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ABSTRACT

Although data augmentation is a powerful technique for improving the perfor-
mance of image classification tasks, it is difficult to identify the best augmentation
policy. The optimal augmentation policy, which is the latent variable, cannot be
directly observed. To address this problem, this study proposes LatentAugment,
which estimates the latent probability of optimal augmentation. The proposed
method is appealing in that it can dynamically optimize the augmentation strate-
gies for each input and model parameter in learning iterations. Theoretical anal-
ysis shows that LatentAugment is a general model that includes other augmen-
tation methods as special cases, and it is simple and computationally efficient in
comparison with existing augmentation methods. Experimental results show that
the proposed LatentAugment has higher test accuracy than previous augmentation
methods on the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.

Data augmentation is a widely used technique for generating additional data to improve the per-
formance of computer vision tasks (Shorten & Khoshgoftaar, 2019). Although data augmentation
performs well in experimental studies, designing data augmentations requires human expertise with
prior knowledge of the dataset, and it is often difficult to transfer the augmentation strategies across
different datasets (Krizhevsky et al., 2012). Recent studies on data augmentation consider an au-
tomated design process of searching for augmentation strategies from a dataset. For example, Au-
toAugment, proposed by Cubuk et al. (2018), uses reinforcement learning to automatically explore
data augmentation policies using smaller network models and reduced datasets. Although AutoAug-
ment shows great improvement on image classification tasks of different datasets, it requires thou-
sands of GPU hours to search for augmentation strategies. Furthermore, the data augmentation
operations optimized for reduced datasets using smaller network models may not be optimal for full
datasets using larger network models.

To address this problem, this study proposes LatentAugment, which estimates the latent probability
of the optimal augmentation customized to each input image and network model. There is no doubt
that an optimal augmentation policy exists for each input image using a specific network model.
However, the optimal augmentation policy, which is a latent variable, cannot be directly observed.
Although a latent variable itself cannot be observed , we can estimate the probability of the latent
variable being the optimal augmentation policy. LatentAugment applies Bayes’ rule, to estimate the
conditional probability of the augmentation policy, given the input data and network parameters.

Figure 1 shows the concept of the proposed latent augmentation method. Following the
Bayesian data augmentation proposed by Tran et al. (2017), LatentAugment uses the expectation-
maximization (EM) algorithm to update the model parameters. In the expectation (E)-step, the
expectation of the weighted loss function is calculated using the conditional probability of the latent
augmentation policies. In the maximization (M)-step, the expected loss function is minimized using
the standard stochastic gradient descent. The conditional probabilities of the highest loss function
with the augmentation policy were calculated using the loss function with the updated parameters
and input data. The unconditional probabilities of the augmentation policies were generated using
the moving average of the conditional probabilities. Note that the conditional probabilities of the
latent augmentation policies are dynamically optimized for the input and updated model parameters
in the iterations of the EM algorithm.

The contribution of this study can be summarized as follows:
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Figure 1: An overview of the proposed LatentAugment. The loss functions with augmentation poli-
cies are calculated using the input data and the unconditional probability of augmentation policies.
The model parameters are updated by the EM algorithm. In E-step, the expectation of the weighted
loss function is calculated using the conditional probability of the highest loss. In M-step, the ex-
pected loss function is minimized using the standard stochastic gradient descent. The conditional
probabilities of the highest loss are calculated using the loss function with the updated parameters
and input data. The unconditional probabilities of the augmentation policies are generated by the
moving average of the conditional probability.

• It provides a theoretical model for LatentAugment. This study shows that LatentAugment
can dynamically optimize the augmentation methods for each input and model parameter in
the learning iterations by calculating the conditional probabilities of the latent augmentation
policies. Furthermore, it shows that LatentAugment is a general augmentation model that
includes other augmentation methods, such as Adversarial AutoAugment (Zhang et al.,
2019) and uncertainty-based sampling (Wu et al., 2020), as special cases.

• LatentAugment is simple and computationally efficient. It does not require the augmen-
tation policies to be searched before training. Adversarial AutoAugment proposes the ap-
plication of a generative adversarial network (GAN) (Goodfellow et al., 2014) to solve the
maximization of the minimum loss function, which requires an additional training cost for
the adversarial network. In contrast, the proposed LatentAugment can solve this problem
using the simple stochastic gradient descent algorithm without an adversarial network.

