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Abstract

Federated learning (FL) has gained considerable attention due to its ability to learn on de-
centralised data while preserving client privacy. However, it also poses additional challenges
related to the heterogeneity of the participating devices, both in terms of their computa-
tional capabilities and contributed data. Meanwhile, Neural Architecture Search (NAS) has
been successfully used with centralised datasets, producing state-of-the-art results in con-
strained or unconstrained settings. Such centralised datasets may not be always available for
training, though. Most recent work at the intersection of NAS and FL attempts to alleviate
this issue in a cross-silo federated setting, which assumes homogeneous compute environ-
ments with datacenter-grade hardware. In this paper we explore the question of whether
we can design architectures of different footprints in a cross-device federated setting, where
the device landscape, availability and scale are very different. To this end, we design our
system, FedorAS, to discover and train promising architectures in a resource-aware manner
when dealing with devices of varying capabilities holding non-IID distributed data. We
present empirical evidence of its effectiveness across different settings, spanning across three
different modalities (vision, speech, text), and showcase its superior performance compared
to state-of-the-art federated solutions, while maintaining resource efficiency.

1 Introduction

As smart devices become omnipresent where we live, work and socialise, the Machine Learning (ML) powered
services that these provide grow in sophistication. With the recent advances in System-On-Chip (SoC)
capabilities (Ignatov et al., 2019; Almeida et al., 2021) and motivated by privacy concerns (Truong et al.,
2021) over the custody of data, Federated Learning (FL) (McMahan et al., 2017) has emerged as a way of
training on-device on user data without them ever directly leaving the device premises. However, FL training
has largely been focused on the weights of a static global model architecture, assumed to be runnable by
every participating client (Kairouz et al., 2019) in its vanilla form. Not only may this not be the case, but
it can also lead to subpar performance of the overall training process in the presence of stragglers or biases
in the case of consistently dropping certain low-powered devices. On the opposite end, more capable devices
might not fully take advantage of their data if the deployed model is of reduced capacity to ensure all devices
can participate (Li et al., 2020b). These aspects have been the subject of research in recent years Horvath
et al. (2021); Diao et al. (2020); Jiang et al. (2022) which, through different methods, address the challenge
of system heterogeneity in FL.

Parallel to these trends, Neural Architecture Search (NAS) has become the de facto mechanism to automate
the design of DNNs that can meet the requirements (e.g. latency, model size) for these to run on resource-
constrained devices. The success of NAS can be partly attributed to the fact that these frameworks are
commonly run in datacenters, where high-performing hardware and/or large curated datasets (Krizhevsky,
2009; Deng et al., 2009; Cordts et al., 2015; John S. Garofolo et al., 1983; Panayotov et al., 2015) are available.
However, this also poses two major limitations on current NAS approaches: i) privacy, i.e. these methods are
often not designed to work in situations when user’s data must remain on-device; and, consequently, ii) tail
data non-discoverability, i.e. they might never be exposed to infrequent or time/user-specific data that exist
in the wild but not necessarily in centralized datasets. On top of these, the whole cost is born by the provider
and separate on-device modelling/profiling needs to be done in the case of hardware-aware NAS (Dudziak
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Figure 1: For two LDA settings, 160 architectures are randomly sampled from a ResNet-like search space and
trained on a CIFAR-10 FL setup with 100 clients, with 10 clients participating on each round for a total of 500
rounds. Clients are uniformly assigned to a tier, resulting in 25 clients per tier. Tier-awareness refers to whether
tier limits are respected or not. Given sufficient data and ignoring tier limits (tier-unaware), model performance
tends to improve as its footprint (FLOPS) increases (black crosses). However, when models are restricted to only
train on clients that support them (tier-aware), the lack of data severely restricts the performance of more capable
models (red dots). FedorAS successfully overcomes the challenges of tier-aware FL and outperforms existing system
heterogeneous baselines, as shown later in Fig. 3.

et al., 2020; Tan et al., 2019; Lee et al., 2021), which has mainly focused on inference performance hitherto.
Performing NAS in a federated setting brings about several challenges, including communication, memory
and computation cost. Prior work (He et al., 2020a; Mushtaq et al., 2021) has mainly focused in cross-
silo deployments which assumes full client participation and system costs are a secondary issue. These
assumptions are highly impractical for cross-device settings.

Since devices in the wild exhibit different compute capabilities, may support different operators and can
hold non-IID distributed data, this results in system and data heterogeneity. In the context of NAS, system
heterogeneity has a particularly significant effect, as we might no longer be able to guarantee that any
model from the search space can be efficiently trained on all devices. This inability can be attributed
to insufficient compute power, non-implemented DNN operators for accelerated compute, limited network
bandwidth or unavailability of the client at hand. Consequently, some of the models might be deemed worse
than others, not because of their worse ability to generalise, but because they might not be exposed to the
same subsets of data as others. As shown in Fig. 1, models of different footprint trained across clients of
varying capabilities exhibit different levels of performance under constrained (tier-aware) and unconstrained
(tier-unaware) participation. The former setting respects device computational capabilities, while the latter
does not, which effectively means that larger networks are exposed to more data.

Motivated by the aforementioned participation phenomena and limitations of the existing NAS methods,
we introduce FedorAS1, a framework that performs NAS over heterogeneous devices holding heterogeneous
data in a resource-aware and federated manner. To the best of our knowledge, FedorAS is the first system
to perform cross-device federated NAS, optimising for both training overhead and inference deployment. To
accomplish this, we design a supernet comprising operations covering a wide spectrum of compute complexi-
ties and memory footprints. This supernet acts both as search space and a weight-sharing backbone (Sec. 3.1
0 ). Upon federation, it is only partially and stochastically shared to clients, respecting their bandwidth

(Sec. 3.1 1 ) and computational capabilities (Sec. 3.1 2 ). Clients leverage resource-aware one-shot path
sampling (Guo et al., 2020) that we re-formulate for lightweight on-device NAS. In this way, networks in a
given search space are not only deployed in a resource-aware manner, but also trained as such, by tuning
the downstream communication (i.e. the subspace explored by each client) and computation (i.e. FLOPs
of sampled paths) to meet the device’s training budget. This training budget can can be static – based on
the device’s capabilities – or dynamic – based on the device’s current workload. Once federated training
of the supernetwork has completed, usable pretrained networks can be extracted even before performing
fine-tuning or personalising per device (Sec. 3.3), thus minimising the number of extra on-device training
rounds to achieve competitive performance. In summary, in this work we make the following contributions:

• We adapt and extend a popular single-path one-shot NAS to enable resource-aware federated supernet
training – towards this end we introduce and study the (mutual) effects of: i) subspace sampling to improve
1Anonymised source code: https://anonymous.4open.science/r/FedorAS-TMLR-2023
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communication cost (Sec. 3.1 1 ), ii) a O(1) path-sampling mechanism that supports dynamic changes
in a client’s constraints (Sec. 3.1 2 ), iii) frequency-aware OPerator Aggregation (OPA) method (Sec. 3.1
3 ) to correctly weight updates when training entails working with stochastic architectures.

• We further establish and evaluate an alternative, federated way of ranking models from the global supernet,
during search, which removes the requirement for having a server-residing validation set (Sec. 4.7).

• We perform extensive empirical study of the benefits of supernet weight-sharing in highly heterogeneous
FL deployments – our results show clear gains from supernet-based initialisation (Sec. 4.3).

• Through extensive evaluation across various datasets, tasks and modalities, on different device distributions
we demonstrate FedorAS’ performance vs. state-of-the-art FL techniques. Indicatively, we achieve over
+6pp (percentage points) accuracy on SpeechCommands with 33× fewer FLOPs, and +26pp for a highly
non-IID CIFAR-10 setup vs the previous federated NAS best alternative.

2 Related Work
This section introduces background and related work relevant to FedorAS. For an overview of a typical FL
pipeline and an introduction to NAS, please see Appendix D.1. and D.2 respectively. Comparison between
FedorAS and selected FL techniques is additionally summarised in Table 1.

Federated Learning. Traditionally, works have focused on tackling the statistical data heterogene-
ity (Smith et al., 2017; Li & Wang, 2019; Hsieh et al., 2020; Fallah et al., 2020; Li et al., 2020c) or minimising
the upstream communication cost (Li et al., 2021a; Konečný et al., 2016; Wang et al., 2018; Han et al., 2020;
Amiri et al., 2020), as the primary bottleneck in the federated training process. However, it has become
apparent that computational disparity between participating nodes becomes an equally important barrier
for contributing knowledge in FL. Cross-device FL performs the bulk of the compute on a highly hetero-
geneous (Kairouz et al., 2019) set of devices in terms of their compute capabilities, availability and data
distribution. In such scenarios, a trade-off between model capacity and client participation arises: larger
architectures might result in more accurate models which may only be trained on a fraction of the available
devices; on the other hand, smaller footprint networks could target more devices – and thus more data – for
training, but these might be of inferior quality (see gap in Fig. 1).

System heterogeneous FL. To tackle the problem of stragglers and limited participation, there have been
various approaches in the literature, leveraging structured (PruneFL (Jiang et al., 2022), HeteroFL (Diao
et al., 2020), FedRolex (Alam et al., 2022)), unstructured (Adaptive Federated Dropout (Bouacida et al.,
2021), LotteryFL (Li et al., 2021b)) or importance-based pruning (FjORD (Horvath et al., 2021)), quantisa-
tion (AQFL (Abdelmoniem & Canini, 2021)), low-rank factorisation (FedHM (Yao et al., 2021a)), sparsity-
inducing training (ZeroFL (Qiu et al., 2021)) or distillation (GKT (He et al., 2020b)). However, most of these

Table 1: Comparison of heterogeneous FL techniques. "System Het." – the ability of altering each client’s workload;
quantitative methods only scale amount of work (FLOPs) while qualitative can also change a network’s structure or
operations. "Dynamic" – the ability of changing each client’s capabilities within a single round. "Model Het." – the
property of having more than one usable model at the end; "scaling" is a weaker class of heterogeneity where different
models are scaled-down versions of a larger one, while methods with a tick allow for topological diversity. "# models"
– how many different models a method considers. "?" means a property is achievable but either not considered in the
original work or with very limited evaluation.

Method FL setup Objective System Het. Dynamic Model Het. # models Knowledge sharing
FjORD (Horvath et al., 2021) cross-device global quantitative ✓ scaling # channels randomized scaling
FedRolex (Alam et al., 2022) cross-device global quantitative ✓ scaling # tiers randomized scaling
HeteroFL (Diao et al., 2020) cross-device local1 quantitative ✓? scaling # tiers static scaling
ZeroFL (Qiu et al., 2022) cross-device global quantitative ✓ ✗ - -
FedNAS (He et al., 2020a) cross-silo local1 ✗ - ✓ NAS supernet
SPIDER (Mushtaq et al., 2021) cross-silo both ✗ - ✓ NAS supernet
SuperFed (Khare et al., 2023) cross-device global ✗2 ✗ ✓ NAS supernet
FedSup (Kim & Yun, 2022) cross-device both ✗2 - ✓ NAS?3 supernet
E-FedSup (Kim & Yun, 2022) cross-device both qualitative ✗ ✓ NAS?3 supernet
FedPM (Isik et al., 2023) cross-device global ✗ ✗ ✓? - sampled randomised network
HAFL (Litany et al., 2022) cross-silo local4 qualitative ✗ ✓? # tiers hypernetwork
pFedHN (Shamsian et al., 2021) cross-device local4 qualitative? ✗ ✓? # tiers hypernetwork
FedorAS cross-device global qualitative ✓ ✓ NAS supernet
1 global performance is weak so we consider it a secondary objective. 2 only considers system heterogeneity at deployment.
3 evaluation focuses on 3 arbitrarily selected models; architecture search is said to be "beyond the scope of the current study".
4 strictly local – the possibility of obtaining a single, high-quality global model is unclear.
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techniques focus on dynamically altering the model in a single dimension (e.g. model width or precision) and
may require extra training overhead, multiple DNN copies or specialised hardware. Federated NAS, on the
other hand, is a more general technique that offers additional degrees of architectural freedom and, through
our technique, a more efficient and expressive knowledge sharing mechanism.

Clustered FL. There have been various works (Ghosh et al., 2020; Ruan & Joe-Wong, 2022) that cluster
clients together in order to form cohorts and train more efficiently. FedorAS assumes that device tiers reflect
the device capabilities and are orthogonal to their underlying data distributions, which still remain non-IID.
As such, such techniques remain largely complimentary to our contribution.

