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Abstract
Developing machine learning models that account
for potential faults encountered in real-world en-
vironments presents a fundamental challenge for
mission-critical applications. In this paper, we
introduce a novel theoretical framework grounded
in learning theory for dealing with faults. In
particular, we propose a framework called fault-
tolerant PAC learning, aimed at identifying the
most fault-tolerant models from a given hypothe-
sis class (such as neural networks). We show that
if faults occur randomly, fault-tolerant learning is
equivalent to regular PAC learning. However, for
adversarial faults, we show that the sample com-
plexity of fault-tolerant PAC learning can grow
linearly w.r.t. the number of perturbing functions
induced by the faults, even for a hypothesis class
with VC-dimension 1. We then provide a match-
ing upper bound by restricting the number of per-
turbing functions. Finally, we show that the linear
dependency on the number of perturbing func-
tions can be substantially improved for deletion
faults in neural networks. Our work provides a
powerful formal framework and avenues for a
number of future investigations on the precise
characterization of fault-tolerant learning.

1. Introduction
Learning reliable and trustworthy models is an important
challenge in contemporary machine learning. Mission-
critical applications like autonomous vehicles (Ma et al.,
2020; Hengstler et al., 2016), spacecraft (Izzo et al., 2019;
Tipaldi et al., 2020), learning-enabled industrial control
systems (Al Shahrani et al., 2022; Kershaw et al., 2021),
and those operating in extreme environments (Verma et al.,
2023; Khan, 2020; Lu, 2023), demand high performance,
reliability, and graceful degradation. Constructing models
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that are resilient to hardware faults is a critical component
of such systems.

Experimental results on fault tolerance highlight the fragility
of modern machine learning systems to even minor faults.
For example, recent work (Nguyen et al., 2023) shows that
stuck-at faults (Phatak & Koren, 1995; Syed et al., 2023)
in only a few critical intermediate outputs can significantly
reduce the accuracy of deep neural networks like ResNet-
18, rendering them ineffective. Adversarial faults in the
form of bit-flip attacks (BFA) (Rakin et al., 2019) that alter
small fractions of the weights can massively impact perfor-
mance. These results underscore concerns relating to fault
tolerance issues in machine learning systems operating in
mission-critical settings. Due to the diversity of experimen-
tal settings, there has been a lack of theoretical formulations,
models, and associated analyses that can inform practical
solutions.

This paper introduces a novel theoretical framework for ana-
lyzing fault tolerance, proposing rigorous analytical tools to
guide the development of reliable models in diverse faulty
environments. Formally, let X be a set of features and Y be
the set of outcomes. A model is a function hw : X → Y
indexed by w. This could be, for instance, a function repre-
sented by a neural network with parameters (i.e., weights)
w. For any function hw, we associate a set of functions
U(hw) ⊂ YX , which includes all possible perturbed func-
tions when a fault occurs during the execution of hw. For
any given (x, y) and a loss function ℓ : Y × Y → R≥0, we
define the adversarial faulty-loss as:

ℓU (hw;x, y) = sup
h∈U(hw)

ℓ(h(x), y).

Note that the adversarial faulty loss measures the worst loss
incurred by executing hw on x when a fault occurs. Simi-
larly, for any given distribution p over U(hw), we define the
random fault-loss as ℓU (hw;x, y) = Eh∼p[ℓ(h(x), y)]. Let
D be a distribution over X ×Y and H = {hw : w ∈ W} be
a class of models. Our goal is to learn a model ĥ ∈ H that
achieves the minimal faulty-regret on D under fault-type U :

Regn(ĥ) = E(x,y)∼D

[
ℓU (ĥ;x, y)

]
− inf

hw∈H
E(x,y)∼D [ℓU (hw;x, y)]

(1)
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by accessing a sample Sn = (x1, y1), · · · , (xn, yn) sam-
pled i.i.d. from D. Intuitively, we aim to learn a model ĥ
that is most tolerant to fault-type U when deployed in an
environment where data is generated from D. We say that
a pair (H,U) is (ϵ, δ)-fault tolerant PAC learnable if there
exists a learning rule A and a number n, such that for any
distribution D, Regn(A(Sn)) ≤ ϵ w.p. ≥ 1 − δ over an
i.i.d. sample Sn of length n from D. The minimal number
n allowing such a learning rule is referred to as the sample
complexity.

Our contributions. Our contributions in this paper estab-
lish tight upper and lower bounds on the sample complex-
ity for the fault-tolerant PAC learning across a wide range
of model classes H and fault types U . Specifically, we
show that for any random fault types, the sample complex-
ity of fault-tolerant learning is equivalent to (regular) PAC
learning of the class H, provided that U(hw) ⊂ H 1. For
adversarial faults, we demonstrate that the sample com-
plexity of fault-tolerant PAC learning can be arbitrarily
larger than the complexity of (regular) PAC learning of
H. In particular, we show that there exists a class H of
VC-dimension 1, such that for any number B, there exists
a fault-type U with |U(hw)| ≤ B for all hw ∈ H, where
the fault-tolerant sample complexity grows linearly with
B. We then provide a matching upper bound by showing
that for any adversarial fault-type satisfying |U(hw)| ≤ B
and U(hw) ⊂ H for all hw ∈ H, the sample complexity
grows as Õ(B·VC(H)+log(1/δ)

ϵ2 ), where VC(H) denotes the
VC-dimension of H. Finally, we show that for neural net-
works with threshold activation functions and deletion faults
(i.e., the fault occurs by deleting a subset of edges of the net-
work), sample complexity grows polynomially with respect
to the network size. This is surprising, given that the size of
deletion fault-type can be exponentially large compared to
the network size (i.e., any subset of edges may be deleted),
yet a polynomial sample complexity is achievable even for
adversarial fault-types.