• Experimental results show that the proposed LatentAugment can improve the test accu-
racy for the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. For example, a test
accuracy of 98.72% was achieved with the PyramidNet+ShakeDrop (Han et al., 2017; Ya-
mada et al., 2018) on CIFAR-10, which is a significantly better performance compared to
previous augmentation methods.
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1 RELATED WORKS

Several studies have been conducted on data augmentation methods in the literature on machine
learning. Shorten & Khoshgoftaar (2019) provided a comprehensive review of image data augmen-
tation. Recent studies have attempted to automatically identify data augmentation methods. Smart
augmentation (Lemley et al., 2017) merges two or more samples from the same class to improve
the generalization of a target network. AutoAugment (AA) (Cubuk et al., 2018) applies a recurrent
neural network (RNN) as a sample controller to search for the best data augmentation policy using
small proxy tasks of randomly drawn images from the training dataset. After identifying the best
policy, fixed policies are applied to the training dataset. Population-based augmentation (PBA) (Ho
et al., 2019) generates dynamic augmentation policy schedules instead of a fixed augmentation pol-
icy. RandAugment (RA) (Cubuk et al., 2019) has a significantly reduced search space and allows
training on the target task without a separate proxy task. Fast AutoAugment (Fast AA) (Lim et al.,
2019) determines the best augmentation policy using a more efficient search strategy based on den-
sity matching. Faster AA (Hataya et al., 2019) uses a differentiable policy search pipeline for data
augmentation, which is much faster than previous methods. DADA (Li et al., 2020) also reduces
the cost of policy search using a differentiable optimization problem via Gumbel-Softmax, while
DeepAA (Zheng et al., 2022) uses a multi-layer data augmentation pipeline.

Adversarial AutoAugment (AdvAA) (Zhang et al., 2019) applies an adversarial network to gen-
erate data augmentation. While the training network minimizes the loss, the adversarial network
maximizes training loss. Uncertainty-Bases Sampling (UBS) (Wu et al., 2020) generates data aug-
mentation of the highest loss without an adversarial network. As shown in the next section, the loss
functions of AdvAA and UBS can be regarded as special cases of LatentAugment proposed in this
study. MetaAugment (Zhou et al., 2020) uses an additional augmentation policy network to mini-
mize the weighted losses of augmented training images. DHA (Zhou et al., 2021) uses super and
child networks to achieve joint optimization of the data augmentation policy, hyper-parameter, and
architecture. In contrast, the proposed LatentAugment does not require any additional network for
searching the augmentation policy.

The best augmentation policies are the latent variables that cannot be observed. The expectation-
maximization (EM) algorithm was proposed to analyze latent variables (Dempster et al., 1977;
McLachlan & Krishnan, 2007; Ng et al., 2012). The EM algorithm estimates parameters using
an iterative process of expectation and minimization of the loss function. However, when the dataset
is large, it might be difficult to calculate the expectation or minimization of the full dataset. To ad-
dress the difficulty of working with large datasets, some approaches have been proposed, including
the generalized EM algorithm (Dempster et al., 1977), Monte Carlo EM algorithm (Wei & Tanner,
1990; Tanner, 1991), stochastic EM algorithm (Nielsen, 2000), and generalized Monte Carlo EM
(Tran et al., 2017). For application to data augmentation, Bayesian data augmentation (Tran et al.,
2017) estimates the parameters using the EM algorithm to generate data augmentation using the
Bayesian approach. Bayesian data augmentation requires an adversarial network, whereas Laten-
tAugment does not use an adversarial network. Nevertheless, Bayesian data augmentation is mostly
related to this study in the application of the EM algorithm to data augmentation.

2 METHOD

Consider a classification task with C categories for the N training data points X =
{x1, x2, · · · , xN} and labels Y = {y1, y2, · · · , yN}. Let P (y |x, θ) denote the predicted probabil-
ity of the output y, given the input x and the parameter θ. Consider that each input is transformed us-
ing random data augmentation. Let S = {1, · · · , S} be the set of augmentation policies, and z∗(x, θ)
be the optimal augmentation policy for the input given the parameter. We cannot directly observe
the optimal policy; therefore, z∗(x, θ) is the latent variable. Let πz be the unconditional probability
that the augmentation policy z is applied to the input data. The loss function using the augmented

data can be written as L (Θ) = −E(x,y)∼(X,Y )log

(∑
z∈S

πzP (y | oz (x) , θ)