Federated NAS. The concept of performing NAS in a federated setting has been considered before (He
et al., 2020a; Mushtaq et al., 2021; Yao et al., 2021b; Zhang et al., 2022; Litany et al., 2022). Specifically,
one of the first works in the area was FedNAS (He et al., 2020a), which adopts a DARTS-based approach
and aims to find a globally good model for all clients, to be personalised at a later stage. This approach
requires the whole supernet to be transmitted and kept in memory for architectural updates, which leads
to excessive requirements (Table 3) that make it largely inapplicable for cross-device setups with clients of
limited capabilities. To mitigate this requirement, (Yao et al., 2021b) proposes an RL-based approach for
cross-silo FL-based NAS. Despite the intention, it still incurs significant overheads due to RL-based model
sampling convergence and single model training per client. A somewhat different approach is adopted by
HAFL (Litany et al., 2022) and pFedHN Shamsian et al. (2021), which leverage graph hypernetworks as a
means to generate outputs of a model. While interesting, performance and scalability are not on par with
current state-of-the-art. Similar is the case with (Isik et al., 2023), which trains binary masks generated
by Bernoulli sampling over frozen randomized networks. While conceptually interesting and with upstream
bandwidth savings, performance is heavily impacted. Closer to our method is FedSup (Kim & Yun, 2022),
but their implementation suggests that clients of different capabilities do not participate simultaneously.
In addition, their distillation component requires sequential training between teacher and student models,
thus harming local training latency. SuperFed (Khare et al., 2023) is another system performing Federated
NAS, but only focuses on inference cost, therefore assuming all clients can run all models of the supernet.
Moreover, their “sandwitch” rule requires the maximal network to be always sampled per round, thus in-
curring additional costs. On the front of personalisation, FedPNAS (Hoang & Kingsford, 2022) searches
for architectures with a base component shared across clients and a personalised component unique per
client. This work, however, is only aimed at IID vision tasks and involves a meta-step for personalisation,
which increases training overheads significantly. At the other extreme for cross-silo personalised FL, SPI-
DER (Mushtaq et al., 2021) aims at finding personalised architectures per client. It requires the whole space
on-device and federation is accomplished through a second static on-device network. These overheads make
porting SPIDER to the cross-device setting non-trivial.

FedorAS brings Federated NAS to the cross-device setting and is designed with resource-awareness and system
heterogeneity in mind. This way, communication and computation cost is kept within the defined limits,
respecting the runtime on constrained devices. Crucially, our system does not assume full participation of
clients and is able to efficiently exchange knowledge through the supernet weight sharing, as demonstrated,
and generalise across different modalities and granularity of tasks. By combining NAS and cross-device FL,
it becomes possible to discover and train neural network architectures that are optimised for the distributed
data available on a diverse range of devices, while preserving privacy. Of course, Federated NAS can be
combined with techniques from the system heterogeneous FL literature to achieve further performance gains.

3 The FedorAS Framework

FedorAS is a resource-aware Federated NAS framework that combines learning from clients across all tiers
and yielding models tailored to each tier that benefit from this collective knowledge.

Workflow. FedorAS’ workflow consists of three stages, outlined in Fig. 2): i) supernet training, ii) model
search and validation and iii) model fine-tuning. First, we train the supernet in a resource-aware and
federated manner (Stage 1, Sec. 3.1). We then search for models from the supernet with the goal of finding
the best architecture per tier (Stage 2, Sec. 3.2). Models are effectively sampled, validated on a global
validation set and ranked per tier. These architectures and their associated weights act as initialisation to
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Figure 2: Training process workflow with FedorAS.

the next phase, where each model is fine-tuned in a per-tier manner (Stage 3. Sec. 3.3). The end goal of
our system is to have the best possible model per each cluster of devices.

Design rationale. Designing a search space that can be trained under computational constraints and
stochastic exposure to heterogeneous data is no trivial task. We build our system around the concept of a
supernet to facilitate weight-sharing between architectures of various footprints. Operations in the supernet
are samplable paths (i.e. models) of different footprint. As such, while normally large models would not be
directly trained on data of low-tier clients, our design allows for indirectly sharing this knowledge through the
association of the same operation to different paths. To ensure efficient training of a supernet, we base our
approach on SPOS (Guo et al., 2020) and adapt it (see Eq. 1-5) since its training procedure is lightweight,
with marginal overhead in terms of memory consumption and required FLOPs. Last, we cluster devices into
“tiers” based on their computational capabilities and search for an architecture for each tier as a balance
between having one model to fit all needs (He et al., 2020a) and a different architecture per client (Mushtaq
et al., 2021).

3.1 Federated SuperNet Training

0 Search space & models. First, we define the search space in terms of a range of operators options per
layer in the network that are valid choices to form a network. This search space resides as a whole on the
server and is only partially communicated to participating clients of a training round to keep communication
overheads minimal. Specific models (i.e. paths) consist of selections of one operator option per layer, sampled
in a single-path-one-shot manner on-device per local iteration. For each layer subject to search, l, we denote
the set of candidate operations as Ol.

1 Subspace sampling. It is obvious that communicating the whole space of operators along with the
associated weights to each device becomes quickly intractable, especially bearing in mind that communication
is usually a primary bottleneck in Federated Learning (Kairouz et al., 2019; Li et al., 2020b). To this direction,
FedorAS adopts a uniform parameter size budget, BΦcomm , and samples2 the search space for operators until
this limit is hit (Eq. 1). In practice, it is up to the model developer to decide the value of BΦcomm , according
to their needs and the characteristic of their deployment environment — FedorAS does not assume it to be
any particular value. In our experimental setting, we decided to set it to the size of a typical network that
can be found in the literature, to facilitate comparison. This happens to be roughly half of a supernet used
for each task. We investigate the impact of different budgets in Sec. 4.5 and G.2. Notably, we observe that
sending fewer parameters can in fact accelerate convergence.

L∑
l=1

∑
o∈Ol

1Ôl
(o)Φcomm(o) < BΦcomm , Ôl ⊆ Ol ∧ Ôl ̸= ∅ (1)

2Non-parametric operations are always sent and layers without such options are prioritised to guarantee a valid network.
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where L is the number of searchable layers in the supernet, Ol the candidate and Ôl the selected operations
for layer l, 1X an indicator function of a set X and Φcomm a relevant size measure.

In terms of sampling strategies, we experimented with uniform operator sampling — which prunes operators
from a supernet with equal probability until its size fits in the budget — and found it to work sufficiently well,
providing uniform coverage over the search space. It is worth noting that different, but possibly overlapping,
subspaces can be selected for each client in a round.

2 Client-side sampling & local training. Participating clients receive the subspace sampled on the
server, {Ôl}L

l=1, from which they sample a single operator on every layer. This constitutes a path along
the supernet (pL) representing a single model. For every batch, clients sample paths that do not surpass
the assigned training budget BTier

Φtrain
. Throughout this work, we consider Φtrain(·) to be a cost function that

counts the FLOPs of a given operator, and the budget is the maximum total FLOPs per forward pass3. Since
our setting assumes clients to form computational tiers, practically, we also assume clients from a single tier to
share the same budget. However, note that path sampling is an autonomous process happening independently
on each client. As such, in general, clients retain the ability to adjust their sampling dynamically, in both
qualitative and quantitative manner. Ultimately, irrespective of each client’s constraints, our goal is to
sample valid paths uniformly, to ensure systematic coverage of the entire (sub) search space:

pL =
L⋃

l=1
ol ∼ U{Ôl} s.t.

L∑
l=1

Φtrain(ol) < BTier
Φtrain

(2)

However, realising Eq. 2 efficiently is not a trivial task. Originally, Guo et al. (2020) considered a naive
approach of repeatedly sampling a path until it fits the given budget, which results in non-negligible overhead
if the probability of finding a model under the threshold is low. Were we to employ such a method, the
most restricted devices, for which the set of eligible models is the smallest, would be the ones burdened
with the largest overhead. Therefore, we propose a greedy approximation in which operations are selected
sequentially. Specifically, in order to obtain a path pL = {oi}L

i=1 we sample operations layer-by-layer,
according to a random permutation σ, in such a way that the i-th operation is chosen from the candidates
for layer σ(i) whose total overhead would not violate the constraint:

oi ∼ U{ o : o ∈ Ôσ(i) ∧
i∑

j=1
Φtrain(oj) + Φtrain(o) < BTier

Φtrain
} (3)

We ensure that Eq. 3 obtains a valid architecture without resampling by having the “identity” function (i.e.
no-op) in their candidate operations and prioritising the selection of those layers which do not.

After having sampled the path, a model is instantiated and a single optimization step using a single batch
of data is performed. The number of samples passing through each operator are kept and communicated
back to the server, along with the updates, for properly weighting updated parameters upon aggregation, as
we will see next. Overall, if we denote the distribution of valid paths the ith client can sample as Pi and its
local dataset as Di, we can define the local training objective to be:

ωi = arg min
ω

Ep∼Pi
Ex∼Di

L(fω(x, p)), (4)

where input p can be modeled as a sparse matrix {0, 1}L×|O| of architectural parameters controlling path
selection in a supernet fω (see D.2).

3 Aggregation with OPA. An operator gets stochastically exposed to clients data. This stems from
subspace sampling and client-side path sampling. As such, naively aggregating updates in an equi-weighed
manner (Plain-Avg) or total samples residing on a client (FedAvg (McMahan et al., 2017)) would not reflect
the training experience during a round. For this reason, we propose OPA, OPerator Aggregation, an aggre-
gation method that weights updates based on the relative experience of an operator across all clients that
have updated that operator. Concretely, our method is a generalisation of FedAvg where normalisation is

3For qualitative constraints, we can easily exclude unsupported operations (x) by defining Φtrain(x) = ∞.
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performed independently for each layer, rather than collectively for full models. In order to enable that, we
keep track of how many examples were used to update each searchable operation ol, independently on each
client, and later use this information to weight updates. Formally:

ωg
(t+1)(ol) =


∑k

i=1
|D(t)

i,ol
|∑k

j=0
|D(t)

j,ol
|
ω

(t)
i (ol) if |C(t)

ol | > 1

ω
(t)
g (ol) otherwise

(5)

where ω
(t)
g (·) are global weights, ω

(t)
i (·) are local weights of client i at global step t, |D(t)

i,ol
| is the number of

samples having backpropagated through an operator ol for client i in round t, and C
(t)
ol is the set of clients

i s.t. |D(t)
i,ol

| > 0. Updates to ω
(t)
g happen only if |C(t)

ol | > 1 in order to protect the privacy of single clients.
Finally, if an operation is always selected, then Eq. 5 recovers FedAvg, which means we can effectively use
OPA throughout the model and not only for searchable layers. Analogous to other FL approaches, the high-
level global objective of our supernet training is similar to the local objective shown in Eq. 4, but with both
expectations being taken over global alternatives of distributions Pi and Di. Consequently, although both
our model (supernet) and its input space (pairs of (x, p)) might seem more complex compared to standard
FL approaches, they follow the same fundamental principles regarding training dynamics.

3.2 Model Search & Validation
After training the supernet, a search phase is implemented to discover the best trained architecture per
device tier. Models are sampled with NSGA-II (Deb et al., 2002) and evaluated on a global validation set.
The rationale behind selecting this algorithm for our search is the fact that it is multi-objective and allows
us for efficient space exploration with the goal of optimising for model size in a specific tier and accuracy.
Other search algorithms can be used in place of NSGA-II, based on the objective at hand. Search can stop
after a specified number of steps or when an accuracy threshold is met. At the end of this stage, we have a
model architecture per tier, already encompassing knowledge across devices of different tiers, which serves
as initialisation for further training. Formally, model selection for the ith tier can be defined as:

p⋆
i = arg min

p∈P
Ex∼V L(fω⋆

g
(x, p)) s.t. Φtrain(p) ≤ B

(i)
Φtrain

, (6)

where P is the set of all paths, V is a validation dataset at hand, B
(i)
Φtrain

is the budget for tier i and ω⋆
g are

converged global weights obtained from supernet training outlined above. Specifically for V , we evaluate a
centralised approach, as well as a federated alternative (Sec. 4.7).

3.3 Fine-tuning Phase
Subsequently, we move to train each of the previously produced models in a federated manner across all
eligible clients. This means that architectures falling in a specific tier, in terms of footprint, can be trained
across clients belonging to that tier and above. In the context of Eq. 4 and the related global objective,
fine-tuning can be seen as performing analogous optimisation on a subset of the input space. This is due
to the input p begin now fixed to one of the selected p⋆

i and x being drawn from a – not necessarily strict
– subset of the global distribution D. The main difference lies in the consequences of fixing p, i.e., the set
of eligible clients can be drastically limited, resulting in exposure to a smaller subset of D. Considering
our supernet training solves a generalised version of the fine-tuning problem with better guarantees about
exposure to the training data, we fathom it can provide us with a much stronger initialisation compared to
the typical random one. In particular, we anticipate to see significant benefits in cases when otherwise the
set of eligible clients for a path p⋆

i would be very small. Here, we use conventional FedAvg and partial client
participation per round with the goal of training a single network per tier.

4 Evaluation
This section provides a thorough evaluation of FedorAS across different tasks to shows its performance and
generality. First, we compare FedorAS to existing approaches in the context of federated NAS in the cross-
device and cross silo setting. Next, we draw from the broader FL literature and showcase our technique’s
performance gains compared to homogeneous and heterogeneous federated solutions (Sec. 4.2). It is worth
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Table 2: Datasets for evaluating FedorAS. We parti-
tion CIFAR-10/100 following the Latent Dirichlet Allo-
cation (LDA) partitioning (Hsu et al., 2019), with each
client receiving approximately equisized training sets. For
CIFAR-10, we consider α ∈ {1000, 1.0, 0.1} configura-
tions, while for CIFAR-100, we adopt α = 0.1 (Reddi
et al., 2021). Other datasets come naturally partitioned.