In summary, our main contributions are: (i) a fundamentally
new formulation of fault-tolerant PAC learning; (ii) tight
characterizations of fault-tolerant PAC learnability for both
random and adversarial faults; (iii) a case study of fault-
tolerant PAC learnability of feed-forward neural networks
with deletion faults, demonstrating potential real-world ap-
plications; and (iv) novel formal model, and algorithmic and
analytic techniques that are of independent interest.

Related work A number of recent efforts focus on en-
hancing fault tolerance in machine learning. Effective ab-
stractions of various fault types that occur in real world set-
tings have been developed (Torres-Huitzil & Girau, 2017),

1This is a very mild assumption, automatically satisfied for
faults occurring in the parameters of a neural network.

with stuck-at (Phatak & Koren, 1995; Eghbal et al., 2015;
Syed et al., 2023; Abraham & Fuchs, 1986) and random-bit
flip (Dodd & Massengill, 2003) being particularly com-
mon, effectively representing permanent and transient (Sos-
nowski, 1994) faults. Investigations into the vulnerability of
neural networks (Piuri, 2001; Rakin et al., 2019; Liu et al.,
2017; Protzel et al., 1993; Nguyen et al., 2023) have revealed
significant drops in accuracy due to even a small number
of faults. Common strategies for developing fault-tolerant
learning include: (i) adding redundancy (e.g. replication
of critical nodes /weights) (Chu & Wah, 1990; Emmerson
& Damper, 1993; Chin et al., 1994); (ii) modifying learn-
ing/ training algorithms (e.g. fault injection during train-
ing) (Arad & El-Amawy, 1997; Wei et al., 1996; Edwards &
Murray, 1997); and (iii) optimization under fault tolerance
constraints (Deodhare et al., 1998; Zhou & Chen, 2003).
There have also been efforts focused on active fault toler-
ance, including error detection and recovery (Khunasara-
phan et al., 1994; Hashmi et al., 2011; Deng et al., 2015). In
contrast to these efforts, our work focuses on establishing
the foundations of achievable performance in terms of tight
constructive bounds for different learning models. To this
end, our contributions complement these prior results.

2. Problem Formulation
Let X be the instance (feature) space, Y = [0, 1] be the
label space and W be an index set of hypotheses. For any
function f : W ×X → Y , we define the hypothesis class
induced by f as Hf = {hw(x) = f(w,x) : w ∈ W}.
Note that, for any distinct w1,w2 ∈ W , we will treat hw1

and hw2
as different functions, even if they instantiate the

same functions in [0, 1]X . This is unlike most of the classical
learning theory literature, where properties of the hypothesis
class depend only on its functionality. In our setup, we also
distinguish hypotheses according to their representation
(i.e., the index w). This distinction can arise, for example,
when two sets of parameters within a fixed neural network
architecture represent the same function but have different
fault-tolerance properties for a particular fault type.

Fault-types. A fault-type of the function class Hf is a
map U : W → 2∆(W), where ∆(W) denotes the class
of all probability distributions overs W , and 2∆(W) is the
power set (i.e., the class of all subsets) of ∆(W) 2. In words,
fault-type U maps each w ∈ W to a set U(w) of probability
distributions over W . For any (x, y) ∈ X ×Y , w ∈ W , and
loss function ℓ : Y × Y → R+, we define the faulty-loss as:

ℓU (hw;x, y) = sup
p∈U(w)

Ew′∼p[ℓ(hw′(x), y)]. (2)

2In this paper, we consider only proper fault types, where the
perturbed functions must also be in Hf . The case of improper
fault types can be defined similarly.
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Faulty-loss is interpreted as follows: given (x, y) and w, an
adversary first selects the worst distribution p ∈ U(w) and
perturbs w by sampling w′ ∼ p; the faulty-loss is then the
expected loss of hw′ on (x, y). This formulation simulta-
neously covers random and adversarial faults by carefully
defining the function U , as illustrated in Examples 1 and 2
below:

Example 1 (Random Faults). If for any w ∈ W , we have
|U(w)| = 1, and denote pw as the single element in U(w).
Then, faulty loss ℓU is reduced to the case of random faults
such that for any sample (x, y), the loss is incurred by
replacing w with a random sample w′ ∼ pw. This can
happen, for instance, with a random flip of the output of a
single neuron in a neural network.

Example 2 (Adversarial Faults). If for any w ∈ W , the set
U(w) contains only singleton distributions (i.e., distribu-
tions that assign probability 1 on a single w′), then, one may
view the class U(w) as a subset of W . The faulty loss ℓU is
reduced to the loss incurred by adversarially perturbing w
to an element w′ ∈ U(w).

It is worth noting that our definition of faulty loss in (2)
also provides a way of modeling scenarios that interpolate
between the pure random and pure adversarial fault types.

