
Curating Online Forum Knowledge as Troubleshooting Dataset
for Generative AI Using Fusion Retrieval

Youyang Kim†, Yaoping Ruan‡∗, Byungchul Tak†*

†Kyungpook National University, Daegu, Republic of Korea
‡Zhejiang A&F University, Zhejiang, China

youyangkim@knu.ac.kr, ruanyaoping@gmail.com, bctak@knu.ac.kr

Abstract

Problem-solution datasets are commonly used for generative
AI training. Especially when building a domain-specific con-
versational system, both fine-tuning and retrieval-augmented
generation rely heavily on the availability of high-quality
dataset. In system troubleshooting domain, few troubleshoot-
ing datasets are available for model tuning. We find annotat-
ing troubleshooting dataset a nontrivial task mainly due to the
multi-modality nature of the data, which contain a mix of dis-
parate data artifacts such as codes, log messages, console out-
puts, commands, and some descriptions in natural language.
In this paper, we present a comprehensive approach to ac-
quire the most relevant online forum data as answer for the
input problem description. Our main goal is to retrieve the
most relevant online forum post for a given problem descrip-
tion, either as a semi-supervised curation method for training
dataset, or as a retrieval mechanism for augmented genera-
tion. Our key idea is to effectively separate data artifacts in
the documents and assess the relevance across pairs of het-
erogeneous artifact types. To this end, we utilize a bag of
language models, and then use the weighted accumulative
score to find the most relevant answer. Compared with sev-
eral baseline techniques, our method demonstrates significant
improvements by at least 42.89% against the best competitor
regarding search ranking quality. Also, it successfully ranks
the ground-truth forum posts within the top 10 in 96.1% of
the cases, significantly reducing human annotation effort.

Introduction
Online technical forums such as Stack Over-
flow (Stack Overflow 2023), Quora (Quora, Inc 2023),
Microsoft Community (Microsoft 2023), and Apple Sup-
port Community (Apple 2023) have become a popular
resource for technical staff seeking solutions to problems
arising in computer systems. These forums offer a vast
repository of knowledge and experiences, allowing users
to publish, discuss, and retrieve questions related to their
specific fields. With the growing complexity of modern soft-
ware stacks, they have become indispensable for technical
staff for quick and effective problem-solving.

To the best of our knowledge, however, few have fo-
cused on harvesting online forums comprehensively as trou-

*Corresponding authors
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bleshooting dataset for generative AI. The troubleshooting
dataset falls into the question-answer category, but prob-
lem descriptions for troubleshooting can contain richer in-
formation than a question in human language. According to
the Information Technology Infrastructure Library (ITIL),
which prescribes best practices for IT service and asset man-
agement, a problem description should consist of almost a
dozen of key elements including problem summary, prob-
lem manifests such as error messages, system crashes or per-
formance degradation, and environment details such as op-
erating system, hardware, network configuration and other
factors (iti 2024). Seeking the most relevant post which can
server as the answer to the given problem description is at
the core. In addition to traditional keyword-based search
engines, semantic search using language models based on
word embedding or sentence embedding has gained large at-
tention in recent years (Antonio Luca, Cimino, and Vaglini
2021; Esteva et al. 2021; Peinelt, Nguyen, and Liakata 2020;
Deshmukh and Sethi 2020; Khattab and Zaharia 2020). Both
the keyword-based and semantic search perform poorly on
forum data mainly due to the complexity and multi-modality
nature of the posts.

To facilitate such data curation process, we propose a fu-
sion retrieval framework that delivers significantly improved
matching capability of online forum troubleshooting data via
a fine-granular multi-modal data retrieval approach. The re-
sults can be used for model training or serve as a context for
retrieval augmented generation (RAG) (Siriwardhana et al.
2023; Salemi and Zamani 2024) using LLMs. Our scheme is
an overarching approach of separating data artifacts in each
post and computing relevance scores across pairs of the arti-
facts and aggregating these multiple search results for better
accuracy. Typical data artifacts include code snippets, log
messages, console output, command line with arguments,
and failure description texts. To our knowledge, this is the
most comprehensive and general approach to explore online
forum data with multi-modality as a key design factor.