Dataset Search Number Number Target TaskSpace Clients Examples

CIFAR10 CNN-L 100 50K Image classification
CIFAR100 CNN-L 500 50K Image classification
Speech Comm. CNN-S 2, 112 105.8K Keyword Spotting
Shakespeare RNN 715 38K Next char. prediction
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Figure 3: FedorAS outperforms other approaches (details
in Appendix E.7). CIFAR-10 (non-IID, α=1.0). FjORD
is represented as a line as it can switch between operating
points on-the-fly via Ordered Dropout.

noting that many of these techniques (e.g. Reddi et al. (2021); Horvath et al. (2021); Lai et al. (2021)) remain
orthogonal to our system and can be combined for additional performance gains. Nevertheless, our gains
can be traced back to the benefits of supernet weight sharing; we subsequently quantify its contribution by
comparing it against randomly initialised networks trained on eligible clients in a federated way (Sec. 4.3)
without weight sharing. Last, we showcase the convergence behaviour of FedorAS (Sec. 4.6), its impact on
client fairness 4.4, the contribution of specific components of our system through an ablation study (Sec. 4.5)
and the behaviour of alternative search methods (Sec. 4.7).

4.1 Experimental Setup
Datasets & baselines. Datasets are summarised in Tab. 2. More information in Appendix E.

Search space. The adopted search spaces are specific to the dataset and task at hand, both in terms of
size and type of operators. In general, we assume our highest tier of model sizes to coincide with a typical
network footprint used for that task in the FL literature (e.g. ResNet-18 for CIFAR-10). Nevertheless, there
may be operators in the space that cannot be sampled in some tiers due to their footprint. FedorAS sets
the communication budget BΦcomm to be half the size of the supernet. The full set of available operators per
task is provided in the Appendix E.3.

Clusters definition. In our experiments, we cluster clients based on the amount of operations they can
sustain per round of training (#FLOPs), for simplicity. Other resources (e.g. #parameters, energy con-
sumption) can be used in place or in conjunction with FLOPs. More details in Appendix E.4.

4.2 Performance Evaluation

Federated NAS. We start the evaluation by comparing our system with existing works in the federated
NAS domain. Specifically, we find two systems that perform federated NAS, namely FedNAS (He et al.,
2020a) and SPIDER (Mushtaq et al., 2021) and compare in the cross-device and cross-silo settings. In the
former setting, we adapt FedNAS to support partial participation and compare their technique to FedorAS
under the same cross-device settings in CIFAR-10. Results are shown in Tab. 3, with FedorAS performing
1.04% better than FedNAS on CIFAR-10α=1 and 48.7% on CIFAR-10α=0.1, for the same training memory
footprint. Further details can be found in Appendix E.6. At the same time, while running in cross-silo setting
is not the main focus of FedorAS, we have adapted our experimental setting to match that of FedNAS and
SPIDER. Results are shown in Tab. 4 with FedorAS performing +11.6% and -1.3% than the baselines,
respectively, on the test set of their selected settings.

Federated Learning baselines. Next, we compare the performance of FedorAS with different federated
baselines, including homogeneous (Reddi et al., 2021) and system heterogeneous frameworks (Horvath et al.,
2021; Lai et al., 2021; Qiu et al., 2022). In the former setting, we compare with results from (Reddi et al.,
2021) on CIFAR100α=0.1. FedorAS performs 1 pp4 better than the FedAvg baseline, at 45.84%, but at a
fraction of the cost5. Simultaneously, retraining the discovered model from scratch using random initialisation

4We use points and percentage points (p and pp, resp.) for absolute performance difference and % for relative difference.
51.11 vs 0.16 GFLOPS, 11.4M vs 1.62M parameters, 4000 vs 850 global rounds (750 for supernet + 100 for fine-tuning)
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Table 3: Cross-device federated NAS on CIFAR-10.

Dataset Method Mem. Peak (MB) Perf. (%)

CIFAR10α=1

FedNAS 3837 90.02
FedNAS (adj. batch size) 1919 85.45
FedorAS 1996 86.46±0.32

CIFAR10α=0.1

FedNAS 3837 65.28
FedNAS (adj. batch size) 1919 54.84
FedorAS 1996 81.53±0.29

Table 4: Cross-silo federated NAS on CIFAR-10.

Dataset Method Validation acc. Test acc. #clients

CIFAR10α=0.5

FedNAS personalised∗ 90.4±2.4 - 20
FedNAS global - 81.2 16
FedorAScross-silo 97.2±0.4 90.6±0.2 20

CIFAR10α=0.2
SPIDER - 92.00±2.0 8
FedorAScross-silo - 90.82 8

∗FedNAS reports validation acc for this setting.

Table 5: Comparison with heterogeneous federated baselines. FedorAS performs better across datasets.

Dataset Method MFLOPs Params (M) Performance

CIFAR10α=1000

ZeroFLs=90% (Qiu et al., 2022) 557‡ 11.17 82.82±0.64
FjORDLDA (Horvath et al., 2021) [35, 139, 313, 556] [0.70, 2.79, 6.28, 11.16] [78.19±1.20, 78.63±1.31, 78.25±1.06, 77.19±0.85]
FedorASper tier [111, 140, 256, 329] [2.96, 2.93, 3.35, 4.32] [89.40±0.19, 89.60±0.15, 89.64±0.22, 89.24±0.29]

CIFAR10α=1

ZeroFLs=90% (Qiu et al., 2022) 557‡ 11.17 81.04±0.28
FjORDLDA (Horvath et al., 2021) [35, 139, 313, 556] [0.70, 2.79, 6.28, 11.16] [78.54±0.12, 79.25±0.51, 78.66±0.29, 77.35±0.44]
FedorASper tier [116, 183, 262, 330] [2.59, 2.90, 3.55, 4.31] [85.99±0.13, 86.30±0.41, 86.34±0.19, 86.46±0.32]

CIFAR10α=0.1 FjORDLDA (Horvath et al., 2021) [35, 139, 313, 556] [0.70, 2.79, 6.28, 11.16] [61.43±0.39, 60.81±1.42, 59.72±5.19, 57.44±3.53]
(Acc. (%) ↑ is better) FedorASper tier [117, 159, 238, 345] [2.17, 3.13, 2.49, 2.61] [81.01±0.46, 81.53±0.29, 80.64±0.66, 80.85±0.28]
Shakespeare FjORD (Horvath et al., 2021) [1, 3, 7, 11, 17] [0.01, 0.04, 0.08, 0.14, 0.21] [4.44±0.07, 3.91±0.10, 3.87±0.13, 3.87±0.13, 3.87±0.13]
(Perplexity ↓ is better) FedorASper tier [7, 12, 15, 21, 24] [0.09, 0.15, 0.18, 0.26, 0.30] [3.43±0.01, 3.39±0.04, 3.38±0.03, 3.40±0.01, 3.42±0.01]
SpeechCommands Oort (Lai et al., 2021)† 2382 21.29 62.20
(35 classes) PyramidFL (Li et al., 2022)† 2382 21.29 63.84
(Accuracy (%) ↑ is better) FedorAS⋆

best 10 0.63 70.10
† (Lai et al., 2021; Li et al., 2022) perform client selection based on system heterogeneity and are provided for context. FLOPs computed assuming the common (Zhang et al., 2018) 40×51 MFCC features input.
‡ (Qiu et al., 2022) speeds-up training w/ highly-sparse convs, attainable only with specialised h/w. ⋆ result obtained from the best model of setup in Appendix H.

under the same training setting as the baseline results in 11.43 pp higher accuracy than the best FedAdam
(63.94% vs 52.50%), showcasing the quality of FedorAS-produced bespoke architectures.

At this point, we should clarify that NAS has never constituted a direct replacement for techniques stemming
from Efficient ML, be it in centralised or federated settings. Effectively, they control different free variables
in the architecture of a DNN and explore different optimisation spaces, which can ultimately be combined
at deployment. Thus, the goal of the following comparison is to put FedorAS in the context of the literature
tackling similar issues in cross-device FL, rather than replace them.

Nevertheless, with respect to heterogeneous baselines (ZeroFL (Qiu et al., 2022), FjORD(Horvath et al.,
2021)), we see that FedorAS consistently leads to models with higher accuracy across tiers that are in the
respective clients’ computational budget (Tab. 5). At the same time, we depict how FedorAS performs
compared to FjORD and randomly selected architectures trained naively in a resource-aware manner in
Fig. 3. One can clearly see that the degrees of architectural freedom that our solution offers leads to
significantly better accuracy per resource tier. Notably, we perform 15.20% and 12.58% better on average
than FjORD on CIFAR-10 and Shakespeare, respectively, while still respecting client eligibility.

Model accuracy may not seem to scale proportionally to their size. We attribute this to the limited partic-
ipation eligibility of clients, an innate trait of heterogeneous systems landscape. Normally, this can cause
performance gaps due to limited exposure to federated data (Fig. 1). FedorAS is able to bridge this gap
(+0.03 points (p) avg), by means of weight sharing and OPA, +1.72 p more effectively than FjORD (avg
Tier 4 vs Tier 1 gap across datasets).

Additional results. Additional results on the per-tier computation and communication cost, along with
the convergence behaviour of FedorAS are provided in Appendix E.4, I, G.2, respectively. Moreover, we
provide evaluations on alternative client allocation to clusters in Appendix J.3.

4.3 Supernet Weight-sharing with FedorAS

Here, we evaluate the impact of weight sharing through FedorAS’ supernet. We compare the performance
of FedorAS’ models to the same architectures models, but trained end-to-end in a federated manner, across
all four datasets. With this comparison, we aim to showcase that FedorAS not only comes up with better
architectures, but it also effectively transfers knowledge between tiers through its supernet structure and
OPA aggregation scheme, without the need for full client participation. To accomplish that, we first train
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Table 6: Models discovered by FedorAS benefit from weight sharing across tiers. Models resulted from the search
stage in FedorAS and subsequently FL-finetuned are compared to models using the same architecture but trained
end-to-end in an FL manner (i.e. randomly initialised, rand-init) on eligible clients.

Dataset Clients Setting Partitioning Initialisation Classes Tier 1 Tier 2 Tier 3 Tier 4

CIFAR-10 100 Standard

IIDα=1000
Supernet 10 89.40±0.19 89.60±0.15 89.64±0.22 89.24±0.29
rand-init 89.05±0.17 87.84±0.38 86.18±0.38 81.27±0.81

non-IIDα=1.0
Supernet 10 85.99±0.13 86.30±0.41 86.34±0.19 86.46±0.32
rand-init 87.12±0.44 86.29±0.86 85.10±0.44 80.10±1.92

non-IIDα=0.1
Supernet 10 81.01±0.46 81.53±0.29 80.64±0.66 80.85±0.28

(Acc. (%) ↑ is better) rand-init 70.61±2.16 70.30±1.90 68.29±0.49 64.87±1.48

CIFAR-100 500 Standard non-IIDα=0.1
Supernet 100 45.25±0.13 45.84±0.18 45.42±0.39 45.07±0.71

(Acc. (%) ↑ is better) rand-init 36.30±0.96 39.26±1.21 39.06±1.32 36.77±1.32

Speech Commands 2112 Standard given Supernet 12 80.19±1.78 80.47±1.69 81.0±1.58 80.56±0.40
(Acc. (%) ↑ is better) rand-init 81.92±1.32 79.94±0.84 78.57±1.42 79.36±1.67

Dataset Clients Setting Partitioning Initialisation Classes Tier 1 Tier 2 Tier 3 Tier 4 Tier 5
Shakespeare 715 Standard given Supernet 90 3.43±0.01 3.39±0.04 3.38±0.03 3.40±0.01 3.42±0.01

(Perplexity ↓ is better) rand-init 3.44±0.03 3.50±0.02 3.47±0.08 3.52±0.07 3.60±0.04

Table 7: Quantification of fairness with per client accuracy
statistics, comparing end-to-end with FedorAS’s performance.
We report on the mean, standard deviation per tier and across
tiers and minimum performance (min accuracy or max perplex-
ity) across datasets with per-tier client test sets. Lower standard
deviation is better.

Dataset Mode # Total Perf. Perf. Worst
Clients (across tiers) (per tier) Perf.