)
, where oz(x) denotes

the augmented data using the augmentation policy z, Θ = {θ, π} and π = {π1, · · · , πS}.
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2.1 GENERALIZED EM ALGORITHM

The loss function with the latent variable can be minimized using the expectation–maximization
(EM) algorithm. The EM algorithm is an iterative procedure used to compute the maximum like-
lihood estimate in the presence of latent variables (Ng et al., 2012). In the E-step, the expected
loss function calculated. In the M-step, the parameter is updated by minimizing the expected loss
function. Let Θ(t) = {θ(t), π(t)} be the parameter and the unconditional probability at iteration t
and h(t)z (x, y,Θ(t),S) be the conditional probability of the augmentation probability of policy z for
the individual data point x given the label y at iteration t. Applying Bayes’ rule, we can calculate
the conditional probability (McLachlan & Krishnan, 2007):

h(t)z (x, y,Θ(t),S) =
π
(t)
z P

(
y | oz (x) , θ(t)

)∑
z∈S

π
(t)
z P

(
y | oz (x) , θ(t)

) .
Using h(t)z , as shown in Ng et al. (2012), the expected loss function E

(
Θ|Θ(t)

)
can be written as:

E
(

Θ|Θ(t)
)

= −E(x,y)∼(X,Y )

[∑
z∈S

h(t)z log (πz) +
∑
z∈S

h(t)z log (P (y | oz (x) , θ))

]
. (1)

In the M-step, the parameter θ and the unconditional probability πz were estimated by minimiz-
ing the expected loss function given the conditional probability h(t)z . If solving the minimization
problem of E

(
Θ|Θ(t)

)
proves difficult, the generalized EM algorithm proposed by Dempster et al.

(1977) can be used to estimate Θ(t+1), where E
(
Θ(t+1)|Θ(t)

)
< E

(
Θ|Θ(t)

)
.

Calculation of E
(
Θ|Θ(t)

)
requires the expectation of possible augmentation policies. When the

number of augmentation policies S is large, the computational burden of E
(
Θ|Θ(t)

)
cannot be ne-

glected. Alternatively, the subset K which is randomly drawn from the full set S, of the augmentation
policies, can be used. Then, the conditional probability h(t)z can be written as

h(t)z

(
x, y,Θ(t),K

)
=

π
(t)
z P

(
y | oz (x) , θ(t)

)∑
z∈K

π
(t)
z P

(
y | oz (x) , θ(t)

) . (2)

As shown in the Appendix (A.1), if the subset K is generated using simple random draws from the
full set S, the expected loss function using the subset is equal to that obtained using the full set.

2.2 LATENT AUGMENTATION POLICY

The generalized EM algorithm can estimate the parameter by minimizing the expected loss function
using latent variables. However, this may cause an overfitting problem. Following AdvAA, an
augmentation policy is applied to maximize the loss function using a harder augmentation policy.
Let L(t)

z = − log
(
π
(t)
z · P

(
y | oz (x) , θ(t)

))
be the the contribution to the loss function for input

(x, y), using the augmentation policy z at iteration t. Consider the conditional probability of the
latent augmentation policy h̃(t)z such that the augmentation policy z has the highest loss in the set of
K, using the softmin function:

h̃(t)z = Pr[L(t)
z ≥ L

(t)
k ,∀k ∈ K] = Pr[h(t)z ≤ h

(t)
k ,∀k ∈ K] =

exp(−h(t)z /σ)∑
k∈K exp(−h(t)k /σ)

, (3)

where σ is the inverse scale parameter. Note that, from the definition of Lz , the probability of
minimum hz is equal to the one of maximum Lz . Thus, the softmin function is related to the
goal of the LatentAugment, maximization of minimum loss. The proposed LatentAugment can
be implemented by the EM algorithm with h̃(t)z . In the E-step, the LatentAugment calculates the
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Algorithm 1 LatentAugment
Input: (X,Y ): dataset
Require: B: the number of mini-batch, S: the full set of augmentation policies, S: the size of
augmentation policies, and σ: the inverse scale.
Initialize: πz = 1/S, for z = {1, . . . , S}. Initialize the network parameter θ(0).
for t = 1, . . . , B do