We evaluated our approach on several popular dis-
tributed applications (OpenStack (OpenInfra Foundation
2023), Spark (Spark 2023), Elasticsearch (B.V. 2023),
Kafka (kafka 2023) and Mongodb (Inc. 2023)) which are
popular topics in Stack Overflow. We reproduced 77 fail-
ure cases by injecting failures into the applications repli-
cated in our local environment. The metrics we use are the

import pyspark.sql.functions as f
df_categories4 = df_categories3.select(“alias”, “title”,
f.when(df_categories.parents == 0).otherwise(df_categories3.parent[0])).show()

It shows an error of when() missing 1 required positional argument: ‘value’. But if I place a value
after the ‘0’, it says that there is an error that can’t be resolve.

How would I approach this problem?
Thanks.

Original Error:

Positional argument error when using ‘when’ in pyspark
Asked 5 years, 2 months ago Modified 5 years, 2 months ago Viewed 4k times

3

Title

TypeError: when() missing 1 required positional argument: ‘value’

Error After Entering Value after 0: . . .

Description

Code

Console
Output

Figure 1: Stack Overflow question with various artifacts.

Mean Reciprocal Rank (MRR) and the top k SuccessRates
(R@k). The results demonstrated much higher accuracy in
finding the relevant troubleshooting forum posts compared
to 4 other baselines including Google search, ensemble of
3 models, BM25, and SentenceBERT. Overall, the MRR
of our technique was 42.89% better than the best competitor.
Furthermore, our technique ranked the ground-truth Stack
Overflow documents within the top-10 of the returned list
for 96.1% of the cases, whereas the runner-up competitor
obtained 72.7%.

The main contributions are: First, we propose a trou-
bleshooting dataset curation approach based on the individ-
ual and aggregated relevance scores across heterogeneous
artifacts pairs. To enable this, we use a bag of language
models and tune them using domain-specific documents,
which yield significantly higher accuracy than existing mod-
els publicly available in finding correct troubleshooting in-
formation. Second, we release the troubleshooting dataset
and data processing models to promote research in this field.
It consists of all the code snippets, commands, logs, and con-
sole outputs from the reproduced failure cases which can be
used for troubleshooting model training.

Data Retrieval and Curation Pipeline
Forum Data Artifacts
Figure 1 showcases the data artifacts found in forum posts.
Besides the title (tnd) and description (des) of the prob-
lem, each post may contain various data such as code snip-
pets (cod), commands (cmd), log messages (log), and con-
sole output (cns).

One of the challenges in conventional approaches of find-
ing the most relevant post is to utilize all the artifacts. Based
on this observation, we divide the task into two steps: i) cal-
culating the relevance score of each artifact pair and ii) ag-
gregating the calculated scores for that pair. Figure 2 shows
the overall workflow and pipelines.

The data artifact type falls into three categories: (1) pro-
gramming language type such as code snippet (cod),
(2) (semi) natural language types such as log (log), console
output (cns), and description (des and tnd), and (3) short
phrase or token type such as command (cmd). For a dataset
consists of all artifacts of {cod, cmd, log, cns, des,
tnd}, theoretically an arbitrary pair of two data artifacts (ui,
vj,k) can be compared for relevance.

In practice, within the stackoverflow posts we used for
this study, we found that only 4.91% contain both cmd and
cns and 2.88% contain both cmd and log. Due to the insuf-
ficiency of training data, we exclude cmd:log, log:cmd,

cmd:cns, and cns:cmd.
In IT operation, code and command, log and console out-

put are always interchangeably referred, so that we also ex-
clude the cod and cmd pair and log and cns pair.

We adopt five popular models based on the na-
ture of each artifact: CodeBERT (Feng et al. 2020),
GraphCodeBERT (Guo et al. 2021) and CodeT5+ (Wang
et al. 2023) for programming language type since all these
models are trained with code, SentenceBERT (Reimers
and Gurevych 2019) for natural language types, and BM25
for short phrases, given that they are essentially keyword to-
kens. The full list of models per pair and the choice of mod-
eling techniques are in Figure 3.

Assessing Relevance Between Different Artifacts
Relevance score of code and natural language pairs
CodeBERT, GraphCodeBERT and CodeT5+ are all pre-
trained transformer-based models for code and natural lan-
guage pairs. We created a subset of artifact pairs and se-
lect the best performed model for each pair. As a re-
sult, CodeBERT is used for cod:tnd, GraphCodeBERT
for cod:log, cod:cns, log:cod, and cns:cod, and
CodeT5+ for cod:cod and des:cod. When quantifying
relevance score, we directly use the prediction probability
of CodeBERT output as the result, and the inner product
of each of the input and target vector of GraphCodeBERT
and CodeT5+embedding as the result. This unification is
based on the fact that CodeBERT uses cross-encoder and the
output ranks the most relevant candidate already while the
other two models are bi-encoder-based which merely con-
vert the input text and each of the target text into vectors.