CIFAR-10 Fedoras

100

81.36±8.58 [82.43±7.87, 81.41±9.34, 81.78±8.49, 79.80±8.42] 47.00
(Acc. (%) ↑ is better) rand-init 65.70 ±13.11 [67.43±12.29, 66.10±14.05, 66.14±13.02, 63.12±12.76] 11.00

FjORD 61.37±15.58 [56.34±15.37, 60.96±12.69, 62.92±14.04, 65.24±20.22] 25.00
CIFAR-100 Fedoras 500 45.61±13.15 [44.46±13.81, 45.51±12.28, 45.19±13.15, 47.29±13.15] 5.00
(Acc. (%) ↑ is better) rand-init 31.08±12.12 [30.72±13.16, 30.65±11.27, 30.43±11.25, 32.52±12.59] 0.00
Shakespeare Fedoras 715 2.93±1.01 [2.93±0.97, 2.94±0.99, 2.88±1.03, 2.98±1.04, 2.94±1.01] 8.43
(Perplexity ↓ is better) rand-init 3.07±1.10 [3.07±1.05, 3.08±1.10, 3.02±1.13, 3.11±1.13, 3.07±1.10] 8.36
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Figure 4: Accuracy per client of FedorAS vs. end-
to-end (rand-init) FL-trained models (same archi-
tecture) on CIFAR-10. Accuracy is quantified on
each client’s dataset from the model associated with
that device’s tier and error bars represent the stan-
dard deviation of accuracy between different runs.
Across runs, the allocation of data to clients does
not change. Ordered by ascending accuracy.

with FedorAS across the three stages described in Sec. 3 (supernet-init). Subsequently, we take the output
architectures from our system, randomly initialise them and train end-to-end in a federated manner, where
each model trains across all eligible clients (rand-init). Results are presented in Tab. 6.

Indeed, models benefit from being initialised from a supernet across cases; this means that weight-sharing
mitigates both the limited model capacity of the lower-tier and the limited data exposure of large models. The
accuracy improvement is further magnified as non-IID-ness increases, leading up to +15 pp over rand-init.
Results on different tasks of the same dataset presented in Appendix H.

4.4 Fairness Evaluation

Up to this point, we have only reported global test accuracy, which is aggregated across the clients partici-
pating during the test. To provide further insights into the effects our system has on each client individually,
here we present a more fain-grained evaluation. In particular, we quantify fairness (how much different
clients benefit from weight sharing) by the means of variance and worst-case statistical measures of client
performance on their respective test set.

Results are shown in Tab. 7 for the different datasets offering per-client test data splits for all clients. It can
be seen that FedorAS consistently leads to better performance compared to end-to-end FL trained networks
of the same architectures, where only eligible clients can train models. With respect to the standard deviation
of per client performance, we witness FedorAS offering lower variance, except for the case of CIFAR-100. We
consider this to be a consequence of our significantly higher accuracy. Similar behaviour is also witnessed
when we measure variance per tier of devices. Last, we also showcase the worst-case result of a clients
performance in the last column of the table.
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An in-depth view of how each client behaves is depicted in Fig. 4 for CIFAR-10, where we show performance
of Fedoras vs. end-to-end FL-trained models per client.

4.5 Ablation Study
Next, we measure the contribution of specific components of FedorAS to the quality and performance of
these models. To this direction, we firstly compare the performance of our system’s aggregation compared to
naive averaging. Subsequently, we measure the impact of sending smaller subspaces to clients for supernet
training. We provide indicative results on CIFAR-10α=0.1.

OPA vs. naive averaging. OPA compared to FedAvg leads to increased accuracy by +1.2, +0.9, +1.01
and +1.78 pp for tiers 1-4, respectively. More details in Appendix G.2.

Subspace sampling size. FedorAS samples the supernet before communicating it to a client. For CIFAR-
10 (α = 1.0) and when BΦcomm is set to 22.3M parameters (i.e. allowing sending whole supernet), FedorAS
yields 85.48%, 86.73%, 86.50% average accuracies across tiers for full, 1/2 and 1/4 of the size of the search
space, respectively. The overhead of communication reduced with FedorASand the convergence to the same
level of accuracy is faster. We hypothesise that this is due a better balance in the exploration vs. exploitation
trade-off. Details in G.2.

4.6 Convergence Behaviour
In Sec. 3 we argue that our supernet training is analogous to the typical FL training but performed on the
extended input space. Here we attempt to empiricaly verify this conjecture. In Fig. 5 we show the behaviour
of FedorAS across all stages for the datasets considered in this work. In particular, we show representative
results from one of the seeds in Table 6 using the default hyperparameters (as per Tables 9 and 10 of the
Appendix) and with all datasets using as communication budget (BΦcomm) half of their respective supernet
size. We can see that: 1) across all tasks, our supernet converges stably to its own local minima; 2) its
absolute performance (avg. across data and paths) is considerably lower than what can be obtained with
a single model, which is expected as the joint distribution of data and paths is much harder to optimise
compared to just inputs; 3) at the same time, for all tasks and tiers, we can find lots of paths with strong
performance in the trained supernet, although there are also those that perform exceptionally bad; 4) in
all cases, fine-tuning the weights from the supernet does not collapse any point – even though performance
might fluctuate, it is always significantly higher than the performance of an average path, the supernet or a
randomly initialised network and, with the only exception being Shakespeare Tier 0, which is always higher
than the starting point – this is important as it supports our conjecture that fine-tuning, being done on the
subset of all data, is not in conflict with supernet training and learned features can be easily transferred.

4.7 Evaluation of the Search Phase
To assess the quality of models during search (Stage 2), so far we have needed a proxy dataset to evaluate
different paths and rank them. We consider this as a set of examples that each application provider has
centrally to measure the quality of their deployed models in production settings.

Validation set size. The size and representativeness of the centralised dataset might affect the quality of
the search. To gauge the sensitivity of the end models to the underlying distribution of the validation set, we
sample down the validation set, as a held-out portion of the clients datasets, to 20% and 50% of the original
size. We find no noticeable impact on final model quality. More in App. K.1.

Federated search. There may be also cases where no such dataset can be centralised. To this direction,
we test whether our search can operate under a federated setting with partial participation in order to
faithfully rank the quality of models stemming from the supernet. In this setting, we have implemented
a federated version of NSGA-II. Instead of candidate models being evaluated on the same validation set,
they are stochastically evaluated on sampled federated client datasets (Paulik et al., 2021). We hypothesise
it is possible to maintain faithful ranking of models compared to centralised evaluation if enough clients
are leveraged to evaluate models, at the cost of increased communication cost. Furthermore, we expect
the overall cost of achieving robust evaluation to increase as non-IID-ness and #clients increase, and the
instantaneous cost of sending models to decrease over time, as NSGA-II converges to well-performing models
(i.e. decreased diversity of models). Fig. 6 shows results for CIFAR10α=0.1, with extra results and details
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Figure 5: Convergence of FedorAS for (from top to bottom): CIFAR-10, CIFAR-100, Speechcommands and Shake-
sear. For each stage, displayed values follow the relevant optimisation objective discussed in Sec. 3.1, 3.2 and 3.3,
respectively from left to right. E.g., notably, supernet training shows performance of the supernet averaged across
both data and paths (c.f. Eq. 4). Please note that the notion of a step changes between stages. For Supernet training,
one step is equivalent to performing local training on a single client. For search, one step means fully evaluating a
single path. Finally, for fine-tuning, one step is one global round. Be mindful of the different ranges of the Y-axes.
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Figure 6: Ranking quality & cost of federated evaluation (FE) of models for CIFAR-10α=0.1 during federated search.
Each time a new population of models is evaluated, a minimal supernet encompassing selected models is sent to a
sample of clients: left) ranking correlation between scores produced by FE & centralised evaluation, as a function of
FE rounds (↑ rounds = ↑ clients); middle) total communication of sending all necessary supernets to all clients to
run a full search; right) changes in supernet size as NSGA-II progresses.

presented in Appendix K.2. Our experiments support the aforementioned conjectures. Noticeably, even
under highly non-IID settings, we can attain faithful FE at a reasonable cost (4 rounds to Kendall-τ>0.8
for the results presented in Fig. 6).

Correlation with final accuracy. We observe that the best models after Stage 2 are rather unlikely to
be the best ones after Stage 3 (Kendall-τ 0.2-0.3). However, they tend to achieve decent results, suggesting
they are a safe choice if we want to keep fine-tuning to the minimum. See App. K.3.

5 Conclusion
In this work, we have presented FedorAS, a system that performs resource-aware federated NAS in the cross-
device setting. Not only does FedorAS achieve a significantly lower overhead compared to previous federated
NAS solutions, but also reaches state-of-the-art accuracy compared to heterogeneous FL techniques from
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the literature. This is largely enabled via our proposed supernet-training method that enables effective
knowledge sharing among clients of different dynamics.
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A Introduction

This Appendix extends the content of the main paper by providing support material to the study presented
in Sec. 3, 4 and, additional insights about FedorAS. Concretely, the Appendix is divided into three main
blocks of extra content:

• Impact and Limitations. We concisely present the broad impact and limitations of our work as
well as future research directions in Sec. B, C.

• Experimental Setup. Sec. E provides details on the libraries used to build FedorAS, the datasets
considered for experiments as well as the hyperparameters used to obtain the results presented in
Section 4. Crucially, we provide a detailed description of the search spaces utilised in for each dataset
domain, how tiers are defined and, a concise description of each baseline method included in this
work.

• Additional Experiments. Sec. F.1 through 4.4 study different aspects of FedorAS such as: i) learn-
ing multiple tasks using the supernet in Sec. H; or ii) the convergence behaviour in Sec. G.2; iii) the
fairness aspect of FedorAS; or under new scenarios altogether, such as: iv) an alternative procedure
to assign clients to tiers in Section J.3; or iv) alternative search methods for Stage 2 in Sec. K.

Overall, the following content substantially extends what is already presented in the main text.

B Broader Impact

Our system, FedorAS, performs federated and resource-aware NAS in the cross-device setting. Despite the
benefits illustrated compared to centralised NAS and cross-silo FL solutions, running Neural Architecture
Search is still a resource-demanding process, in terms of compute, memory and network bandwidth. While
FedorAS’s target devices can be of significantly lower TDP (i.e. smartphones and IoT devices vs. server-
grade GPUs) – with consequences on the overall energy consumption of training (Qiu et al., 2021) – they are
resources not directly owned by the operator. As such, special care needs to be taken with respect to how
many device resources are leveraged at any point in, so as not hinder the usability of the device or invoke
monetary costs to the user (Kang et al., 2019).

C Limitations & Future Work

Despite the challenges addressed by FedorAS, our prototype has certain limitations. First and foremost, we
have opted to cluster devices (i.e. in tiers) based on their FLOPS. While it is perfectly normal to divide
clusters based on other criteria (e.g. memory, latency, energy) or in a multi-objective manner, we have kept
it simple. Moreover, one can opt for biased sampling6 of i) clients participating in a round, ii) the subspace
they get communicated and iii) the paths sampled from that subspace, we opted for uniform sampling for
all of the above for simplicity, uniform coverage of the search space and fairness in participation. We leave
the exploration of such strategies as future work, .

Efficiency-wise, while FedorAS can achieve superior performance to the selected baselines, it is evident
that we need to perform additional rounds for supernet training and fine-tuning compared to single model
training (Horvath et al., 2021; Qiu et al., 2022). This involves pretraining a supernet, which – sampling-aside
– affects the communication cost of distributed training proportionally to the size of the search space. Our
current search spaces reflected the networks commonly deployed in the selected tasks. As a future research
direction, we would like to delve into designing spaces tailored for federated deployment across tasks along
with more sophisticated sampling and low-precision methods to minimise the communication cost.

Our method also has not stepped into the area of federated personalisation. Therefore, we have steered away
of comparing against such solutions from the literature. Nevertheless, as follow-up work, one could explore
how to further tune the architecture and weights of models in a more granular manner, per client device.

6based on the data or layer importance.
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Last but not least, we have considered privacy-enhancing techniques, such as Differential Privacy (Bren-
dan McMahan et al., 2017) or Secure Aggregation (Bonawitz et al., 2017; Bell et al., 2020), as orthogonal to
our scheme. Combining Federated NAS with such strategies can expose interesting trade-offs of exploration-
exploitation-privacy budgets that could be explored in the future.

D Extended Background

This section briefly introduces Federated Learning and NAS for a general audience.

D.1 Federated Learning Overview

A typical FL pipeline is comprised of three distinct stages: given a global model initialised on a central server,
ω

(t=0)
g , i) the server randomly samples k clients out of the available K (k ≪ K for cross-device; (Bonawitz

et al., 2019) k = K for cross-silo setting) and sends them the current state of the global model; ii) those k
clients perform training on-device using their own data partition, Di, for a number of epochs and send the
updated models, ω

(t)
i , back to the server after local training is completed; finally, iii) the server aggregates

these models and a new global model, ω
(t+1)
g , is obtained. This aggregation can be implemented in different

ways (McMahan et al., 2017; Reddi et al., 2021; Li et al., 2018). For example, in FedAvg (McMahan et al.,
2017) each update is weighted by the relative amount of data on each client: ω

(t+1)
g =

∑k
i=0

|Di|∑k

j=0
|Dj |

ω
(t)
i .

Stages ii) and iii) repeat until convergence. The quality of the global model ωg can be assessed: on the
global test set; by evaluating the fit of the ωg to each participating client’s data (Di) and derive fairness
metrics (Li et al., 2020c); or, by evaluating the adaptability of the ωg to each client’s data or new data these
might generate over time, this is commonly known as personalised FL (Fallah et al., 2020; Li et al., 2021c).