Randomly draw the subset K from S.
Calculate h̃(t)z using equation (3).
E-step: Calculate Ẽ using equation (4)
M-step: Update the parameter θ(t) and π(t) using equation (5)

end for
Return: θ(B) and π(B)

expected loss function weighted by the probability of the minimum conditional probability h̃(t)z ,
instead of h(t)z :

Ẽ
(

Θ|Θ(t)
)

= −E(x,y)∼(X,Y )EK∼S

[∑
z∈K

h̃(t)z log (πz) +
∑
z∈K

h̃(t)z log (P (y | oz (x) , θ))

]
. (4)

In the M-step, the parameter is updated by minimizing the expected loss function with fixed h̃(t)z :

θ(t+1) = θ(t) − η∇θẼ
(

Θ|Θ(t)
)
, π(t+1)
z = Moving Average of

E(x,y)∼(XB ,YB)h̃
(t)
z

E(x,y)∼(XB ,YB)

∑
z∈K

h̃
(t)
z

, (5)

where (XB , YB) is the mini-batch of the input data. This process is iterated until convergence is
achieved. The estimation procedure with LatentAugment is summarized as Algorithm 1.

2.3 ADVANTAGES OF THE LATENTAUGMENT

The proposed LatentAugment has following advantages over the existing augmentation methods:

1. The weighted augmentation policies are optimized for the individual input. Most re-
cent studies, such as AA, use randomly drawn policies; however, they do not apply policies
that are appropriate for each input data. On the other hand, LatentAugment utilizes ran-
domly drawn policies customized for each input by calculating conditional probabilities for
the given input.

2. It provides a closed-form solution for the probability of optimal augment polices. La-
tentAugment can estimate the unconditional probability (πz) of optimal augment policies
using a closed-form solution (5) of the loss minimization. Thus, LatentAugment does not
involve the additional cost of searching for these policies.

3. It is simple and computationally efficient. AdvAA proposed the use of GAN to solve
for the maximization of the minimum loss function, which requires additional training
costs for the adversarial network. In contrast, the proposed LatentAugment can solve the
max-min problem using the conditional probability (h̃(t)z ) of the highest loss without an ad-
versarial network. LatentAugment can be solved using a simple stochastic gradient descent

Table 1: Comparing the training cost and test accuracy between proposed LatentAugment (LA) with
RandAugment (RA (Cubuk et al., 2019)), Adversarial AutoAugment (AdvAA (Zhang et al., 2019)),
and Uncertainty-Based Sampling (UBS (Wu et al., 2020)) using the Wide-ResNet 28-10 model on
CIFAR-10. Training cost of required GPU hours is reported relative to RA.

RA AdvAA UBS LA (K = 2) LA (K = 4) LA (K = 6)

Training cost 1 8 1.5 1.9 3.3 4.7
Test accuracy 95.8% 98.1% 97.9% 98.0% 98.2% 98.3%
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algorithm. Table 1 compares the training cost of required GPU hours between proposed
LatentAugment and other methods.

4. It is a general model which includes other augmentation methods. The proposed La-
tentAugment is a general augmentation method that includes other methods such as UBS
and AdvAA. Following theorem shows that the UBS with a single data point and AdvAA
could be considered to be special cases of LatentAugment:

Theorem 2.1. (Special Case of LatentAugment). Assume that the unconditional probabilities for
all augmentation policies are the same (πz = 1/S, ∀z). If the inverse scale parameter σ → 0, the
gradient of expected loss function of the LatentAugment can be equal to the one of UBS. If σ →∞,
the gradient of expected loss function of the adversarial network with LatentAugment is equal to the
one of AdvAA.

The proof can be found in Appendix A.2. Note that the the gradient of expected loss function
of LatentAugment with σ → ∞ can be equivalent to the one of AdvAA. However, it means that
LatentAugment can not maximize minimum loss without an additional network, thus the advantages
in efficiency of LatentAugment will be lost.

3 EXPERIMENTS

3.1 EXPERIMENT SETTING

This section describes the experiments investigating the performance of the proposed LatentAug-
ment using the CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al.,
2011), and ImageNet (Russakovsky et al., 2015) datasets. In these experiments, the network mod-
els are Resnet-50 (He et al., 2016), Wide-ResNet 40-2 and Wide-ResNet 28-10 (Zagoruyko & Ko-
modaki, 2016), Shake-Shake 26 2×32d, 26 2×96d, and 26 2×112d (Gastaldi, 2017), and PyramidNet
with ShakeDrop with a depth of 272 and an alpha of 200 (Han et al., 2017; Yamada et al., 2018).
Table 4 in the Appendix A.4 provides the hyperparameters. All the hyperparameters of the network
models are the same as those used in AA (Cubuk et al., 2018), Fast AA (Lim et al., 2019), and PBA
(Ho et al., 2019). A cosine learning decay with one annealing cycle was applied to all models.