Relevance score of natural language pairs We adopt
SentenceBERT to compute the relevance between natural
language pairs, namely logs, console outputs and descrip-
tions. We first preprocess the input data to be sentence-like
as much as possible to comply with the expected model in-
put. Then, we compute the cosine similarity between a user-
side data artifact (ui) and every question part data artifact
(vj,k). At post level, the relevance score is the maximum
similarity among the sentence pairs.

Relevance score of tokens or short phrase pairs BM25
is adopted to compare two tokens or short phrases, given its
popularity. The core of it is a bag-of-words retrieval func-
tion, which works well on scenarios that can be ranked us-
ing keywords. Unlike the codes, system commands (cmd)
are quite distinctive and primarily used in fixed forms with
predefined arguments. We use the return value for each spe-
cific input query directly as the relevance score.

Aggregating Relevance Using Weighted Geometric
Mean
In order to aggregate relevance at the document level, we
use the weighted geometric mean of ranks from all available
artifact pairs for a given input and candidate pair. The use
of weighted geometric mean reflects our intention to reward
highly matched artifacts more through multiplication rather
than adding the arithmetic means. Since not all posts contain

Code

snippet

Log

messages
Description

Console

output
Command

Code

snippet

Log

messages

Title &

Description
Console

output
Command

User-side data

(Failure Site)
Online forum

posts

Model1 Model2 Model3 Modeln
…

Modeln-1

Ranked list

per Model1

Ranked list

per Model2

Ranked list

per Model3

Ranked list

per Modeln-1

Ranked list

per Modeln

Weighted Aggregation Model

Modeln-2

Ranked list

per Modeln-2

Post ID Rank Score

46907661 1 0.99

20034143 2 0.92

20822922 3 0.91

12441561 4 0.90

16848705 5 0.88

9765290 6 0.75

37978507 7 0.72

… … …

Final Rank

46907661 1 0.99

post1Input

Data

artifacts

N Models based

on one of

CodeBERT/

GraphCodeBERT/

CodeT5+/

SentenceBERT/

BM25

Output

Figure 2: Overview of our technique’s workflow.

Model

number

Data artifact pair

(user-side:forum-side)

Associated

model

Model

number

Data artifact pair

(user-side:forum-side)

Associated

model

M1 cod:cod CodeT5+ M10 des:tnd SentenceBERT

M2 cod:log GraphCodeBERT M11 des:cns SentenceBERT

M3 cod:tnd CodeBERT M12 des:cmd BM25

M4 cod:cns GraphCodeBERT M13 cns:cod GraphCodeBERT

M5 log:cod GraphCodeBERT M14 cns:tnd SentenceBERT

M6 log:log SentenceBERT M15 cns:cns SentenceBERT

M7 log:tnd SentenceBERT M16 cmd:tnd BM25

M8 des:cod CodeT5+ M17 cmd:cmd BM25

M9 des:log SentenceBERT

Figure 3: Data artifact pairs and associated models (mi) to
compute the relevance scores.

the full set of artifacts, by applying the weight sum ratio
we also give preference to those with more information by
penalizing the ones with missing artifacts.

Evaluation of Retrieval Accuracy
Since the foundation of our data curation is to retrieve the
most relevant forum post as the solution for the given prob-
lem description, we evaluate the effectiveness of our fu-
sion algorithm by quantifying the ranked position of the
ground truth post. Among the 23 million posts, we se-
lected a subset based on the tag name: MongoDB (Inc.
2023), Spark (Spark 2023), OpenStack (OpenInfra Foun-
dation 2023), Kafka (kafka 2023), and Elasticsearch (B.V.
2023). In choosing target applications, we opt to software
packages rather than programming languages or specific
technique given the limited availability of the application-
specific training datasets. These applications are rather pop-
ular, with the most number of posts in the forum and cover-
ing modern technologies such as NoSQL database, big data
platform, cloud management, distributed event processor
and search engine. Despite of their popularity, the scarcity
of corresponding datasets in these domains presumably is
because of the complexity and difficulty in data curation.