D.2 Neural Architecture Search Overview

Neural Architecture Search. NAS is usually defined as a bi-level optimisation problem:

a⋆ = arg min
a∈A

L(ω∗
a(Dt), Dv), where ω∗

a(Dt) = arg min
ωa

L(ωa, Dt) (7)

where A is a finite (discrete) set of architectures to search from (a search space), L is a loss function, ωa are
weights of a model with architecture a, and D{v,t} are validation and training datasets, respectively. The
main challenge of NAS comes directly from the fact that in order to assess quality of different architectures
(outer optimisation), we have to obtain their optimal weights which entitles conducting full training (inner
optimisation).

There exist multiple approaches to speed up NAS (Pham et al., 2018; Liu et al., 2019; Dong & Yang,
2019; Cai et al., 2019; Dudziak et al., 2020; Zhou et al., 2020; Abdelfattah et al., 2021; Luo et al., 2018;
Shi et al., 2020; Guo et al., 2020; Moons et al., 2020). More relevant to our work are those utilising the
concept of a supernet (Brock et al., 2018; Bender et al., 2018); where a single model that encapsulates all
possible architectures from the search space is created and trained. Specifically, a supernet is constructed
by defining an operator that incorporates all candidate operations (the set of which we denote by Ol) for
each searchable layer l. A common choice is to define it as a weighted sum of candidates’ individual outputs
yl =

∑
o∈Ol

α
(o)
l ∗ o(yl−1), where factors {α

(o)
l }o∈Ol

of each layer l can be defined differently for different
methods (e.g, continuous parameters (Liu et al., 2019; Cai et al., 2019; Dong & Yang, 2019) or random
one-hot vectors (Guo et al., 2020)). Importantly for us, methods that use sparse weighting factors can avoid
executing operations associated with zero weights, saving both memory and compute (Cai et al., 2019; Guo
et al., 2020).

After a supernet has been constructed and trained, searching for a⋆ is usually performed by either investigat-
ing architectural parameters (Liu et al., 2019; Dong & Yang, 2019; Cai et al., 2019), or using zero-th order
optimisation methods to directly solve the outer loop of Eq. 7 while approximating ω∗

a with weights taken
from the supernet (thus avoiding the costly inner optimisation) (Li et al., 2020a; Guo et al., 2020). The final
model can then be retrained in isolation using either random initialisation or weights from the supernet.
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E Detailed Experimental Setup

E.1 Implementation

FedorAS was implemented on top of the Flower (v0.18) (Beutel et al., 2020) framework and PyTorch (v1.11.0)
(Paszke et al., 2019). We run all our experiments on a private cloud cluster in a simulated manner, across
four iterations each and report averages and standard deviations.

E.2 Datasets

We partition CIFAR-10/100 following the Latent Dirichlet Allocation (LDA) partitioning (Hsu et al.,
2019), with each client receiving approximately equisized training sets. For CIFAR-10, we consider
α ∈ {1000, 1.0, 0.1} configurations, while for CIFAR-100, we adopt α = 0.1 as in (Reddi et al., 2021).
The remaining datasets come naturally partitioned.

CIFAR-10/100. The CIFAR-10 datasets contains 10k and 50k 32x32 RGB images in its test and training
sets respectively comprising ten classes. The goal is to classify these images correctly. Similarly, CIFAR-100
follows an identical partitioning but, this time, across 100 classes (fine lebels) or 20 superclasses (coarse
labels). Both CIFAR datasets have a uniform coverage across their classes.

SpeechCommands. The Speech Commands datasets (Warden, 2018) is comprised of 105,829, 16KHz 1-
second long audio clips of a spoken word (e.g. "yes", "up", "stop") and the task is to classify these in a 12 or
35 classes setting. The datasets comes pre-partitioned into 35 classes and in order to obtain the 12-classes
version, the standard approach (Berg et al., 2021; Coimbra de Andrade et al., 2018; Vygon & Mikhaylovskiy,
2021) is to keep 10 classes of interest (i.e. "yes", "no", "up", "down", "left", "right", "on", "off", "stop", "go"),
place the remaining 25 under the "unknown" class and, introduce a new class "silence" where no spoken
word appear is the audio clip. In this work we consider SpeechCommandsV2, the most recent version of
this dataset. The dataset spans three disjoint set of speakers: 2112 form the training set, 256 for validation
and, 250 for testing. In FedorAS, the supernet training phase makes uses of the 2112 clients in the training
partition only. The results are obtained by measuring the performance of the discovered models on the data
of the 250 clients comprising the test set. Data is not uniformly distributed and some clients have more data
than others. This dataset is processed by first extracting MFCC (Davis & Mermelstein, 1980) features from
each audio clip (Zhang et al., 2018; Berg et al., 2021). Across our experiments we extract 40 MFCC features
from a MelSpectrogram where each audio signal is first sub-sampled down to 8KHz and then sampled using
40ms wide time windows strided 20ms appart. This results in 1-second audio clip being transformed into a
1×40×51 input that can be passed to a CNN.

Shakespeare. This dataset is built (Caldas et al., 2018; McMahan et al., 2017) from The Complete Works
of William Shakespeare and partitioned in such a way data that from each role in the play is assigned to a
client. This results in a total of 1,129 partitions where the average number of samples per device is 3.7K and
the standard deviation 6.2K samples. This makes Shakespeare a relatively imbalanced dataset. The task is
to correctly predict the next character in a dialog given the previously seen characters in the sentence. The
vocabulary considered has 86 English characters as well as four special tokens: start and end of sentence,
padding and out-of-vocabulary tokens.

E.3 Search Spaces

We assume that the largest model in the search space is the maximal size that any of the clients can handle.
The minimum cost is set to the fixed cost of the network (i.e. cost of non-searchable components). Given
this range, and number of clusters C, we define the first and last clusters at prctl, prctr percentiles of a
randomly sampled set of models from the search space and linearly scale the C − 2 clusters in-between. All
supernet search spaces are depicted in Fig. 7 and described below.

CIFAR-10 and CIFAR-100. We use a ResNet-like search space similar to the one used in, for example,
Cai et al. (Cai et al., 2019). Specifically, our model is a feedforward model with a fixed (i.e. non-searchable)
stem layer followed by a sequence of 3 searchable blocks, each followed by a fixed reduction block. A standard
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Figure 7: Summary of models used in our experiments: left) CIFAR-10 and CIFAR-100, middle) Speech Com-
mands, right) Shakespeare. Blocks highlighted in blue are fixed, orange blocks represent searchable layers. c –
output channels, s – stride, d – output feature dimension, DSConv – depthwise separable convolution. Whenever a
layer has more than one input they are added. All convolutions are followed by BN and ReLU. For convolution and
pooling operations, numbers in parentheses represent window sizes.

block consists of 4 searchable layers organized again in a simple feedforward manner. Operations within a
standard block preserve shape of their inputs, but are allowed to change dimensions of intermediate results.
On the other hand, the goal of reduction blocks is to reduce spatial resolution (2× in each dimension) and
increase number of channels (1.5×). Reduction blocks are fixed throughout and consists of a depthwise
separable convolution 3 × 3, with the first part performing spatial reduction and the second increasing the
number of channels, and a standard 2 × 2 convolution applied to a residual link. The sequence of blocks is
finished with a global average pooling per-channel and a classification layer outputting either 10 or 20/100
logits, which is the only difference between the two models. Each convolution operation is followed by a
batch normalization (BN) and ReLU.

In our experiments we considered the following candidate operations:

• standard convolution 1 × 1 with BN and ReLU,

• depthwise separable convolution 3 × 3 with expansion ratio (controlling the number of intermediate
channels) set to {0.5, 1, 2}, with each expansion ratio being an independent choice in our search
space;

• MobileNet-like block consisting of a convolution with kernel size k and expansion ratio e, followed
by a Squeeze-and-Excitation layer, followed by a 1×1 convolution reverting the channels expansion,
we considered {(k = 1, e = 2), (k = 3, e = 0.5), (k = 3, e = 1), (k = 3, e = 2)};

• identity operation.

The stem layer was set to a 3 × 3 convolution outputting 64 channels.

Speech Commands. The model follows the one used for the CIFAR datasets but is made more lightweight
– to roughly match what can be found in the literature – by reducing stem channels to 16 and including
only 1 (resp. 2) searchable operations in the first (resp. last) two blocks. Additionally, reduction block only
includes a single 1 × 1 convolution, that changes the number of channels, followed by a 3 × 3 average pooling
that reduces spatial dimensions. We also include additional candidate operations:

• standard convolution 3 × 3,

• depthwise separable convolution with kernel size 1 and expansion ratio 2.

All other operations from the CIFAR model are also included.

Shakespeare. We base our design on the model used by FjORD. (Horvath et al., 2021). Specifically, the
model is a recurrent network that begins with a fixed embedding layer outputting 8-dimensional feature vector
per each input character. This is then followed by a searchable operation #1 that increases dimensionality
from 8 to 128; in parallel, we have a searchable skip connection #1 operation whose output is added to the
output of the operation #1. Later there is another searchable operation #2 with its own skip connection
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Table 8: This table summarises how each search space is split into tiers. Parameters ρL and ρH are used to
conveniently split the FLOPs axis for each dataset and present challenging scenarios for FedorAS. The last column
refers to the percentage of the total clients that are assigned to each tier.

Dataset [ρL, ρH ] Tier FLOPs range # Models Portion(%) Clients (%)

CIFAR-10 [0.0, 0.95]

T1 [0, 120.9M] 239.4·1012 12.92% 25%
T2 (120.9M, 223.2M] 1089.4·1012 58.80% 25%
T3 (223.2M, 325.4M] 477.2·1012 25.75% 25%
T4 (325.4M, 716.0M] 46.9·1012 2.53% 25%

CIFAR-100 [0.0, 0.9]

T1 [0, 111.5M] 168.4·1012 9.09% 25%
T2 (111.5M, 204.3M] 975.4·1012 52.64% 25%
T3 (204.3M, 297.1M] 609.5·1012 32.89% 25%
T4 (297.1M, 716.0M] 99.7·1012 5.38% 25%

CIFAR-100 [0.0, 0.9]

T1 [0, 111.5M] 168.4·1012 9.09% 50%
T2 (111.5M, 204.3M] 975.4·1012 52.64% 25%

(multi-task setting T3 (204.3M, 297.1M] 609.5·1012 32.89% 12.5%
of Appendix H) T4 (297.1M, 716.0M] 99.7·1012 5.38% 12.5%

SpeechCommands [0.3, 0.925]

T1 [0, 5.0M] 827.5·103 46.71% 80%
T2 (5.0M, 7.5M] 617.4·103 34.85% 1.25%
T3 (7.5M, 10.1M] 260.2·103 14.69% 1.25%
T4 (10.1M, 20.0M] 66.4·103 3.75% 17.5%

Shakespeare [0.1, 0.77]

T1 [0, 7.8M] 316 13.48% 20%
T2 (7.8M, 12.8M] 577 24.54% 20%
T3 (12.8M, 17.8M] 787 33.48% 20%
T4 (17.8M, 22.8M] 473 20.14% 20%
T5 (22.8M, 33.8M] 196 8.37% 20%

#2, both keeping the hidden dimension at 128. Again, their outputs are added and passed to the final
classification layer.

Candidate operations for each of the four searchable layers are mainly the same, with minor adjustments
made to make sure a valid model is always constructed. These include:

• an LSTM layer (Hochreiter & Schmidhuber, 1997),
• a GRU layer (Cho et al., 2014),
• a LiGRU layer with tanh activation (Ravanelli et al., 2018),
• a QuasiRNN layer (Bradbury et al., 2017),
• a simple Linear layer (no recurrent connection) followed by a sigmoid activation,
• a 1D convolution with kernel 5 spanning time dimension (looking at the current character and 4

previous ones), followed by a sigmoid activation (no normalisation);
• identity operation (only included in later operation, after feature dimension has been increased to

128);
• zero operation, outputting zeros of the correct shape (only included in skip connection layers).

For LiGRU and QuasiRNN we used implementations provided by the Speechbrain project (Ravanelli et al.,
2021), after minor modifications. For others, we used standard operations from PyTorch. All operations
were used as unidirectional. We did not use any normalisation throughout the model.

E.4 Tiers: Definition and Client Assignment

With FedorAS the discovery and training of architectures happens in a tier-aware fashion as a federated
process. In this work we considered splitting each search space along the FLOPs dimensions (but other
splits are possible, e.g: energy, peak-memory usage, etc – or a combination of these). Fig. 8 illustrates the
span in terms of model parameters and FLOPs of each search space presented in E.3 and the split along
the FLOPs dimensions for each of them. These search spaces vary considerably in terms of size and span,
which motivated us to use different number of tiers or client-to-tier assignment strategies. Tab 8 shows the
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Figure 8: For each search space, we randomly sample 500 architectures and color code them based on the tier they
belong to. Vertical dashed lines represent the boundaries between device tiers. For Shakespeare, the majority of the
candidate operators in the searchspace include just linear layers or no-op layers, as a results the number of FLOPs
grows almost linearly with the model of parameters.

the FLOPs ranges considered for each tier, the number of models in those sub-spaces exposed to FedorAS
as well as the ratio of models in the entire search space that fall onto each tier.