Fault-tolerant PAC learning. We now formulate the
main learning paradigm of this paper. Let D be an unknown
distribution over X × Y . For any hypothesis class Hf , loss
ℓ, fault-type U , and index w ∈ W , we define fault-tolerant
risk of hw as:

RU (hw;D) = E(x,y)∼D [ℓU (hw;x, y)] , (3)

where ℓU is the faulty-loss as defined in (2). Let Sn =
{(x1, y1), · · · , (xn, yn)} be a sample of size n sampling
i.i.d. from D. Our goal is to find an algorithm A : Sn →
Hf that minimizes the fault-tolerant risk RU (A(Sn);D) as
in (3). We say a pair (Hf ,U) is fault-tolerant PAC-learnable
under loss ℓ if there exists an algorithm A such that for any
ϵ, δ > 0, there exists a number n := n(ϵ, δ) such that:

PrSn∼D

[
RU (A(Sn);D)− inf

hw∈Hf

RU (hw;D) ≥ ϵ

]
≤ δ.

(4)
For any ϵ, δ > 0, the minimal number n achievable by an
algorithm A that satisfies (4), is defined to be the sample
complexity of (ϵ, δ)-fault-tolerant PAC learning of (Hf ,U).
We denote this number by M(ϵ, δ;Hf ,U).

Fault-tolerant PAC learning aims to find the most robust
hypothesis ĥ ∈ Hf that achieves the minimal fault-tolerant
risk RU (ĥ;D) under perturbation of U .

Analogous to classical PAC learning framework, we can
also define the following fault-tolerant Empirical Risk Min-
imization (ERM) rule. Let Sn = {(x1, y1), · · · , (xn, yn)}

be any sample of size n, the empirical fault-tolerant risk of
any hw is defined as:

R̂U (hw;Sn) =
1

n

n∑
i=1

ℓU (hw; (xi, yi)). (5)

The fault-tolerant ERM rule corresponds to finding ĥ ∈ Hf

that satisfies:

R̂U (ĥ;Sn) = inf
hw∈Hf

{R̂U (hw;Sn)}. (6)

Robustness v.s. Fault-Tolerance. Our fault-tolerance
framework is closely related to the concept of adversarial
robust PAC learning, as introduced in (Montasser et al.,
2019). Instead of perturbing the index w, the adversarial
robust setting perturbs any input x with an adversarially
selected sample x′ chosen from a set V(x) ⊆ X . Here, V :
X → 2X is a function that specifies possible perturbations.
The goal is to find a function ĥ (not necessary in Hf ) that
minimizes the following robustness risk:

RV(ĥ;D) = E(x,y)∼D

[
sup

x′∈V(x)

ℓ(ĥ(x′), y)

]
.

Given any V as above and function hw ∈ Hf , we can define
a set of functions Hw = {h ∈ YX : ∀x ∈ X ,∃x′ ∈
V(x) s.t. h(x) = hw(x′)}. Now, if we define a fault-type
U by mapping each w to the set of all singleton distributions
over functions in Hw, then robust PAC learning is reduced
to our fault-tolerant PAC learning. Observe, however, that
the fault-type U we constructed here is improper since Hw

need not be a subset of Hf .

The goal of this paper is to characterize how the structures
of Hf and U impact our fault-tolerant PAC learnability, to
find learning rules, and to derive upper and lower bounds
on the sample complexity for selected natural classes.

3. Main Results
In this section, we provide tight characterizations on the
fault-tolerant PAC learnability of finite VC-dimensional
classes and various fault-types.

3.1. General Characterizations

We initiate our discussion with some basic properties of
our fault-tolerant PAC learning framework by focusing on
binary-valued hypothesis classes. For clarity of presen-
tation, we consider the case when Y = {0, 1} and loss
ℓ(y, y′) = 1{y ̸= y′} is the mis-classification loss. The
following fact is easy to observe:

Fact 1. For any probability distribution p over W with
mis-classification loss ℓ, we have for any (x, y):

Ew′∼p[ℓ(hw′(x), y)] = |Ew′∼p[hw′(x)]− y|.
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Proof. We argue by cases: if y = 0 then ℓ(hw′(x), y) =
hw′(x) and the result trivially holds; if y = 1, then we have
ℓ(hw′(x), y) = 1−hw′(x), and therefore the result follows
by taking Ew′ on both sides.

Warm-up: Random Fault-Types. We start with the sim-
pler random fault types introduced in Example 1. Let U
be a random fault-type, i.e., for any w ∈ W we have
|U(w)| = 1. Define for any w ∈ W the function:

gw(x) = Ew′∼pw [hw′(x)],

where pw is the single distribution in U(w). We have by
Fact 1 that the fault-tolerant PAC learnability of the pair
(Hf ,U) under mis-classification loss is equivalent to the
(regular) PAC learning of G = {gw(x) : w ∈ W} under
absolute loss. Therefore, we have:
Proposition 1. Let Hf be a binary-valued class, U be any
fault-type such that |U(w)| = 1 for all w ∈ W , and G ⊂
[0, 1]X be as defined above. Then (Hf ,U) is fault-tolerant
PAC learnable under mis-classification loss if and only if G
is PAC learnable under absolute loss. Moreover, these two
learning problems have the same sample complexity.

Note that, although Proposition 1 provides a complete char-
acterization of fault-tolerant PAC learnability by reducing it
to PAC learning of class G, the structure of G may still be
complicated. Fortunately, by definition of function gw, we
have the class G is essentially a subset of the convex hull of
Hf .