In order to collect the artifacts as complete as possible,
as well as to verify the correctness of the solution, we set
up the applications in our local environment and inject er-
rors based on the description of the post. To this end, we se-
lected a total of 77 problem scenarios, reproduced the prob-
lem and verified the solutions manually. We admit that while
this approach may not be optimal for large scale production,
it covers the richest range of artifacts and provides the least
ambiguity to demonstrate the validity of the approach.

We adopted Mean Reciprocal Rank (MRR) and the Suc-
cessRate@k (Gu, Zhang, and Kim 2018; Jiang et al. 2020)

as the metrics for our evaluation. MRR is concerned with the
rank of a single best item in the list so that it indicates the
quality of each retrieval approach, and the SuccessRate@k
(also denoted as R@k) metric measures the average propor-
tion of ground truth questions ranked within the top k. MRR
is defined as:

MRR =
1

|C|

|C|∑
c=1

1

Rankc
(1)

where C is the number of reproduced cases. The maximum
value of MRR is 1, and the higher the better.

Results Analysis
We compare our approach with BM25, SentenceBERT,
Google search, and Ensemble which combines BM25,
SentenceBERT and CodeBERT. For all experiments, we
use the same problem description as the input, and identify
the position of the ground truth returned by each method.
The rank position is based on the dataset we filtered from
Stack Overflow using tags. Specifically, there are 3451 posts
for OpenStack, 172209 for MongoDB, 100640 for Spark,
57523 for Elasticsearch and 30896 for Kafka.

All five applications’ results show that our technique pro-
duces significantly better ranking results than all competi-
tors. Furthermore, it can rank the ground truth documents
within the top 10 results for 96% of all failure cases. Fig-
ure 4 shows the overall performance in ranking the ground
truth based on the MRR and SuccessRate@k metrics. Based
on MRR, our technique obtained a score of 0.713, the high-
est value, beating all other alternative approaches. While the
absolute value of MRR is a little hard to interpret, Success-
Rate@k results are quite straightforward: We ranked 57.1%
of the cases as the first choice suggesting that the matching
results can be used as the answer for training dataset directly.
If we annotate based on the top 5 results, then 92.2% of the
cases fall in that category. If our base is the top 10 results,
then it can retrieve 96.1% of the ground truth successfully. It
suggests that our approach can effectively match the ground
truth solutions to generate a troubleshooting dataset.

Within all the approaches, BM25 performs well compared
to other baseline techniques, considering that it is, in princi-
ple, based on the classic term and document frequency arith-
metically similar to TF-IDF. This is particularly true for ap-
plications such as OpenStack where commands are the main
artifacts. For other applications, the most prevalent artifact
is code snippets. Among the cases, 64% of MongoDB, all of
Spark, Elasticsearch, and Kafka contain codes.

0
.4

0
5

0
.3

5
1

0
.4

6
8

0
.5

1
9

0
.3

5
8

0
.2

9
9

0
.3

9
0

0
.4

6
8

0
.4

9
9

0
.4

0
3

0
.6

2
3

0
.7

0
1

0
.4

5
4

0
.3

2
5

0
.6

6
2

0
.7

2
7

0
.7

1
3

0
.5

7
1

0
.9

2
2

0
.9

6
1

0.0

0.5

1.0

M R R R @ 1 R @ 5 R @ 1 0

BM25 SentenceBERT
Ensemble Google Search
Our technique

MRR
①②③

R@1 R@5 R@10

① ②
③

④ ①②③④ ①②③④ ①②③④

④

Figure 4: Ranking quality comparison.

We investigate individual model’s contribution to accu-
racy to understand which data artifact pairs are the most
critical. Based on MRR, we find that cns:cns model pro-
duces the highest MRR of 0.547, followed by cmd:cmd.
This shows that it is important to utilize the console out-
put(cns) in the search for the most relevant online forum
documents whenever available. However, when we looked
at the ranking output produced by only using homogeneous
data pair models such as the cns:cns or cmd:cmd, we
found that the rank variance was high. This observation sup-
ports our technique of using multiple data types and com-
paring heterogeneous data type models together comple-
mentarily to achieve high search performance. Furthermore,
even if a data artifact pair may show low MRR when used
alone, they are indispensable to our technique since their
synergy is needed to produce high overall search accuracy.
Although not presented here in detail, we also conducted an
ablation analysis by removing certain pairs from our tech-
nique to observe their impacts. The models that affected the
accuracy the most came out to be cns:cns, followed by
des:tnd, log:log, des:cod and cod:tnd. Their re-
moval resulted in the MRR being dropped to 0.376, 0.618,
0.647, 0.677 and 0.678, respectively.