Identifying FLOPs ranges for each tier. Regardless of the dataset, we follow a common approach to
divide the FLOPs dimension that each dataset spans. The main aim is to finely control how many models
fall onto the smallest/largest tier, given that these are considerably sparse regions of the entire search space.
If we were to evenly split the FLOPs dimension, almost no architecture would fall onto the largest tier. To
simplify the process of defining where each tier’s boundaries lie, we follow these steps which require two
hyperparameters: (1) we construct a long array of FLOPs from models sampled from the search space and
this array is then sorted from lowest to highest; then, (2) we normalise this array of FLOPs and compute
the cumulative sum of such normalised array; finally, (3) we identify the lower limit of the highest tier as
maximum FLOPs value found in the first ρN, ρ ∈ [0, 1], elements of the array where N is the number of
samples taken (we found 100K to work well). Essentially, we find the FLOPs for which the approximated
PDF over the FLOPS of a given search space doesn’t surpass ρ. Once that FLOPs value is identified,
the FLOPs range is evenly split for the tiers below and the higher limit for the largest tier becomes the
maximum FLOPs a model in the search space can have. This is the approach for CIFAR-10 and CIFAR-100
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Table 9: Hyperparameters used for the federated supernet training stage in FedorAS, as described in Sec. 3.1.
The learning rate is kept fixed during this stage. In all datasets, the aggregation strategy followed the proposed
histogram-informed methodology OPA, first presented in Sec. 3.1.

Dataset # Federated # Clients # Local Local Batch LR Momentum Gradient
Rounds per round Epochs Optimizer Size Clipping

CIFAR-10 500 10 50 SGD 128 0.1 0.9 N
CIFAR-100 500/750 10 25 SGD 64 0.1 0.9 N
SpeechCommands 750 21 25 SGD 64 0.1 0.9 N
Shakespeare 500 16 5 SGD 4 1.0 0.0 Y

Table 10: Hyperparameters used by FedorAS to search for the best model in the supernet and finetune them in a
tier-aware fashion as described in Sec. 3.2 and Sec. 3.3 respectively. Searching iterations shown are allocated per-tier
(i.e. CIFAR-10 has 4 tiers so a total of 4K valid models would be considered during the search). Cosine LR scheduling
gradually reduces the initial LR (shown in the table) by an order of magnitude over the span of the the fine-tuning
process. For Shakespeare, step LR decay worked best. This is applied at rounds 50 and 75, each decreasing the LR
by a factor of 10×. SpeechCommands assigns different search iterations based on the ratio of clients assigned to
each tier. FedorAS scales the amount of search for valid models within the tier accordingly. For Shakespeare, the
sub-searchspaces that yield Tier-1 and Tier-5 models are smaller than for the other tiers, we therefore consider fewer
search iterations.

Dataset # Tiers # Search # Finetune # Clients Local Batch LR LR Other
Iterations Rounds per round Epochs Size Scheduling Hyperparams

CIFAR-10 4 1000 100 6 1 32 0.01 cosine momentum=0.9
CIFAR-100 4 1000 100 6 1 32 0.01 cosine momentum=0.9
SpeechCommands 4 500/2000 100 21 1 32 0.01 cosine momentum=0.9
Shakespeare 5 100/150 100 16 1 4 1.0 step g.clipping=5

as illustrated in Fig. 8 (a) and (b). For SpeechCommands and Shakespeare we introduce a similar approach
to give a wider range to the smallest tier. We refer to ρL and ρH as the PDF ratios to identify the boundaries
splitting Tier1&2 and Tier3&4 respectively. The concrete values for each dataset as well as the FLOPs values
for each tier boundary are shown in Tab 8.

Clients to tiers assignment. For CIFAR-10/100 clients are uniformly assigned to a cluster of devices or
tier. For these datasets we consider four tiers, so each ends up containing 25% the clients resulting in 25
clients for CIFAR-10 and 125 clients for CIFAR-100. Similarly, for Shakespeare clients are also uniformly
assigned to a tier, resulting in 143 clients per tier. For SpeechCommands, we designed a more challenging
setup and divide the clients into tiers as follows: 80% of clients are assigned to be tier-1 devices, 17.5% are
Tier-4 devices and the rest is evenly split into Tier-2 and Tier-3. This distribution better represents the
the types of systems in the wild that perform keyword-spotting (Zhang et al., 2018), where the majority
of the commercially deployed systems run these applications on low end CPUs or microcontrollers due to
their always-on nature. Across datasets, the client-to-tier assignments was done irrespective of the amount
of data these contained or distribution over the labels. An alternative client to tier allocation is provided in
Sec. J.3.

E.5 Hyperparameters

Here we present the hyperparameters used across all datasets and tasks to generate the results presented
in Sec. 4. In Tab. 9 we show the hyperparamters utilised for the first stage in the FedorAS framework:
federated training of the supernet. Noticeably we require more local epochs in this stage as training each
client effectively (pre-)trains multiple models and we need sufficiently many forward passes in order to sample
a large enough number of paths on each client. In the context of FedorAS, the combination of batch size and
number of local epochs define the exploration vs. exploitation trade-off in the communicated subspace. It is
natural that if not enough paths are explored or if paths overfit the local data, the overall NAS results and
thus model ranking would be severely affected. As such, we increase the number of local epochs together
with a batch size, to ensure that the total number of forward passes remains constant for the same number of
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Table 11: The architectures discovered by FedorAS can also be trained from scratch. This table contains the
hyperparameters utilised to generate the rand-init results shown in Tab. 6 and 16. Training of these baselines is also
performed in a tier-aware fashion. Cosine LR scheduling gradually reduces the initial LR (shown in the table) by an
order of magnitude over the span of the the fine-tuning process. For Shakespeare, step LR decay worked best. This
is applied at rounds 250 and 375, each decreasing the LR by a factor of 10×.

Dataset # Federated # Clients Local Batch LR LR Other
Rounds per round Epochs Size Scheduling Hyperparams

CIFAR-10 500 10 1 32 0.1 cosine momentum=0.9
CIFAR-100 500 10 1 32 0.1 cosine momentum=0.9
SpeechCommands 500 21 1 32 0.1 cosine momentum=0.9
Shakespeare 500 16 1 4 1.0 step g.clipping=5

Table 12: Cross-device federated NAS on CIFAR-10. We compare FedorAS and FedNAS while normalising aspects
that are critical to on-device training: namely the number of FLOPs clients do in a given round and the memory
peak seen over the course of such training. The later directly impacts on which devices a particular model could be
trained on. We normalise memory peak by lowering the batch size that FedNAS uses (from 32 to 16) and reduce the
number of local epochs in FedorAS down to 20 to match the FLOPs of typical FedNAS client. For further context, we
maintain the results of FedorAS with 50 local epochs – the setting used throughout the majority of the experiments
in this paper.

Dataset Method Local Epochs Batch Mem. Peak (GB) GFLOPs/client Perf. (%)

CIFAR10α=1

FedNAS 10 32 3837 1431 90.02
FedNAS 10 16 1919 1431 85.45
FedorAS 20 128 1996 1402 87.21±0.15
FedorAS 50 128 1996 3504 86.46±0.32

CIFAR10α=0.1

FedNAS 10 32 3837 1431 65.28
FedNAS 10 16 1919 1431 54.84
FedorAS 20 128 1996 1402 79.41±0.31
FedorAS 50 128 1996 3504 81.53±0.29

training examples on a client. After this stage, the best model for each tier is extracted from the supernet
and then, they get finetuned in a per-tier aware manner (i.e. clients in tier T and above can finetune a model
that belong to tier T ). The hyperparameters of these two consecutive stages are shown in Tab. 10.

Regarding the rand-init results (i.e. models discovered by FedorAS but trained from scratch – discarding
the weights given by the supernet) we present the hyperparameters in Tab. 11. These hyperparameters were
the ones used to generate the results in Tab. 6 and 16 as well as Fig. 3. In Sec. 4.2, we present a CIFAR-100
result that largely outperforms existing federated baseline of (Reddi et al., 2021). This was achieved by a
model discovered by FedorAS but trained in the rand-init setting following the setup as in (Reddi et al.,
2021): 10 clients per round for 4k rounds using batch 20, starting learning rate of 0.1 decaying to 0.01
following a cosine scheduling.

E.6 Cross-device Federated NAS Evaluation

In Tab. 3 of Sec. 4.2 we compared FedorAS against FedNAS in the cross-sile setting with 100 clients and
10 clients randomly sampled on each round. Both methods follow a substantially different approach as far
as NAS is concern and, as a result, FedNAS has a significantly higher memory peak than FedorAS for the
same batch size. For example, for a batch size of 64 images, FedorAS sees a memory peak of 998MB whereas
FedNAS requires 7674MB. Similarly, both methods translate in different compute footprints for each client.
For example, FedNAS requires on average 716 GFLOPs per client (assuming each client), while clients in
FedorAS need 280 GFLOPs for the same amount of local epochs and data in the client. Due to these
differences, we aimed at normalising these aspects to make the comparison fair. These results are shown in
Tab. 12, which extends the content of Tab. 3.
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E.7 Baselines

In this section we faithfully describe what each baseline represents in the experiments of the main paper and
the appendix to clarify with what we are comparing in each section.

Tier-unaware (Fig.3): This baseline represents model architectures that have been trained end-to-end in
a federated manner without any awareness of client eligibility. We are using FedAvg with hyperparameters
similar to those presented in Tab. 11.

Tier-aware (Fig.3): This baseline adds client eligibility awareness to the previous baseline. This means
that models of certain footprint can be trained only on clients of the eligible cluster and above.

FjORD (Horvath et al., 2021) (Fig.3, Tab. 5): FjORD is a baseline that is tackling system heterogeneity by
means of Ordered Dropout. It assumes a uniform dropout rate across layers, essentially keeping the control
variable one-dimensional and thus offering fewer degrees of architectural freedom. Nevertheless, it enables
the dynamic extraction of candidate submodels without the need to retrain or finetune. This particular
variant is assuming the experimental setup of the original paper which shards the CIFAR-10 dataset per
client without LDA. The Shakespeare setup remains the same as ours.

FjORD-LDA (Horvath et al., 2021) (Fig.3, Tab. 5): For this baseline, we implemented FjORD and ran it
on the same number of clusters as FedorAS, with LDA for CIFAR-10.

SPIDER (Mushtaq et al., 2021) (Tab. 4): SPIDER is another paper performing personalised Federated
NAS in the cross-silo setting. As there is no publicly available codebasse, we assume their setting with
FedorAS and compare on CIFAR-10.

ZeroFL (Qiu et al., 2022) (Tab. 5): For this baseline, we borrow the results of respective paper for
CIFAR-10α={1,1000}, which assumes the same setup as ours. We present the results for sparsity level of
90% and annotate its footprint as the original model FLOPS and the number of non-zero parameters.

Oort (Lai et al., 2021) (Tab. 5): The Oort framework proposes a participation sampling criterion by which
clients are sampled based on their utility (i.e. how much their data can contribute to the global model)
while also taking the device capabilities into consideration. Over the course of FL training, the sampling
of clients with high data and system utility is prioritised to reduce the time needed to convergence. For
SpeechCommands (see Tab. 5), Oort made use of a ResNet-34 model.

PyramidFL (Li et al., 2022)(Tab. 5): At a high-level, PyramidFL proposes a framework similar to that
in Oort. The core difference between these two methods is that PyramidFL leverages more fine-grained
statistics when assessing the contribution potential (i.e. utility) of the selected clients. It also uses ResNet-
34 for SpeechCommands.

rand-init (Tab. 6, 16, 21): This baseline refers to the concept of running the search, coming up with an
architecture and subsequently re-initialising the weights and running a conventional federated training setup.
It shows vanilla scaling that would be obtained if we simply trained identified models in a standard way,
using random initialization and full FL training using standard practices. Model architectures are kept the
same between FedorAS and “rand-init” experiments. Models belonging to higher tiers, as a whole, are never
trained on data belonging to devices from lower tiers.

F Comparison with Alternative NAS Algorithms

Note: this section considers replacing FedorAS as a whole with a different approach to searching for the
best performing model in the same search space etc. On the other hand, for additional details about the
searching stage of FedorAS (Stage 2) please see Section K.

F.1 Comparison against Random Search

In the main paper we compare our FedorAS to the state-of-the-art methods from the literature (Sec. 4.2) and
also investigate the impact of initializing models with weights from a supernet (Sec. 4.3). Here we present
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Figure 9: For each dataset, we randomly sample their search space and train these models end-to-end. We repeat
this process (with new samples) three times, and overlap the scatter plots of different runs (i.e. red, green, blue).
Then, for each tier we average the best performing models across each of the three runs and plot the result as a
dashed horizontal line with grey area representing ± standard deviation. The compute budget allocated to generate
the data for each plot is equivalent to the cost of running FedorAS, which also yields one model per tier.

Table 13: Comparison of performance of models found with FedorAS and with a simple random search.