As proposed by Wu et al. (2020), we use 16 transformations: AutoContrast, Brightness, Color,
Contrast, Cutout, Equalize, Invert, Mixup, Posterize, Rotate, Sharpness, ShearX, ShearY, Solarize,
TranslateX, and TranslateY. Shorten & Khoshgoftaar (2019) described these transformations. As in
AA, augmentation policies are generated by the combination of the two transformations. The size
of the policy set was S = 16× 16 = 256. Following AA, we set the magnitude of all the transform
operations in a moderate range. All values of the magnitude range are same as AA.

The unconditional probability (πz) was initialized as 1/S. The range of the magnitude of each
transformation was discretized into 10, which were randomly drawn from the uniform distribution.
The unconditional probability (πz) was calculated using the moving average. The length of the
moving average was fixed at 10 iterations in this experiment. It was difficult to estimate the expected
loss function using the full set S of augmentation policies because of the computational burden of
the large size S = 256. Alternatively, subset K could be used which is randomly drawn from the
full set S. In this experiment, the subset size of the augmentation policies was set to six (K = 6).
The inverse scale parameter σ was set to one. The effects of the unconditional probability, subset
size, and inverse scale are discussed in later sections of the paper.

3.2 CIFAR-10 RESULTS

The CIFAR-10 dataset has a total of 60,000 images, including 50,000 for the training set and 10,000
for the test set. Each image with a size of 32 ×32 belongs to one of the 10 classes. The baseline is
trained with standard data augmentation using horizontal flips with 50% probability, zero-padding,
and random crops. The proposed LatentAugment first applies the baseline preprocessing, then ap-
plies LatentAugment using six policies randomly drawn from 256 policies, and finally applies the
Cutout (DeVries & Taylor, 2017) or the Cutmix (Yun et al., 2019).

Table 2 shows the results of the test accuracy for different network models using the CIFAR-10
dataset. For all models, the proposed LatentAugment method achieved a better performance com-
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Table 2: Test accuracy (%) on CIFAR-10, CIFAR-100, SVHN, and ImageNet. All experiments in
this study replicate the results of Baseline and AutoAugment (AA) (Cubuk et al., 2018), Adversarial
AutoAugment (AdvAA) (Zhang et al., 2019), Uncertainty-Based Sampling (UBS) (Wu et al., 2020),
and MetaAugment (MA) (Zhou et al., 2020). On the proposed LatentAugment (LA), averages of five
runs are reported. Network models are Wide-ResNet 40-2 and Wide-ResNet 28-10 (Zagoruyko &
Komodaki, 2016), Shake-Shake 26 2×32d, 26 2×96d, and 26 2×112d (Gastaldi, 2017), PyramidNet
with ShakeDrop (Han et al., 2017; Yamada et al., 2018) and Resnet-50 (He et al., 2016). See text
for more details.

Dataset Model Baseline AA AdvAA UBS MA LA

CIFAR-10 WRN40-2 94.70 96.30 - - 96.79 97.27±0.09
WRN28-10 96.13 97.32 98.10 97.89 97.76 98.25±0.08

S-S (26 2x32d) 96.45 97.53 97.64 - - 97.68±0.03
S-S (26 2x96d) 97.14 98.01 98.15 98.27 98.29 98.42±0.02

S-S (26 2x112d) 97.18 98.11 98.22 - 98.28 98.44±0.02
PyramidNet 97.33 98.52 98.64 98.66 98.57 98.72±0.02