Tables 1, 2, 3, 4, and 5 in Appendix show ranking results
on all baselines and ours of each failure case.

Related Work
The availability of troubleshooting dataset is quite limited.
There are a handful of datasets in HuggingFace that con-
sist of posts from Stack Overflow. Some of them do con-
tain questions along with their selected answer or question
and answers grouped by specific tags. However, this simple
question and answer dataset are often including low-quality
or off-topic answers. LinkSo (Liu et al. 2018) proposes a
dataset of similar questions in Stack Overflow. Their work
identifies similar questions by manual annotation by com-
munity users. Moreover, their study shows that the learning-
based approach outperforms retrieving linked question pairs
rather than non-learning-based approaches.

Significant attention has been paid to data management of
online forum knowledge from information retrieval perspec-
tive. Researchers have focused on different aspects of on-
line forum knowledge, such as recommending relevant ques-
tions, retrieving APIs or code snippets, clustering and min-
ing topics, and summarizing answers in online forums. Pon-
zanelli et al. (Ponzanelli et al. 2014) proposed PROMPTER
that retrieved and recommended useful Stack Overflow
discussions by computing various relevance scores of code
and questions. Rahman et al. (Rahman, Yeasmin, and Roy

2014) and Li et al. (Li et al. 2015) explored IDE-based
search solution with working context to capture the rel-
evance between programming problems and online posts.
AnswerBot summarized relevant question posts for devel-
opers to quickly catch the key points (Xu et al. 2017), but
it used only the title of the posts in retrieving the relevant
posts. Liu et al. (Liu et al. 2021) observed a gap between the
knowledge users are interested in and the knowledge they
can retrieve using search engines. Developers also advocated
a better data organization of Q&A forums so that massive
code snippets available on Stack Overflow could be easily
reused (Wu et al. 2019). Hoogeveen et al. (Hoogeveen et al.
2018) proposed various natural language processing and ML
approaches to web forum retrieval. Furthermore, most of the
existing literature has focused on understanding user intents
in the forums (Cao et al. 2021), the structural characteristics
of the forum (Meldrum, Licorish, and Savarimuthu 2017;
Kim, Wang, and Baldwin 2010), and coding aspects (Yang,
Hussain, and Lopes 2016; Baltes et al. 2018).

Different from the above studies that focused on utilizing
the code artifact for searching, we consider multiple types
of data artifacts on the user-side and online forum side to
retrieve relevant questions specifically to the troubleshoot-
ing problem. Gao et al. (Gao et al. 2023) proposed a query-
driven code recommendation tool for developers to find the
most relevant code examples. Their work is complementary
to our work in the sense that it assists the developers in fig-
uring out the best code snippets to satisfy their needs.

Conclusion & Future Work
In this work, we presented a novel data curation approach by
retrieving the most relevant document from the online forum
posts. The key principle of our technique was to recognize
data artifact types separately in the online forum documents
and to apply the most suitable NLP models on multiple pairs
of them to differentiate accumulative relevance across dis-
parate types. Performing beyond simple string search or key-
word search, our technique was able to leverage more rele-
vant information between disparate data types in the posts,
and it was able to improve the accuracy of matching signif-
icantly. Based on the 77 actual failure cases from 5 applica-
tions, our results showed 96.1% matching accuracy and an
improvement of 42.89% over the best competitor.

While our fault injection experiments provide the most
confident verification against the ground truth, it is unre-
alistic to reproduce all cases in the dataset. However, we
can perform the same artifact-level evaluation method by
reconstructing problem descriptions for any case in the fo-
rum to form a more complete dataset. We also believe our
general idea is applicable to curate multi-modal dataset. As
another future work, we are exploring topics other than IT
troubleshooting forums.
Data & code availability: Data curation scripts,
models, and dataset will be available online.

Acknowledgment
This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (RS-2021-NR060080).