To proceed, we first recall the definition of Rademacher
complexity of a hypothesis class H with horizon n as:

Radn(H) = sup
xn∈Xn

Eϵn

[
sup
h∈H

1

n

n∑
i=1

ϵih(xi)

]
,

where ϵn is sampled from the uniform distribution over
{−1,+1}n. The following key lemma relates the
Rademacher complexities between Hf and G:
Lemma 1. We have Radn(G) ≤ Radn(Hf ).

Proof. By (Shalev-Shwartz & Ben-David, 2014, Lem. 26.7)
we know that the Rademacher complexity of a class equals
the Rademacher complexity of its convex hull. The lemma
follows since G is within the convex hull of Hf .

We now arrive at our first main result that completely char-
acterizes the sample complexity of fault-tolerant learning of
binary-valued hypothesis with a random fault-type.
Theorem 1. Let Hf be a binary valued class with finite
VC-dimension VC(Hf ). Then, for any fault-type U with
|U(w)| = 1 for all w ∈ W , we have the sample complexity

M(ϵ, δ;Hf ,U) ≤ O

(
VC(Hf ) + log(1/δ)

ϵ2

)
.

Moreover, this bound is tight when U introduces no faults.

Proof. By Proposition 1, we have the sample complexity
M(ϵ, δ;Hf ,U) equals the sample complexity of PAC learn-
ing G under absolute loss. Using a simple symmetriza-
tion argument as (Shalev-Shwartz & Ben-David, 2014,
Thm. 26.5) and 1-Lipschitz property of absolute loss, we
have the generalization error ϵ of G is upper bounded by
O(Radn(G) +

√
log(1/δ)/n) for a sample of size n via

ERM rule. The theorem then follows by Lemma 1, the fact
Radn(Hf ) ≤ O(

√
VC(Hf )/n) (Wainwright, 2019, Exam-

ple 5.24), and rewriting n w.r.t. ϵ, δ.

Remark 1. Note that, Theorem 1 shows that, statistically,
introducing random faults does not make learning harder.
Moreover, optimal sample complexity is achievable by the
fault-tolerant ERM rule as in (6).

Example 3. Let f(w,x) = 1{⟨w,x⟩ ≥ 0} with w,x ∈ Rd

be the linear threshold function. Consider the fault-type that
flips each coordinate w[i] with −w[i] independently with
certain probability σ > 0. Although the flip faults can alter
the original functions in a complicated way, Theorem 1
shows that such a pairs can be fault-tolerant PAC learned
with sample complexity O(d+log(1/δ)

ϵ2 ).

Characterization of general fault-types. We now deal
with the general fault-type U with |U(w)| ≥ 1 for all
w ∈ W . Recall that U(w) is a set of distributions over
W . This can be interpreted as, for instance, all possible
random perturbations without knowing the exact perturbing
distribution a-priori. If the distributions in U(w) are single-
ton distributions, this case reduces to the full adversary case
as in Example 2.

Now, for any Hf , U , and w ∈ W we define two functions:

gmin
w (x) = inf

p∈U(w)
Ew′∼p[hw′(x)],

and
gmax
w (x) = sup

p∈U(w)

Ew′∼p[hw′(x)].

We observe the following fact:

Fact 2. For the mis-classification loss ℓ, we have:

ℓU (hw;x, y) =

{
gmax
w (x), if y = 0

1− gmin
w (x), if y = 1

where ℓU (hw;x, y) is the faulty-loss as in (2).

Proof. This follows directly from Fact 1 and definition in
(2) by arguing on cases of y.

Let gw(x) = (gmin
w (x), gmax

w (x)) be a function mapping
X → [0, 1]2 and G = {gw : w ∈ W}. We know that

4



A Theory of Fault-Tolerant Learning

the fault-tolerant PAC learnability of (Hf ,U) under mis-
classification loss is equivalent to the PAC learning of G
under the following loss:

ℓ̃(gw;x, y) = (1− y)gmax
w (x) + y(1− gmin

w (x)).

Observe, however, that functions gmin
w (x) and gmax

w (x) need
not be convex combinations of functions in Hf . Therefore,
class G can have complicated structures. Specifically, for
adversarial fault-type U , function gw can be compactly
expressed as gw : X → {∗, 0, 1} such that3 gw(x) = 0 if
∀w′ ∈ U(w), hw′(x) = 0; gw(x) = 1 if ∀w′ ∈ U(w),
hw′(x) = 1; and gw(x) = ∗ otherwise. Moreover, the loss
ℓ̃(∗, y) = 1 for all y ∈ {0, 1} and ℓ̃(y′, y) = 1{y′ ̸= y} for
all y′, y ̸= ∗.

The following lemma demonstrates that even for a class
Hf with VC-dimension 1, the sample complexity of fault-
tolerant learning (Hf ,U) can be arbitrarily large:

Lemma 2. There exists a class Hf of VC-dimension 1, such
that for any B > 0, there exists a fault-type U with sample
complexity M( 18 ,

1
7 ;Hf ,U) ≥ Ω(B).

Proof. Let X ,W := N the set of natural numbers. For any
w ∈ W , we define a function hw(x) = 1 if x = w and
hw(x) = 0 otherwise. Denote Hf = {hw(x) : w ∈ W}.
It is easy to observe that VC(Hf ) = 1.