CIFAR-100 WRN40-2 74.00 79.30 - - 80.60 80.90±0.15
WRN28-10 81.20 82.91 84.51 84.54 83.79 84.98±0.12

S-S (26 2x96d) 82.95 85.72 85.90 - 85.97 85.88±0.10

SVHN WRN28-10 98.50 98.93 - - - 98.96±0.01

ImageNet ResNet-50 (Top 1) 75.30 77.63 79.40 - 79.74 80.02±0.10
ResNet-50 (Top 5) 92.20 93.82 94.47 - 94.64 94.88±0.05

pared to existing augmentation methods. For example, LatentAugment achieved an improvement of
0.15% and 0.36% compared to AdvAA and UBS on Wide-ResNet 28-10 model, respectively. The
test accuracy of the proposed LatentAugment using PyramidNet+ShakeDrop was 98.72 %, which
was 0.08% and 0.06% better than that of AdvAA and UBS, respectively. To compare with the AA,
we tested the proposed model using the same transformations as AA, which uses the policy set with
SamplePairing (Inoue, 2018), instead of Mixup (Zhang et al., 2017), and finally applied the Cutout,
instead of Cutmix. The test accuracies for the Wide-ResNet 40-2 model and Wide-ResNet 28-10
of the LatentAugment using the same transformation as AA were 96.91±0.05% and 98.01±0.05%,
respectively (Table 5). Thus, the proposed method outperforms AA, even when neither Mixup nor
Cutmix were used. Adversarial AutoAugment (AdvAA) also applies the same transformations as
AA, although the subset size of AdvAA is 8. To compare with AdvAA, we tested the model us-
ing the same subset size. The test accuracy of Wide-ResNet 28-10 of the LatentAugment using the
same transformations as AA with subset size K = 8 is 98.16±0.07%. Thus, the proposed method is
marginally better than AdvAA even when the same transformations and subset sizes are used. See
table 5 and 6 in Appendix.

3.3 CIFAR-100 RESULTS

The CIFAR-100 dataset also has a total of 60,000 images, including 50,000 for the training set
and 10,000 for the test set. The number of categories is 100. The procedure of the baseline and
LatentAugment is the same as that of CIFAR-10.

As for CIFAR-10, the proposed LatentAugment indicated better accuracy than existing augmenta-
tion methods except Shake-Shake (26 2×96d), in which the test accuracy of LatentAugment was
slightly lower than that of AdvAA and MetaAugment (MA).

3.4 SVHN RESULTS

The SVHN dataset has 73,257 digit images for the core training set, 531,131 for the additional
training set, and 26,032 for the test set. In this experiment, both core and additional training sets
were used. The number of categories is 10. The baseline was trained using the normalizing data.
The proposed method first applies LatentAugment using six policies, randomly drawn from 256
policies, then normalizes the data, and finally applies the cutout with a region size of 20 ×20 pixels,
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Figure 2: The test accuracies with the different size of the subset (K). It shows the test accuracies
of LatentAugment (LA), Uncertainty-Based Sampling (UBS), Adversarial AutoAugment (AdvAA)
with the different size of the subset (K) using the Wide-ResNet 28-10 model on CIFAR-10. This
figure replicates the results of UBS from Wu et al. (2020) and AdvAA from Zhang et al. (2019).

following the method proposed by DeVries & Taylor (2017). LatentAugment using Wide-ResNet
28-10 achieves 0.03% improvement compared to AA.

3.5 IMAGENET RESULTS

The ImageNet dataset has more than 1.2 million training images, 50,000 validation images, and
100,000 test images. The number of categories is 1,000. Following the AA, baseline augmentation
uses the standard Inception-style pre-processing, including horizontal flips with 50% probability and
random distortions of colors. The proposed LatentAugment first applies the baseline preprocessing,
then applies LatentAugment using six policies randomly drawn from 256 policies, and finally applies
the Cutmix. The proposed method outperformed previous augmentation studies.

3.6 CHOICE OF THE SUBSET SIZE

This experiment used a subset size of K = 6. To determine the optimal size of the subset, this
study used the Wide-ResNet 28-10 to evaluate the performance of the proposed LatentAugment
with different K, where K ∈ {2, 4, 6, 8}. Figure 2 suggests that the test accuracy of the model
rapidly increases up to K = 6. However, no significant improvement was observed when K was 8.
In contrast, the computational cost increases with K. Therefore, after comparing the computational
cost and performance, all the experiments in this study used K = 6 for LatentAugment.

Figure 2 also shows the results of AdvAA and UBS. AdvAA uses instances of K ∈ {2, 4, 8, 16, 32}
for each input example, augmented by adversarial policies. The study of UBS reports the experimen-
tal results using K = 4 with a single data point and K = 8 with four data points for training. This
figure suggests that the proposed LatentAugment is more efficient than AdvAA and UBS, because
LatentAugment with K = 4 outperforms AdvAA and UBS with K = 8.