References
2024. Information Technology Infrastructure Library. https:
//www.ibm.com/topics/it-infrastructure-library.
Antonio Luca, A.; Cimino, M. G. C.; and Vaglini, G. 2021.
Technological troubleshooting based on sentence embed-
ding with deep transformers. Journal of Intelligent Manu-
facturing, 32.
Apple. 2023. Apple Support Community. https://
discussions.apple.com/.
Baltes, S.; Dumani, L.; Treude, C.; and Diehl, S. 2018. So-
torrent: Reconstructing and analyzing the evolution of stack
overflow posts. In Proceedings of the 15th international con-
ference on mining software repositories, 319–330.
B.V., E. 2023. Elasticsearch. https://www.elastic.co/kr/
elasticsearch/. Accessed: 2023-07-20.
Cao, K.; Chen, C.; Baltes, S.; Treude, C.; and Chen, X. 2021.
Automated query reformulation for efficient search based on
query logs from stack overflow. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE),
1273–1285. IEEE.
Deshmukh, A. A.; and Sethi, U. 2020. IR-BERT: Leveraging
BERT for Semantic Search in Background Linking for News
Articles. arXiv:2007.12603.
Esteva, A.; Kale, A.; Paulus, R.; Hashimoto, K.; Yin, W.;
Radev, D.; and Socher, R. 2021. COVID-19 Information Re-
trieval with Deep-Learning based Semantic Search, Ques-
tion Answering, and Abstractive Summarization. NPJ Digi-
tal Medicine, 4(1).
Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong,
M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; and Zhou, M.
2020. CodeBERT: A Pre-Trained Model for Programming
and Natural Languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, 1536–1547. On-
line: Association for Computational Linguistics.
Gao, Z.; Xia, X.; Lo, D.; Grundy, J.; Zhang, X.; and Xing,
Z. 2023. I Know What You are Searching For: Code Snippet
Recommendation from Stack Overflow Posts. ACM Trans-
actions on Software Engineering and Methodology, 32(3):
1–42.
Gu, X.; Zhang, H.; and Kim, S. 2018. Deep code search. In
Proceedings of the 40th International Conference on Soft-
ware Engineering, 933–944.
Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.;
Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; Tufano, M.;
Deng, S. K.; Clement, C. B.; Drain, D.; Sundaresan, N.;
Yin, J.; Jiang, D.; and Zhou, M. 2021. GraphCodeBERT:
Pre-training Code Representations with Data Flow. In
9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.
Hoogeveen, D.; Wang, L.; Baldwin, T.; Verspoor, K. M.;
et al. 2018. Web forum retrieval and text analytics: A survey.
Foundations and Trends® in Information Retrieval, 12(1):
1–163.
Inc., M. 2023. MongoDB. https://www.mongodb.com/. Ac-
cessed: 2023-07-20.

Jiang, J.; Lu, W.; Chen, J.; Lin, Q.; Zhao, P.; Kang, Y.;
Zhang, H.; Xiong, Y.; Gao, F.; Xu, Z.; et al. 2020. How to
mitigate the incident? an effective troubleshooting guide rec-
ommendation technique for online service systems. In Pro-
ceedings of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foun-
dations of Software Engineering, 1410–1420.
kafka. 2023. apache kafka. https://kafka.apache.org/. Ac-
cessed: 2023-07-20.
Khattab, O.; and Zaharia, M. 2020. ColBERT: Efficient
and Effective Passage Search via Contextualized Late In-
teraction over BERT. In Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’20, 39–48. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450380164.
Kim, S. N.; Wang, L.; and Baldwin, T. 2010. Tagging and
linking web forum posts. In Proceedings of the Fourteenth
Conference on Computational Natural Language Learning,
192–202.
Li, H.; Zhao, X.; Xing, Z.; Bao, L.; Peng, X.; Gao, D.; and
Zhao, W. 2015. amAssist: In-IDE ambient search of online
programming resources. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), 390–398. IEEE.
Liu, J.; Baltes, S.; Treude, C.; Lo, D.; Zhang, Y.; and Xia,
X. 2021. Characterizing search activities on stack overflow.
In Proceedings of the 29th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 919–931.
Liu, X.; Wang, C.; Leng, Y.; and Zhai, C. 2018. Linkso: a
dataset for learning to retrieve similar question answer pairs
on software development forums. In Proceedings of the 4th
ACM SIGSOFT International Workshop on NLP for Soft-
ware Engineering, 2–5.
Meldrum, S.; Licorish, S. A.; and Savarimuthu, B. T. R.
2017. Crowdsourced knowledge on stack overflow: A sys-
tematic mapping study. In Proceedings of the 21st Inter-
national Conference on Evaluation and Assessment in Soft-
ware Engineering, 180–185.
Microsoft. 2023. Microsoft Support Community. https://
answers.microsoft.com/.
OpenInfra Foundation. 2023. OpenStack Webpage. https:
//openstack.org/. Viewed on 16 March 2023.
Peinelt, N.; Nguyen, D.; and Liakata, M. 2020. tBERT:
Topic Models and BERT Joining Forces for Semantic Sim-
ilarity Detection. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, 7047–
7055. Online: Association for Computational Linguistics.
Ponzanelli, L.; Bavota, G.; Di Penta, M.; Oliveto, R.; and
Lanza, M. 2014. Mining stackoverflow to turn the ide into a
self-confident programming prompter. In Proceedings of the
11th working conference on mining software repositories,
102–111.
Quora, Inc. 2023. Quora Homepage. https://quora.com/.