We now construct, for any natural number B > 0, an ad-
versarial fault-type U that attains our claimed lower bound
Ω(B) for any learning rule. Let A1, · · · , AN be an enumer-
ation of all subsets Ai ⊂ {1, · · · , 3B} of size |Ai| = B,
where N =

(
3B
B

)
. For w ∈ {1, · · · , N}, we define U(w)

as the class of all singleton distributions over Aw (i.e., U(w)
is effectively Aw). For any other w, we set U(w) = U(1).
Note that, |U(w)| = B for all w ∈ W . Moreover, for
w ∈ {1, · · · , N} and y = 0, we have ℓU (hw;x, y) = 1 if
and only if x ∈ Aw (by definition of Hf , U and Fact 2).

We now construct the distribution D using a probabilistic
argument, resembling those used in (Montasser et al., 2019).
For any A ⊂ {1, · · · , 3B}, we define DA as the distribution
with x uniform over A and with y being constant 0. Let µ
be the distribution uniform over all subsets of {1, · · · , 3B}
of size 2B and A be any learning rule. We have:

EA∼µ

[
ESB∼DA

[
RU (A(SB);DA)− inf

hw

RU (hw;DA)

]]
(a)

≥ EA∼µ [ESB∼DA
[RU (A(SB);DA)]]

(b)
=

1

2B
EAS

[
EA|AS

[∑
x∈A

ℓU (ĥ;x, 0)

]]
3Recall that for adversarial fault-type U , the set U(w) can be

viewed as a subset of W .

(c)
=

1

2B
EAS

C + EA|AS

 ∑
x∈A\AS

ℓU (ĥ;x, 0)


(d)

≥ 1

2B
EAS

[C + (B − C)/2] ≥ 1

4
,

where (a) follows from the fact that the hypothesis with
index corresponds to subset {1, · · · , 3B}\A attains 0 fault-
tolerant risk on DA (by construction of U and y = 0);
(b) follows by switching the order of expectation and AS

corresponds to the features in SB ; (c) follows by setting C

to be the loss incurred by ĥ := A(SB) on AS ; (d) follows
from the fact that the loss incurred by ĥ equals |Aw ∩ A|,
where w is the index for ĥ ∈ Hf (taking Aw being A1 if
w ≥ N ); by conditioning on AS , the set A\AS is uniformly
distributed over {1, · · · , 3B}\AS with size 2B − |AS |, we
have the expected size of |Aw ∩ A| equals C + (|Aw| −
C) 2B−|AS |

3B−|AS | ≥ C + (|Aw| −C) 12 = C + (B −C)/2 since
|AS | ≤ B and |Aw| = B.

Therefore, for any learning rule A, there must exists a dis-
tribution DA such that the expected fault-tolerant regret is
lower bounded by 1

4 with sample size ≤ B. The lemma then
follows by a standard argument for converting the expected
lower bound to high probability lower bound as in (Shalev-
Shwartz & Ben-David, 2014, Thm. 5.1).

Note that, Lemma 2 demonstrates that one cannot hope
to obtain a uniform sample complexity bound that is in-
dependent of the fault type U even for classes with finite
VC-dimension 1. This is in contrast to the random faults
case established in Theorem 1. Therefore, one must intro-
duce certain constrains on U in order to obtain meaningful
results. Inspired by Theorem 1, a natural constraint would
be to bound the size of U(w). Doing so allows us to obtain
our second main result of this paper:

Theorem 2. Let Hf be a binary valued class of finite VC-
dimension. Then, for any fault-type U with |U(w)| ≤ B for
all w ∈ W , we have:

M(ϵ, δ;Hf ,U) ≤ O

(
B2 · VC(Hf ) + log(1/δ)

ϵ2

)
.

If, in addition, U is adversarial fault-type, then:

M(ϵ, δ;Hf ,U) ≤ O

(
B · VC(Hf ) log(1/ϵ) + log(1/δ)

ϵ2

)
,

and the linear dependency of on B cannot be improved.

Proof. The lower bound on the linear dependency of B
follows directly from Lemma 2. We now prove the upper
bound. By Fact 2 and the discussion that follows, we have
the fault-tolerant sample complexity is equivalent to the
sample complexity of PAC learning G under loss ℓ̃. Using

5
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a standard symmetrization argument as (Shalev-Shwartz &
Ben-David, 2014, Thm. 26.5), we have the generalization
error (for fault-tolerant ERM rule) with sample size n is
upper bounded by (w.p. ≥ 1− δ):

O(Radn(ℓ̃ ◦ G) +
√
log(1/δ)/n),

where (for ϵn uniform over {−1,+1}n):

Radn(ℓ̃ ◦ G) = sup
xn,yn

Eϵn

[
sup
gw∈G

1

n

n∑
i=1

ϵiℓ̃(gw;xi, yi)

]
.

We now fix any xn and yn. Note that if yi = 0 then
ℓ̃(gw;xi, yi) = gmax

w , else we have ℓ̃(gw;xi, yi) = 1 −
gmin
w . Therefore we have:

n∑
i=1

ϵiℓ̃(gw;xi, yi) =
∑

{i:yi=0}

ϵig
max
w (xi)

+
∑

{i:yi=1}

ϵi(1− gmin
w (xi)).