Dataset FedorAS Random search

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

CIFAR-10 (α = 1000) 89.40±0.19 89.60±0.15 89.64±0.22 89.24±0.29 - 86.03±0.13 86.39±0.28 85.18±0.26 79.84±0.75 -
CIFAR-10 (α = 1.0) 85.99±0.13 86.30±0.41 86.34±0.19 85.58±0.55 - 83.68±0.25 84.50±0.31 84.30±0.38 79.65±0.18 -
CIFAR-10 (α = 0.1) 81.01±0.46 81.53±0.29 80.64±0.66 80.85±0.28 - 66.75±0.74 70.85±1.53 69.00±0.18 66.08±2.29 -
CIFAR-100 45.25±0.13 45.84±0.18 45.42±0.39 45.07±0.71 - 34.41±0.90 37.64±0.46 36.98±0.64 35.45±0.90 -
SpeechCommands 80.19±1.78 80.47±1.69 81.00±1.58 80.56±0.40 - 82.84±1.08 81.17±0.26 81.10±0.74 80.61±0.61 -
Shakespeare 3.43±0.01 3.39±0.04 3.38±0.03 3.40±0.01 3.42±0.01 3.86±0.33 3.54±0.28 3.45±0.32 3.80±0.30 3.60±0.39

one more important baseline for any NAS algorithm - comparison to a random search. Specifically, while we
have already shown that models found by FedorAS in most cases benefit from supernet training, this does
constitute a conclusive argument justifying the necessity of the entire process in a broader context. Perhaps
there exist models that do not need to be initialized from a supernet but, since the focus of our work is on
supernet training, we missed them due to biased conditioning?

In order to check this hypothesis we run a simple random search algorithm, to get an estimate of the expected
best case performance of models from our search spaces when trained following standard FL procedure. This
simple baseline was allowed to train random models until the total training cost exceeded the cost of running
FedorAS – this turned out to be equivalent to roughly 40 fully-trained models. After we run out of the
training budget, we simply get the best model for each tier as our solution to NAS. We repeated the entire
process 3 times for each search space and report average and standard deviation compared to the average
performance of models found by FedorAS in Tab. 13. Additionally, we also plot detailed performance of each
model trained during this process in Fig. 9 for the sake of completeness.

Noticeably, FedorAS performs significantly better at an average of +5.11pp, +3.24pp, +12.84pp, +9.27pp,
+0.25p across tiers for CIFAR-10α={1000,1,0.1}, CIFAR-100 and Shakespeare, respectively. Only in the case of
SpeechCommands did our search result in -0.87pp of accuracy on average. We suspect this is due to problem
with fine-tuning rather than architectures themselves – specifically, we witness accuracy of the discovered
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Table 14: Comparison of FedorAS vs centralised NAS setting.

Method Dataset Tier 1 Tier 2 Tier 3 Tier 4
Centralised NAS CIFAR-10centralised 93.77±0.20 94.14±0.34 94.04±0.22 94.33±0.09

FedorAS CIFAR-10α=1000 89.40±0.19 (-4.37) 89.60±0.15 (-4.54) 89.64±0.22 (-4.40) 89.24±0.29 (-5.09)

Table 15: The effect of Stage-III of FedorAS: tier-aware federated fine-tuning of models extracted from the supernet.
This table reports the increase in validation accuracy (measured in percentage points) for classification tasks of the
model after fine-tuning and the decrease in perplexity for next word prediction (i.e. Shakespeare).

Dataset Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

CIFAR-10α=1000 1.23±0.11 0.80±0.16 1.18±0.02 1.11±0.19 N/A
CIFAR-10α=1.0 3.99±0.22 3.86±1.36 3.55±0.68 2.63±0.49 N/A
CIFAR-10α=0.1 8.27±1.34 7.44±1.12 7.78±1.39 7.76±2.57 N/A

CIFAR-100α=0.1 8.56±0.04 8.69±0.33 7.20±0.34 7.74±1.04 N/A

Speech Commands 4.66±0.06 5.68±0.55 7.98±1.11 6.71±1.32 N/A

Shakespeare 0.273±0.025 0.220±0.028 0.227±0.046 0.210±0.020 0.190±0.020

models can vary significantly as we repeat the fine-tuning process (this is also visible in the case of full
training, although the extend is smaller). Consequently, although on average FedorAS performs slightly
worse, in many cases the best results surpass that of random search – because of that we suspect that fine-
tuning for longer would improve FedorAS’s performance. We leave this for future work, considering that a
single shortcoming like that does not seem significant in the light of the rest of our results.

F.2 Comparison against Centralised NAS
To study the impact that FL has in supernet-based NAS, we train the CIFAR-10 supernet in a similar
centralised setting to FedorAS’s. Similarly to Stage I in FedorAS, we do 500 training epochs following the
SPOS paradigm but, because it is centralised, we do not impose any FLOPs budgets when sampling paths
along the supernet. After training, we use NSGA-II to search for the best performing architecture/path and
select the best among 1000 valid models for each tier. Finally, these models are trained from scratch for 200
epochs (again in a centralised setting, i.e., having access to all training data). The resulting test accuracies
per tier are shown in the Tab. 14 and compared against the federated IID setting of CIFAR-10 (the simplest
FL setup).

G Convergence and FedorAS per-stage Analysis

In this section, we complement the results presented in Sec. 4.6, by measuring the impact of stage III of
FedorAS as well as the repercussions of supernet sampling when allocating tasks downstream.

G.1 Impact of Stage III: Federated Fine-tuning

After Stage I in FedorAS, models extracted from the supernet can directly be used for the target task (e.g.
image classification). However, performance on this target task can be improved further by fine-tuning these
models. This is the purpose of Stage III. In Table 15 we show the increase in model quality (measured on
the global validation set) before and after Stage III.

G.2 Convergence and Impact of Supernet Sampling

The proposed OPA aggregation scheme converges faster than an alternative aggregation method that does
FedAvg of the updated supernets. We show this in Fig. 10. When supernets from each client participating
in the round get aggregated with OPA, the resulting supernet is consistently better in terms of validation
accuracy than when aggregation is done with FedAvg. This difference becomes more evident as BΦcomm is
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(a) Sending whole of the supernet (BΦcomm = 22.3M) (b) Sending 50% of the supernet (BΦcomm = 11.15M)

(c) Sending 25% of the supernet (BΦcomm = 5.58M) (d) Impact of fewer rounds

Figure 10: Results using OPA compared to FedAvg in FedorAS for CIFAR-10 non-IID (α = 1.0) with fixed
hyperparameters. Each sub-plot contains two plots: first a scatter plot that visualises the federated supernet training
(Sec. 3.1) in the first 5k steps and the per-tier search stage (Sec. 3.2) the remaining steps; and, a bar plot that shows
the average test accuracies of each tier after federated fine-tuning (Sec. 3.3). For (a)-(c), the training setups are
identical with the exception of using either OPA or FedAvg. Both settings perform 500 rounds of federated supernet
training using 10 clients per round (i.e. 5k steps). Every 10 rounds, the supernet is evaluated on the global validation
set by randomly sampling paths and a dot is added to the plot. In the context of reduced communication budget, OPA
largely outperforms FedAvg, requiring fewer federated rounds to reach the same validation accuracy. This difference
is more noticeable when sending 50% of the supernet (roughly corresponding to the size of a ResNet18 model). In
(d) we measure the quality of the models found when the supernet training phase ends once 70% validation accuracy
is reached – the highest reached by FedAvg in (a)-(c) – and show competitive performance of models derived from
OPA-aggregated supernets. By extending the training phase by 50 rounds, we observe large improvements in the
quality of the final models.

reduced, i.e., as smaller portions of the supernet are sent to the clients. In Fig. 10 (d) we asses the feasibility
of reducing the number of rounds and end the federated supernet training stage when validation accuracy
reaches approximately 70%. Those points correspond to 250 rounds and 150 rounds for the setting when
50% and 25% of the supernet is sent to the clients, respectively. The results that these settings yield show
a significant loss (compared to their respective settings but over 500 rounds) and we therefore also run the
same settings but when allowing for 50 additional runs. We observe a significant jump in per-tier model
performance. We leave as future work investigating alternative metrics to more accurately (but without
incurring into heavy computational costs) measure the quality of the supernet at any given training iteration
and leverage this to better inform an early stopping mechanism to further reduce communication costs.

H Impact of Weight-sharing on Different Task Training

In this section, we expand on the analysis of Sec. 4.3. Specifically for CIFAR-100 and SpeechCommands,
we also create a second scenario, where not all clients train in the same domain of labels. For CIFAR-100,
there are 20 superclasses that are coarse-grained categories of the 100 standard labels. In contrast, for
SpeechCommands, there are 12 and 35-class label sets, with the latter annotating the “other” class more
specifically. In both cases, we assume a non-uniform distribution of clients to clusters, assuming that most
data (75-80%) reside on lower-tier devices, whereas the two higher tier-devices (holding 20-25% of data) can
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Table 16: Models discovered by FedorAS benefit from weight sharing across tiers compared to models using the
same architecture but trained end-to-end on clients that support them. Models derived from a FedorAS supernet
outperform their baselines by large margins in most cases. First part: accuracy, second part: perplexity.

Dataset Clients Setting Partitioning Mode Classes Tier 1 Tier 2 Tier 3 Tier 4

CIFAR-100 500 Multi-task non-IIDα=0.1
FedorAS [20, 20, 100, 100] 57.93±0.31 57.86±0.7 38.63±0.74 37.68±0.73
rand-init 41.64±0.26 42.45±0.58 27.11±0.64 21.28±1.26

Speech
Commands

2112 Transfer given FedorAS 12 → 35 67.06±2.12† 66.87±1.85† 67.65±1.59 68.49±1.47
rand-init 64.99±1.41† 65.03±0.69† 66.55±2.2 66.84±0.87

† Trained only on clients belonging to Tier 3 and 4.

Table 17: Communication costs of supernet pretraining for different methods. FL rounds refers to the number of
FL rounds dedicated to supernet training. Supernet size is the size of the model that is communicated to the clients.

Experiment Method FL Rounds Supernetsize (M) Num clients Comm. Costs (GB)

Table 2 – CIFAR-10 FedNAS 500 1.93 10 75.39
Table 4 – CIFAR-10 FjORD† 500 5.23 10 204.30
Table 2,4 – CIFAR-10 FedorAS 500 11.5∗ 10 449.22

Table 4 – Shakespeare FjORD† 500 0.10 10 3.83
Table 4 – Shakespeare FedorAS 500 0.83∗ 16 51.88

Table 4 – SpeechCommands FedorAS 750 1.5∗ 21 184.57
‡ Supernet size is size of avg. model communicated to clients.
∗ We are actually only communicating 1/2 of the supernet to participating clients.

train on the fine-grained label set. Our aim is to test whether few data allocation on the high tier devices can
benefit from the knowledge and feature extraction learned from the coarse-grained label set. We adopt two
different setups. For CIFAR-100, we train both tasks simultaneously, having essentially two distinct linear
layers across tiers (1,2) and (3,4). We call this setup multi-task. On the other hand, for SpeechCommands,
we train all clients on the same coarse domain and subsequently transfer learn a fine-grained 35 classes linear
layer for the client of tiers (3,4). We fine-tune the linear layer keeping the rest of the network frozen for
25 epochs and then allow for fine-tuning of the whole network for another 100. We present the results in
Tab. 16.

In both cases FedorAS learns better models and transfer knowledge from the low-tiers to high-tiers and vice-
versa through weight sharing of the supernet. Indicatively, for CIFAR-100 we are able to achieve +14.91 pp
(percentage points) of accuracy compared to training the same architectures end-to-end on eligible devices.
Similarly, we achieve +1.6 pp higher accuracy for SpeechCommands.

I Communication Cost of FedorAS and Baselines

Here we quantify the communication cost of federated training with FedorAS and other selected baselines,
depicted in Tab. 17 and Tab. 18. The former compares the total communications costs of supernet-based
federated methods, namely FjORD and FedNAS. While our method evidently assumes a larger search space
in terms of parameters – leading to higher communication costs – FedorAS is able to keep the peak memory
of searching at a significantly lower level and achieve higher accuracies to the selected baselines (see Tab. 3 in
Sec. 4.2) and 12. Given that most cross-device FL is happening when devices are plugged in and connected
to unmetered connections (Bonawitz et al., 2019), we believe it does not affect the deployability of our
solution. The costs of supernet training in FedorAS can be ammortised as more architectures are finetuned
for different device tiers or tasks. The latter table compares communications costs but focuses on FL
training (or fine-tuning) of individual standard models and for a single tier (if device tiers are applicable).
Here we notice that the communication cost of FedorAS’ fine-tuning is relative small and on par with the
most-efficient baselines.
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Table 18: Communication costs of federated fine-tuning (federated training) a model. (note: methods that are not
tier-aware are included here for a single tier).

Experiment Method Standard
FL Rounds

Avg. Model
Size (M) Num. clients Comm. Costs (GB) Notes

Table 2 – CIFAR-10 FedNAS ? ? ? ? Unclear how much fine-
tuning they do after NAS

Table 2– CIFAR-10 FedorAS 100 2.6 6 12.19 Average per tier

Table 4– CIFAR-10 ZeroFL 500 11.7 10 436.33
Table 4– CIFAR-10 FjORD 0 0 0 0 FjORD does not consider

fine-tuning
Table 4– CIFAR-10 FedorAS 100 3.34∗ 6 15.64 Average per tier

Table 4 – Shakespeare FjORD 0 0 0 0 FjORD does not consider
fine-tuning

Table 4 – Shakespeare FedorAS 100 0.20 16 2.46 Average per tier

Table 4 – SpeechCommands Oort 400 21.29 1300 / 100 46571.88 Oort asks 1300 clients to do
training but only the first
100 to finish are aggregated
(we therefore only include
100 models for uplink com-
munication)

Table 4 – SpeechCommands PyramidFL 400 21.29 50 3326.56
Table 4 – SpeechCommands FedorAS 100 0.42 21 6.96 Average per tier
∗ Average model size is calculated as the average parameter size across tiers in fine-tuning stage.