Rahman, M. M.; Yeasmin, S.; and Roy, C. K. 2014. To-
wards a context-aware IDE-based meta search engine for
recommendation about programming errors and exceptions.
In 2014 Software Evolution Week-IEEE Conference on Soft-
ware Maintenance, Reengineering, and Reverse Engineer-
ing (CSMR-WCRE), 194–203. IEEE.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. In Pro-
ceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computa-
tional Linguistics.
Salemi, A.; and Zamani, H. 2024. Evaluating Retrieval
Quality in Retrieval-Augmented Generation. In Proceed-
ings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR
’24, 2395–2400. New York, NY, USA: Association for Com-
puting Machinery. ISBN 9798400704314.
Siriwardhana, S.; Weerasekera, R.; Wen, E.; Kaluarachchi,
T.; Rana, R.; and Nanayakkara, S. 2023. Improving the Do-
main Adaptation of Retrieval Augmented Generation (RAG)
Models for Open Domain Question Answering. Transac-
tions of the Association for Computational Linguistics, 11:
1–17.
Spark. 2023. Apache Spark. https://spark.apache.org/. Ac-
cessed: 2023-07-20.
Stack Overflow. 2023. Stack Overflow Webpage. https://
stackoverflow.com/. Viewed on 16 March 2023.
Wang, Y.; Le, H.; Gotmare, A. D.; Bui, N. D.; Li, J.; and Hoi,
S. C. H. 2023. CodeT5+: Open Code Large Language Mod-
els for Code Understanding and Generation. arXiv preprint.
Wu, Y.; Wang, S.; Bezemer, C.-P.; and Inoue, K. 2019. How
do developers utilize source code from stack overflow? Em-
pirical Software Engineering, 24: 637–673.
Xu, B.; Xing, Z.; Xia, X.; and Lo, D. 2017. Answer-
Bot: Automated generation of answer summary to devel-
opers’ technical questions. In 2017 32nd IEEE/ACM In-
ternational Conference on Automated Software Engineering
(ASE), 706–716.
Yang, D.; Hussain, A.; and Lopes, C. V. 2016. From query to
usable code: an analysis of stack overflow code snippets. In
2016 IEEE/ACM 13th Working Conference on Mining Soft-
ware Repositories (MSR), 391–401. IEEE.

Table 1: Accuracy comparison on 24 OpenStack cases. The
numbers are ranks of the target Stack Overflow document
(the ground truth). The number of total ranked Stack Over-
flow is 3,451 for OpenStack. NF indicates ‘Not Found’.
Green cells indicate that our technique obtained the best.

Case
No. Type of Case BM25 Sentence

BERT Ensemble Google
Search Ours

O1 Launch Server (Case1) 5 39 6 5 1
O2 Launch Server (Case2) 1 7 1 8 4
O3 List Server 29 267 31 2 4
O4 List Compute Services 1 1 1 1 1
O5 Create Image 1 223 4 2 3
O6 List Network Services 1 3 1 1 1
O7 Create Network 1 1 1 1 1
O8 Create Cloud 1 2 1 1 1
O9 List Servers (Case1) 1 6 1 1 1
O10 List Projects 43 1,559 147 2 1
O11 Create Keypair 1 1 1 1 1
O12 Add Custom Filter 1 1 1 1 1
O13 Request Token 1 2 1 1 1
O14 Pull Image with Ansible 1 1 1 10 1
O15 List Servers (Case2) 21 12 4 2 2
O16 Launch Server (Case3) 1 1 1 NF 2
O17 Launch Server (Case4) 4 80 7 3 1
O18 Attach Volume to Server 4 154 13 1 1
O19 Create Domain 1 1 1 2 1
O20 Launch Server (Case5) 85 54 40 5 3
O21 Restart Compute Service 1 26 2 4 2
O22 Launch Server (Case6) 94 3 5 1 1
O23 Launch Server (Case7) 1 1 1 NF 1
O24 Launch Server (Case8) 3 13 5 NF 2

Table 2: Accuracy comparison on 22 MongoDB cases. The
number of total Stack Overflow documents is 172,209.