Taking the operator Eϵn supgw on both sides and noticing
that the constant 1 vanishes, we have:

Eϵn

[
sup
gw

n∑
i=1

ϵiℓ̃(gw;xi, yi)

]
≤ Eϵn

sup
w

∑
{i:yi=0}

ϵig
max
w (xi)


+ Eϵn

sup
w

∑
{i:yi=1}

ϵig
min
w (xi)

 ,

(7)

where the inequality follows by sup(A + B) ≤ supA +
supB. We now upper bound the first term in the RHS of
(7) (the second term can be bounded similarly). For any
w ∈ W , we denote Hw = {hp(x) = Ew′∼p[hw′(x)] : p ∈
U(w)}. We have gmax

w (x) = suph∈Hw
h(x) and |Hw| ≤

B for all w ∈ W .

To proceed, we establish the following key inequality. For
any function F : W → R and i with yi = 0, we have:

Eϵi

[
sup
w

ϵig
max
w (xi) + F (w)

]
≤

Eϵ′B

sup
w

∑
hj∈Hw

ϵ′jhj(xi) + F (w)

 , (8)

where ϵ′B is a fresh sample uniform over {−1,+1}B . To
see this, we observe that gmax

w (x) = suph∈Hw
h(x). There-

fore, there exists hj∗ ∈ Hw such that gmax
w (xi) = hj∗(xi).

We now fix ϵi and couple ϵj∗ = ϵi. Let ŵ attain the supw
term in the LHS of (8). We have:∑
hj∈Hŵ

ϵ′jhj(xi) + F (ŵ) ≤ sup
w

∑
hj∈Hw

ϵ′jhj(xi) + F (w).

Taking expectation over ϵ′js for j ̸= j∗, we have the LHS
equals ϵj∗hj∗(xi) + F (ŵ). By definition of ŵ, we have
Eϵj∗ [ϵj∗hj∗(xi)+F (ŵ)] equals the LHS of (8). Therefore,
the inequality (8) follows.

Repeatably using (8), we have:

Eϵn

sup
w

∑
{i:yi=0}

ϵig
max
w (xi)

 ≤

EϵBn

sup
w

∑
hj∈Hw

n∑
i=1

ϵ(j−1)B+ihj(xi)


≤ EϵBn

 sup
hB∈co(Hf )

B∑
j=1

n∑
i=1

ϵ(j−1)B+ihj(xi)


≤ EϵBn

 B∑
j=1

sup
hj∈co(Hf )

n∑
i=1

ϵ(j−1)B+ihj(xi)


≤ BnRadn(co(Hf )) = BnRadn(Hf ),

where co(Hf ) denotes the convex hull of Hf and the
last equality follows by (Shalev-Shwartz & Ben-David,
2014, Lem. 26.7). Since Radn(Hf ) ≤ O(

√
VC(Hf )/n),

we have the generalization error upper bounded by
O(B

√
VC(Hf )/n) = O(

√
B2VC(Hf )/n). The first up-

per bound then follows by rewrite n w.r.t. ϵ, δ.

To prove the second upper bound, we observe that Hw ⊂
Hf for adversarial fault-types. By Sauer’s lemma (Shalev-
Shwartz & Ben-David, 2014), we have the number of
such Hws restricted on any xn is upper bounded by
nB·VC(Hf ). Since gmax

w and gmin
w are completely deter-

mined by Hw, we have the size of restriction of G on xn

is upper bounded by nB·VC(Hf ). Applying the Massart’s
lemma (Shalev-Shwartz & Ben-David, 2014), we arrive at
an O(

√
B · VC(Hf ) log n/n) upper bound for Radn(ℓ̃◦G).

This completes the proof.

3.2. Neural Networks with Deletion Faults

In this section, we focus on an important hypothesis class:
feed-forward neural networks with the threshold activa-
tion function. For simplicity, we assume that there are
L layers, each with N neurons (except for the last layer,
which has 1 neuron), and adjacent layers are fully con-
nected4. We consider specifically the threshold activation
function σ(x) = 1{x ≥ 0}. Let X = Rd be the in-
put space, and E be the set of all edges (weights), where
|E| = dN + (L− 2)N2 +N . The index space is therefore
W = R|E|, which assigns the weight of each coordinate of
w to an edge in E. Note that, for any w ∈ W , the architec-
ture defines a hypothesis hw : X → {0, 1}. The hypothesis
class we consider is therefore Hf = {hw : w ∈ W}. It

4General architectures can be analyzed similarly.
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is well known that VC(Hf ) ≤ O(|E| log |E|) (Bartlett &
Maass, 2003).

We now consider the following deletion faults. Let S be
a set of subsets of E, the fault happens by (adversarially)
selecting a subset A ∈ S and setting w[i] = 0 for all i ∈ A.
In other words, the adversary effectively ”deletes” the edges
in A. We denote wA as the vector obtained by setting all
coordinates of w in A being 0. Formally, for any given S,
the (adversarial) deletion fault-type is a function US such
that US(w) is the class of all singleton distributions over
{wA : A ∈ S}. For notational convenience, we can simply
write US = {wA : A ∈ S}.

The following corollary follows directly from Theorem 2:

Corollary 1. Let Hf and US be defined as above, we have

M(ϵ, δ;Hf ,U) ≤ Õ

(
|S||E|+ log(1/δ)

ϵ2

)
,

where Õ hide poly-logarithmic factors on |E|, ϵ.

Note that, if we allow the adversary to delete k (arbitrary)
edges, then |S| =

(|E|
k

)
∼ |E|k. Therefore, even for reason-

ably large k, the sample complexity provided in Corollary 1
can be exponentially large. Our main result of this section is
the following theorem that establishes a sample complexity
independent of |S|.
Theorem 3. Let Hf and US be as defined above, we have
the sample complexity M(ϵ, δ;Hf ,US) upper bounded by:

Õ

(
dLN3 + L2N4 + d2N2 + log(1/δ)

ϵ2

)
,

where Õ hides poly-logarithmic factors on ϵ.