J Behaviour under Alternative Tier Clustering

J.1 Supernet with Wider FLOPs Range

We design a larger supernet for CIFAR-10 by stacking more blocks (4 blocks with 4 searchable layers followed
by two blocks of 8 searchable layers) in the supernet while not requiring the reduction block between supernet
blocks to always downsample the input (see E.3). This is done to prevent the width and height of activations
to decrease too rapidly (i.e. after each block). The MFLOPs limits for each tier are: [101.06, 714.01, 1326.95,
4450.72], with the smallest model in Tier 1 (i.e. 53.77 MFLOPs) representing the fixed costs of the supernet
(FLOPs involving non-searchable layers). With this setup, Tier 4 models can have a 82× larger compute
footprint than Tier 1 models. Results are depicted in Table 19. These were obtained using the exact same
hyperparemeter configuration (see Table 9 and Table 10 for hyperparameters of FedorAS Stage I and Stage-
II & III respectively) as the CIFAR-10 experiments shown in Table 6, with the exception of now having a
larger supernet. Still, the candidate operators in the supernet remain the same and so is the proportion
of clients assigned to each tier. For these experiments we followed the same procedure when establishing
the communication budget and therefore we set it to be half of the supernet size. We report the results
of the fine-tuning stage of FedorAS and show improvement over those obtained with the smaller (original)
supernet. We also report the resulting performance when networks are randomly initialised (i.e. rand-init
setup).

The results in Table 19 tell us that even in the scenario where the span of model footprints is larger (82×
in this experiment): small models (Tier 1 – up to 101 MFLOPs) trained with FedorAS can very well take
advantage of larger models trained on other more capable clients (Tier 2 and above); and, better models
are obtained across Tiers showing large gains compared to the original supernet (considering models up to
700MFLOPs approximately).

J.2 Scalability to More Clusters

So far, we have shown results on a set number of clusters. In this section, we scale up the number of clusters
from 4 to 8 and show the behaviour of our system in the case of CIFAR-10α={1.0,0.1}. Results are depicted
in Tab. 20.
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Table 19: Performance of FedorAS when increasing the FLOPs range of models in the supernet. Models in Tier 4
are up to 82× larger than dose in Tier 1.

Dataset Tier 1 Tier 2 Tier 3 Tier 4

CIFAR-10α=1.0 89.54±0.12 (+3.55pp) 89.89±0.10 (+3.59pp) 89.99±0.19 (+3.65pp) 89.34±0.41 (+2.88pp)
CIFAR-10α=0.1 84.42±0.41 (+3.41pp) 84.94±0.42 (+3.41pp) 84.11±1.37 (+3.47pp) 83.63±1.13 (+2.78pp)

Table 20: Performance of FedorAS when scaled to 8 tiers.

Dataset Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 Tier 6 Tier 7 Tier 8

CIFAR-10α=1.0 87.53±0.29 87.81±0.21 87.59±0.57 87.84±0.26 87.65±0.20 87.76±0.40 87.21±0.55 87.11±0.45
CIFAR-10α=0.1 80.34±1.70 81.56±0.46 81.50±1.19 81.54±0.69 81.12±0.81 81.14±0.29 81.28±1.13 79.92±1.94

Table 21: FedorAS performance under (Lai et al., 2021) device clustering. We see that performance still scales well,
albeit taking an impact due to more extreme system heterogeneity compared to results from Tab. 6. This hints that
weight-sharing through our supernet works well under varying device allocation settings.

Dataset #clients Method Perf.

CIFAR10α=1
100 (10) FedorASper tier [87.77±0.09, 87.43±0.28, 87.15±0.42, 87.01±0.11]
100 (10) rand-init [85.83±1.24, 83.91±0.98, 83.21±0.60, 79.10±1.63]

CIFAR100α=0.1
500 (10) FedorASper tier [44.33±0.81, 43.83±0.89, 43.72±0.82, 43.22±1.02]
500 (10) rand-init [34.88±0.28, 33.76±2.53, 32.72±0.68, 30.77±2.30]

J.3 Different Allocation of Clients to Tiers

In this experiment, contrary to what was described in Appendix E.4, we adopt the device capabilities trace
from Oort (Lai et al., 2021) for our device to cluster allocation and performed training on CIFAR-10 and
CIFAR-100. Results are depicted on Tab. 21. It can be witnessed that FedorAS is able to operate even under
harsher heterogeneity conditions and still output competitive models in the federated setting.

K Evaluation of the Search Phase

K.1 Sensitivity to Size of Validation Set

In order to more meaningfully examine the impact of the validation set size, we run experiments on all
datasets with 20% and 50% of the size of the initial global validation set. This means that during Stage-II
of FedorAS, architectures sampled from the supernet are scored using a fraction of the global validation set.
These validation subsets are extracted uniformly. After obtaining the best performing models for each tier,
these are fine-tuned in a federated fashion (Stage-III in FedorAS) for 100 rounds just like it was done for
Tab. 6. We maintain the same hyperparameters as those used to generate Tab. 6. Results are depicted in
Tab 22 for all datasets.

K.2 Federated Search

In this Section, we provide additional details and results concerning our federated variant of NSGA-II,
discussed in Sec. 4.7 of the main paper. Below, we provide some context about how the algorithm works,
how we setup the federated experiments and commentary of the results on CIFAR-10{1000,1,0.1} and CIFAR-
100.

Algorithm details. Federation is achieved by delegating evaluation of models to individual clients. This
means that evaluation is done stochastically on clients’ local datasets. This setting is similar to Federated
Evaluation in (Paulik et al., 2021). In order to avoid sending a large number of models to clients, thus
saving communication cost, we leverage the fact that NSGA-II operates in “batches" of models – in each
iteration, a number of models (i.e. sample size) from the population is selected to produce new models that
replace the ones not selected. Since models from a single “batch” are all selected at the same time, we do
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Table 22: Test accuracy for different sample size of validation set. Results are shown as relative change in final test
accuracy for each tier compared to the scenario where the whole validation set is used. Results for each dataset are
averaged over three runs.

Dataset Clients Partitioning Val set prct. Classes Tier 1 Tier 2 Tier 3 Tier 4

CIFAR-10 100

IIDα=1000

1.0 10 89.40±0.19 89.60±0.15 89.64±0.22 89.24±0.29
0.5 -0.31 -0.10 -0.14 +0.03
0.2 -0.06 -0.17 -0.19 -0.02

non-IIDα=1.0

1.0 10 85.99±0.13 86.30±0.41 86.34±0.19 85.58±0.55
0.5 +0.06 -0.18 +0.19 -0.19
0.2 -0.05 +0.02 -0.28 -0.29

non-IIDα=0.1

1.0 10 81.01±0.46 81.53±0.29 80.64±0.66 80.85±0.28
0.5 +0.63 -0.5 -0.29 -0.14
0.2 +0.78 +0.13 -1.55 -0.09

CIFAR-100 500 non-IIDα=0.1

1.0 100 45.25±0.13 45.84±0.18 45.42±0.39 45.07±0.71
0.5 -0.10 +0.01 -0.27 -0.38
0.2 +0.07 +0.11 +0.32 -0.60

Speech
Commands

2112 given
1.0 12 80.19±1.78 80.47±1.69 81.0±1.58 80.56±0.40
0.5 +0.40 +0.64 +0.25 +1.76
0.2 -0.98 -0.40 -1.49 +1.08

Dataset Clients Partitioning Val set prct. Classes Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Shakespeare 715 given
1.0 90 3.43±0.01 3.39±0.04 3.38±0.03 3.40±0.01 3.42±0.01
0.5 -0.004 -0.000 -0.014 -0.015 -0.004
0.2 -0.002 -0.07 -0.003 +0.003 -0.008

not need to evaluate them sequentially. Instead, considering that weights between architectures are shared,
we can construct a minimal supernet that encapsulates all selected models and send it to relevant clients.
This way, we can achieve parallel evaluation of all selected models and optimal7 communication cost for a
given “batch”.

Experimental setting. The experimental setting is following exactly what was used in other experiments.
Specifically, population and sample sizes were the same as the ones used in centralised NSGA-II (128 and
64, respectively), and federated evaluation (FE) rounds were analogous to rounds during federated training
of the supernet from which models to evaluate were extracted. Concretely, number of clients, allocation
of clients to tiers, allocation of data to clients, number of available clients per round, and client selection
mechanism were all exactly the same for FE as the ones used during the relevant Stage 1 of FedorAS.

However, to present more meaningful results, we assumed that as we fluctuate the number of clients used
to evaluate models (number of evaluation rounds) additional clients are always unique. In other words,
reshuffling and "forgetting" of clients is happening only between federated NSGA-II iterations. Consequently,
it is possible that: i) if all clients are used to evaluate a model (e.g. 10 evaluation rounds for CIFAR-10), FE
is equivalent to centralised evaluation; ii) with a relatively small number of FE rounds, it is possible that one
set of models produced by NSGA-II is evaluated on a completely disjoint set of data to another “batch”; iii)
similarly, we do not enforce in any way that all clients have to be used (unless we use all clients in a single
iteration of NSGA-II). Finally, keeping consistent with the rest of the paper, we performed evaluation in a
tier-aware manner, meaning that models belonging to higher tiers could only access a subset of all validation
data based on client eligibility. This is the reason why relevant curves finish at a different maximum number
of FE rounds, that is a smaller number of FE rounds (i.e. Federated NSGA-II iterations) is needed to exhaust
the set of eligible clients.

Results. Fig. 11 complements Fig. 6 and presents results across three different experimental settings, with
varying level of non-IID-ness (α ∈ {1, 0.1}) and number of clients ({100, 500}). As conjectured in the main
paper, we can observe that the cost of achieving the same fidelity of FE increases with both the level of
non-IID-ness and the number of clients. Specifically, Kendall-τ of 0.8 is achieved at approximately three
FE rounds for {α = 1, clients = 100}, and increases to four and six for {α = 0.1, clients = 100} and

7Optimal in the sense of communicating paths once and not accounting for orthogonal techniques such as compression, etc.
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Figure 11: Ranking quality & cost of federated evaluation (FE) of models during federated search. Each time a new
population of models is evaluated, a minimal supernet encompassing selected models is sent to a sample of clients;
left) ranking correlation between scores produced by FE & centralised evaluation (CE), as a function of FE rounds
(↑ rounds = ↑ clients); middle) total communication cost of sending all necessary supernets to all clients, to run a
full search; right) changes in the supernet size as NSGA-II progresses.

{α = 0.1, clients = 500}, respectively. At the same time, we can see that regardless of the setting NSGA-II
tends to produce smaller supernets as the search progresses, suggesting that searching for longer does not
have to incur proportional increase in the communication cost.

K.3 Correlation with Post Fine-tuning Accuracy

The main objective of the NSGA-II search in Stage 2 is to find the most accurate models, where accuracy is
understood as validation accuracy immediately after extracting a relevant subnet from a pretrained supernet.
The assumption is that the better a model performs in a case like that, the better it will be after the following
fine tuning performed in Stage 3. However, weight-sharing NAS is well-known to fail to meet this assumption
in many cases Yu et al. (2020); Zela et al. (2020); Zhang et al. (2020); White et al. (2021); Ning et al. (2021).
Therefore, we additionally quantify the fidelity of out searching objective by measuring ranking correlation
between validation accuracy of 160 random models from a search space, when taken directly from a supernet
after Stage 2, to their final test accuracy after fine tuning in Stage 3. Results are presneted in Figure 12.

We can see that in general ranking models based on their accuracy when directly using weights from a
supernet is not very faithful to how good a model can be with extra fine-tuning, which is aligned with the
aforementioned observations made in the centralised setting. While this shows that further improvements
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Figure 12: Correlation between validation accuracy as measured during Stage 2 and the final test accuracy of a
model after fine-tuning in Stage 3, for 160 models randomly selected from a relevant search space. Left) CIFAR-
10α=1.0, middle) CIFAR-10α=0.1, right) CIFAR-100α=0.1. Note: unlike the rest of the paper, CIFAR-10 supernets
were trained for 750 epochs here, not 500.

could be achieved with more work on the searching algorithm, we would argue that to obtain more indicative
performance of models, one would need to perform additional training, which in our settings involves following
the entire FL procedure, making the cost of doing so even more non-negligible. On the other hand, while the
best models identified after Stage 2 are unlikely to be the best after fine-tuning, they tend to lean towards
better performing ones. Therefore, based on our strong empirical results and observed rankings in Figure 12,
we would conclude that they constitute a safe choice which, at the same time, involves minimal searching
cost. Due to those reasons, we leave the challenge of improving the fidelity of validation scores for future
work.
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