Case
No. Type of Case BM25 Sentence

BERT Ensemble Google
Search Ours

M1 Connect MongoDB (Case1) 99 16 4 2 1
M2 Connect MongoDB (Case2) 22 1,663 115 1 2
M3 Search with id Entries 51 1 1 NF 1
M4 Mongoimport with Atlas 1 16 1 1 1
M5 Restore Collection 1 1 1 1 1
M6 Connect MongoDB from Node.js 57 85 18 1 1
M7 Mongodump from remote server 1 17 1 2 4
M8 Start and Connect MongoDB 76 7 13 3 3
M9 Delete Document with Query 110,025 1 15 NF 4
M10 Load and Restore Data 2 15 2 NF 3
M11 Create Backup with MongoDump 2 1 1 9 1
M12 Collection with insert one 3 9 1 1 1
M13 Insert Data into Collection 17 1 2 4 1
M14 Retrieve Sorted Data 5 1 1 4 2
M15 Insert Data with Pymongo 72 23 3 NF 3
M16 Sort and Get Record 314 43 15 NF 1
M17 Access Document with find 3 13 2 3 1
M18 Update Collection 1 58 1 6 5
M19 Connect MongoDB and Insert 50 75 26 1 2
M20 Connect MongoDB with Pymongo 3,314 54 217 5 3
M21 Configure Mongdb Replicaset 2,220 80 171 NF 4
M22 Retrieve a distinct list of value 13 1 1 4 2

Table 3: Search accuracy comparison on 18 Spark cases. The
number of total Stack Overflow documents is 100,640.

Case
No. Type of Case BM25 Sentence

BERT Ensemble Google
Search Ours

S1 KMeans with Python 24 10 4 7 1
S2 Connect Mongodb from spark 1 24 3 1 3
S3 Calling Java/Scala Function 35 1 3 69 1
S4 Create DataFrame with Condition 24 15,566 139 NF 1
S5 Use Multiple Conditions 863 1 1 26 1
S6 Pyspark Mongodb Connector 60 19 21 13 2
S7 Check Dataframe with Condition 389 27,254 1,731 23 5
S8 Create Spark Session 10 20 2 1 1
S9 Create User Defined Function 1 204 1 4 3

S10 Read and Write Table 162 3 7 1 1
S11 Set Spark Configuration 34 279 19 1 1
S12 Delete and Recreate Context 1 50 4 2 1
S13 Create DataFrame 6 22 4 NF 2
S14 Run Logistic Regression 90 36 6 1 1
S15 Run Mllib in Pyspark 9,032 338 816 NF 1
S16 Initializing Spark Context 1 2 1 3 1
S17 Run Spark on Remote Cluster 1,722 340 423 NF 60
S18 Run Spark in Cluster Mode 1,120 10,423 2,128 12 57

Table 4: Search accuracy comparison on 8 Elasticsearch
cases. The number of Stack Overflow documents is 57,523.

Case
No. Type of Case BM25 Sentence

BERT Ensemble Google
Search Ours

E1 Add Range Filter to Search Query 1 1 1 4 1
E2 Send Request with Apache HttpClient 1 1 1 1 1
E3 Re-Index 1 1 1 3 2
E4 Create Index and Mapping 1 1 1 2 3
E5 Create Transport Client and Search 177 1,000 203 70 34
E6 Index a New Document 16 8 6 5 1
E7 Read Document with Index 9 1 1 1 1
E8 Take a Snapshot of Index 104 1 2 1 7

Table 5: Search accuracy comparison on 5 Kafka cases. The
number of total Stack Overflow documents is 30,896.

Case
No. Type of Case BM25 Sentence

BERT Ensemble Google
Search Ours

K1 Send Large Message 1,085 75 91 11 1
K2 Create Kafka Cluster and Send Message 8,615 5 114 5 1
K3 Consume Message with Zookeeper 6 41 1 4 22
K4 Create Producer 502 50 72 1 1
K5 Connect Kafka with Kafka-Python 23 74 7 89 1