3.7 THE EFFECTS OF THE INVERSE SCALE

LatentAugment requires determining the inverse scale parameter σ which is assumed to have a value
of 1 in the previous section. This section considers the effects of the inverse scale using different
values. Figure 3 shows the test accuracy of LatentAugment with different inverse scale values using
the Wide-ResNet 40-2 model on CIFAR-10. This suggests that the test accuracy is maximum at
σ = 1, although the effect of the inverse scale is weak except for σ → 0.

3.8 THE EFFECTS OF THE UNCONDITIONAL PROBABILITY

LatentAugment estimates the unconditional probabilities (πs) as well as the network parameters
(θ). As shown in Theorem 2.1, if the unconditional probabilities are fixed at the same values, the
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Figure 3: The test accuracies with the different inverse scale parameter (σ). It shows the test accu-
racies of LatentAugment with the different inverse scale values using the Wide-ResNet 40-2 model
on CIFAR-10.

Table 3: The test accuracies using fixed or unfixed unconditional probability with the different
inverse scale parameters. Averages of five runs are reported.

Inverse scale parameter (σ)
Diff.σ = 0 σ = 1

Fixed πz (a) 96.71±0.10 (b) 97.19±0.08 0.48
Unfixed πz (c) 96.81±0.10 (d) 97.27±0.09 0.47

Diff. 0.10 0.08

derivative of LatentAugment can be reduced to that of adversarial AA or UBS. Table 3 shows the
effects of the unconditional probability in LatentAugment using the Wide-ResNet 40-2 model on
CIFAR-10. The cell of (a), where the unconditional probabilities (πz) are fixed and the inverse
scale parameter (σ) is set to 0, is equivalent to UBS with a single data point of the highest loss. In
contrast, the cell of (d), where πz can be estimated and σ = 1, is the test accuracy of the proposed
LatentAugment, which allows variable πz and multiple data points for the expectation of the loss
function. This table suggests that an unfixed πz can slightly improve the test accuracy over a fixed
πz . However, the effect on test accuracy with an fixed πz is weaker than the effect of σ set to zero.
Thus, for the better performance of the proposed LatentAugment, using multiple data points for the
expected value of the loss function weighted by the conditional probability of the highest loss, has a
more significant effect on the performance than using the unfixed unconditional probability.

4 CONCLUSIONS

This study introduces LatentAugment, which estimates the probability of the latent augmentation
customized to each input image and network model. The proposed method is appealing in that it can
dynamically optimize the augmentation methods for each input and model parameter in learning
iterations. As shown in the theoretical analysis, LatentAugment is a general model that includes
AdvAA and UBS as special cases. Furthermore, the proposed method is simple and computationally
efficient in comparison with the existing methods, which requires a generative adversarial network.
Experimental results show that the proposed LatentAugment has better performance than previous
augmentation methods on the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Finally, an
open question remains in the robustness of LatentAugment using the EM algorithm, which typically
converges to a local optimum. While we checked the stability of the test accuracy with five runs
using different random seeds, the issue of convergence of LatentAugment is an important theme for
future research. An application to the object detection, image generation, and text recognition using
LatentAugment is also an interesting topic. We leave such directions to future work.
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5 REPRODUCIBILITY STATEMENT

Pytorch code of the experiments in this paper can be downloaded from GitHub (https://
github.com/xxxx/xxxxxx).
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A APPENDIX

A.1 RANDOMLY DRAWN SUBSET OF THE AUGMENTATION POLICIES

Let δz be the probability that policy z can be drawn. The conditional probability with δz can be
written as:

h(t)z =
π
(t)
z P

(
y | oz (x) , θ(t)

)∑
z∈S

δzπ
(t)
z P

(
y | oz (x) , θ(t)

) .
The expected loss function using the randomly drawn subset given δz is

E
(

Θ|Θ(t), δz

)
= −E(x,y)∼(X,Y )

∑
z∈S

δzh
(t)
z log

(
π(t)
z P (y | oz (x) , θ)

)
= −E(x,y)∼(X,Y )

∑
z∈S

δzπ
(t)
z P

(
y | oz (x) , θ(t)

)∑
z∈S

δzπ
(t)
z P

(
y | oz (x) , θ(t)

) log
(
π(t)
z P (y | oz (x) , θ)

)
.

Assume that the policies of the subset are drawn using simple random draws: δz = δ, ