that high-level semantic supervision (e.g., image-level
QA) can improve fine-grained understanding through shared representation learning. Similarly,
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Table F: Ablation study on the first stage of curriculum training.

Method Image-level (Accuracy) Region-level Pixel-level (mIoU)
AID UC RSVQA VRS-VQA RSVG VRS-VG RRSIS-D RefSegRS

w/o pretraining 96.5 94.8 73.2 77.6 406.7 49.8 75.4 55.3

with pretraining 97.2 95.0 74.0 78.9 428.2 55.6 82.2 62.6

Table G: Ablation study on the second stage of curriculum learning.

Method EarthMind-Bench
RGB SAR RGB+SAR

w/o pretraining on RGB EO data 67.5 64.3 68.9

with pretraining on RGB EO data 69.0 67.5 70.6

multi-sensor co-training improves generalization across modalities. Notably, the performance under
SAR-only evaluation is significantly enhanced by leveraging complementary information learned from
RGB and MS data during joint training. This highlights EarthMind’s ability to exploit cross-modal
synergy in both perception and reasoning tasks.

Ablation on Curriculum Training Strategy. EarthMind adopts a curriculum learning strategy that
gradually adapts the model from general vision-language data to remote sensing tasks. Specifically,
the training proceeds in three stages: (1) pretraining on large-scale natural image VQA and captioning
datasets, (2) domain adaptation using EO-specific RGB data, and (3) fine-tuning on multi-sensor data
(e.g., SAR). To evaluate the effectiveness of this curriculum, we conduct ablation studies by removing
or reordering training stages. As shown in Tab. F and Tab. G, pretraining on general image-language
data provides strong foundational capabilities, leading to significant performance improvements
on EO tasks, particularly in pixel-level segmentation. Furthermore, RGB-domain training not only
enhances performance on RGB inputs but also boosts multi-sensor fusion results, demonstrating its
role as an effective bridge between general vision and SAR-specific domains.

I MORE VISUALIZATION RESULTS

More visualization results of EarthMind can be seen in Fig. D.
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Please classify this image. 

This image is a church.

Please describe this image.

This image covers a big soccer play-
ground in the center. and there is a 
green land in the right top corner.

Scene Classification

Image Captioning

How many planes are there in 
the image.

There is two planes.

Object Counting

Please segment the white ship.

Sure. It is [SEG].

Segmentation

Please classify this image. 

This image is an airport.

Please locate all ships.

There are four ships, there local-
izations are [0.2,0.9....]

Scene Classification

What natural disasters are likely to occur in this area?

This area is flat and has many rivers, so floods are 
likely to occur.

Disaster Forecasting

Is this area suitable for urban development?

Yes, the region has many rivers, abundant water 
resources, and flat terrain, making it very suitable for 
urban expansion.

Urban Development Assess

Yes, you can go right past a building, then cross a 
road and follow the building to get there.

Can you get there by walking from the building in the 
lower left corner of the picture to the building in the 
upper right corner?

Route Planning

Visual Grounding

Please describe this region.

There are two tennis courts.

Region Captioning

Please segment the chimney.

Sure. It is [SEG].

Segmentation

Figure D: More visualization of EarthMind.
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