Note that, the hypothesis class we constructed in the proof
of Lemma 2 can be instantiated by the neural network as
well. Therefore, the hard fault-type constructed therein
also applies to the hypothesis Hf in Theorem 3; i.e., the
sample complexity must be scale linearly w.r.t. the fault-
type size in the worst case. Perhaps surprisingly, Theorem 3
demonstrates that for certain natural fault-types, the sample
complexity can be significantly improved.

Analysis for single neuron. Before we provide a formal
proof of Theorem 3. We first consider the simpler case
with a single neuron; i.e., the linear threshold function class
f(w,x) = 1{⟨w,x⟩ ≥ 0}. Let US be an arbitrary deletion
fault-type. We have by the proof of Theorem 2 that the gen-
eralization error (of fault-tolerant ERM rule) with sample
size n is upper bounded by:

O(Radn(ℓ̃ ◦ G) +
√
log(1/δ)/n),

where G and ℓ̃ are as in Fact 2 and the discussion that fol-
lows. Note that by Massart’s lemma (Shalev-Shwartz &

Ben-David, 2014), we have for any given xn:

Radn(ℓ̃ ◦ G) ≤ O(
√

log |G|xn |/n), (9)

where G|xn is the class of G restricted on xn. Therefore, it
is sufficient to bound the size of G|xn .

By Sauer’s lemma, the restriction of Hf on any xn has
size upper bounded by nd. However, it is possible that for
two hypotheses hw1

and hw2
with same restriction on xn,

the restrictions of gw1 and gw2 are different. Therefore,
to bound the size of G|xn , we will have to leverage the
structural properties of G.

Our key observation is that, by property of linear function,
the deletion on w is equivalent to the deletion on x! Specif-
ically, we have:

⟨wA,x⟩ = ⟨w,xA⟩,

for any A ⊂ {1, · · · , d}. Therefore, for any w, the restric-
tion of Hw = {hw′ : w′ ∈ US(w)} = {hwA

: A ∈ S}
on xn can be uniquely recovered by the values of hw

on L def
= {xA : x ∈ {x1, · · · ,xn}, A ∈ S}. Since

|S| ≤ 2d, we have |L| ≤ n2d. Invoking Sauer’s lemma,
we have the number of possible values of functions in Hf

on L is upper bounded by (n2d)d = nd2d
2

. Note that any
gw ∈ G is completely determined by Hw. This implies
that G|xn ≤ nd2d

2

, and therefore (9) is upper bounded by
O(

√
d2 log n/n +

√
log(1/δ)/n). Rewriting n w.r.t. ϵ, δ,

we arrive at the sample complexity:

O

(
d2 log(1/ϵ) + log(1/δ)

ϵ2

)
.

This proves Theorem 3 for L = N = 1.

Proof of Theorem 3. We now provide the complete proof
of Theorem 3. By the same argument as for single neuron,
we know that the sample complexity is reduced to the upper
bound of Rademacher complexity as in (9), which is further
reduced to the upper bound on the size of G|xn . For any
fixed xn, we have:

G|xn = {(gw(x1), · · · , gw(xn)) : w ∈ W},

where gw(x) = (gmin
w (x), gmax

w (x)) with gmin
w (x) =

infA∈S{hwA
(x)} and gmax

w (x) = supA∈S{hwA
(x)}.

Note that, for any w, (gw(x1), · · · , gw(xn)) is completely
determined by Vw = {(hwA

(x1), · · · , hwA
(xn)) : A ∈

S}. Therefore, we have:

|G|xn | ≤ |{Vw : w ∈ W}|. (10)

Now, our key idea is to recursively construct a sequence
of sets L1, · · · ,LL such that there exists an injection map
F : {Vw : w ∈ W} → LL, i.e., |{Vw : w ∈ W}| ≤ |LL|.
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To this send, we denote by hl
w the transition function spec-

ified by neurons in layer l ∈ [L] with weight w 5. Note
that for l = 1, we have h1

w maps RdN → {0, 1}N ; for
2 ≤ l ≤ L − 1, hl

w maps {0, 1}N2 → {0, 1}N ; and
for l = L, hL

w maps {0, 1}N → {0, 1}. Let L0 =
{(x1

A, · · · ,xN
A ) : x ∈ {x1, · · · ,xn}, A ∈ S}, where xi

A

denotes for the deletion of x by applying the deletion type
of A restricted on the ith neuron of the first layer. Denote
Wℓ to be the weight space at layer ℓ ∈ [L]. We recursively
define

1. L1 = {(h1
w(v))v∈L0

: w ∈ W1};

2. Assume for ℓ ≤ L − 1, we have constructed the set
Ll, which satisfies the form that any element v ∈ Ll is
an array with each coordinate v[i] ∈ {0, 1}N . For
any v ∈ Ll, we define an expanded array v′ =
{(v[i]1A, · · · ,v[i]NA ) : i ∈ len(v), A ∈ S}, where
v[i]jA denotes the deletion of v[i] by applying the dele-
tion type of A restricted on the jth neuron of the l+1st
layer. Denote L′

l = {v′ : v ∈ Ll}. We define:

Ll+1 =
{
(hl+1

w (v′[i]))i∈len(v′) : v
′ ∈ L′

l,w ∈ Wℓ+1

}
.

(11)

We now observe the following fact about the Lls:

Fact 3. We have |L1| ≤ ndN2d
2N2

and for any ℓ ≤ L− 1,
we have |Ll+1| ≤ |Ll|nN2

2N
3d+ℓN4

.

Proof. Note that |L0| ≤ n2dN . We have L1 is essentially
the restriction of all transition functions in the first layer on
L0. Since the VC-dimension of linear threshold functions
with input dimension d is upper bounded by d and there are
N neurons in each layer, we have by Sauer’s lemma that
|L1| ≤ (n2dN )dN ≤ ndN2d

2N2

.

To prove the second upper bound, we denote Ll as the
maximum length of arrays in Ll. We have L1 ≤ n2dN

and Ll+1 ≤ Ll2
N2

. This follows by our construction
that len(v′) ≤ len(v)2N

2

, since there can be at most
2N

2

deletion types on each layer. Therefore, we have
Ll ≤ n2dN2lN

2

. Note that:

Ll+1 =
⋃

v′∈L′
l

{(hl+1
w (v′[i]))i∈len(v′) : w ∈ Wℓ+1},

where each set in the union can be viewed as the restriction
of all transition function of layer l + 1 on v′. We have, by
Sauer’s lemma again that:

|Ll+1| ≤ |L′
l|LN2

l+1 ≤ |Ll|nN2

2N
3d+ℓN4

,

where we have used the fact that |Ll| = |L′
l|.

5Here, we assume that each neuron has different inputs.

We now prove the main property of our construction:

Fact 4. There exists a injection function F : {Vw : w ∈
W} → LL, i.e., |{Vw : w ∈ W}| ≤ |LL|.

Proof. For any weight w, we show that the set Vw can be
reconstructed from an element in LL using a universal re-
covering rule. To see this, we define vl

w to be the element in
Ll that corresponds to w (note that w uniquely identifies an
element in Lℓ by restriction the weight on the first ℓ layers,
see construction in (11)). We claim that vL

w ∈ LL is the
desired element that reconstructs Vw. Let A ∈ S, we now
describe a strategy that recovers (hwA

(x1), · · · , hwA
(xn)).

For any xi and l ≤ L − 1, we identify an index il in vl
w.

Initially, we set i1 to be the index in L0 that corresponds
to deletion type A and xi. Assume il has been constructed.
Since vl+1

w is constructed from vl
w by expanding on dele-

tion types in S, we define il+1 to be the index in vl+1
w that

corresponds to vl
w[il] and deletion type A (see the definition

of v′ in our construction). It is easy to verify that vL
w[iL] is

exactly the same as hwA
(xi). Note that our recovering rule

depends only on the deletion type A and is independent of
w. Therefore, any two distinct Vw1 and Vw2 cannot be re-
covered from the same element in LL. The function defined
by mapping Vw to any elements in LL that recovers it is the
desired injection map.

Now, by Fact 3, we have

|LL| ≤ ndN+LN2

2dLN3+L2N4+d2N2

.

Therefore, by Fact 4, (9) and (10), the sample complexity is
upper bounded by

Õ

(
dLN3 + L2N4 + d2N2 + log(1/δ)

ϵ2

)
,

where Õ hides poly-logarithmic factor on ϵ. This completes
the proof of Theorem 3.

4. Conclusion and Discussion
In this paper, we introduce a novel theoretical framework for
analyzing fault tolerance in machine learning models, offer-
ing tight characterizations of fault-tolerant PAC learnability
for both random and adversarial faults. We show that while
random faults do not increase learning complexity, adversar-
ial faults scale linearly with the fault space size. Specifically,
for neural networks with deletion faults, we demonstrate
that sample complexity can be, surprisingly, independent
of the number of deletions, scaling instead with network
parameters, indicating that certain natural fault-types can be
well-tolerated. Our framework paves the way for significant
future research, including extending analysis to other activa-
tion functions like ReLU in neural networks and exploring
additional fault types, such as neuron activation faults or
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precision errors. This work lays a rigorous foundation for
developing more reliable and trustworthy machine learning
models for diverse applications.

Computational aspects. While our work primarily fo-
cuses on the statistical sample complexity, it would also
be interesting to investigate computationally efficient meth-
ods for computing our fault-tolerant ERM rule as in (6).
A heuristic approach would work as follows: (i) we first
estimate the faulty-loss by making (sampling) oracle calls
to the fault-type U , which implements a value-oracle for the
faulty-loss; (ii) the value-oracle will then be implemented
via, e.g., the discrete differences, to compute the gradients of
faulty-loss w.r.t. w; (iii) a standard SGD will then be used to
compute the fault-tolerant ERM. We believe it would be an
interesting future direction to investigate how the structures
of the class G (see Proposition 1) impact the convergence
rate of such an SGD algorithm.

Other variations. Besides the random and adversarial
faulty scenarios we investigate in this paper, there can be
many other formulations under the concept of fault-tolerant
PAC learning. For instance, one may assume that the ad-
versary alters the function only at the beginning, instead of
altering it with each sample, as in our case. In such a sce-
nario, the sample complexity would be controlled by that of⋃

h∈H U(h) via a standard uniform convergence argument.
We believe investigating other types of formulations would
also be interesting for future research.
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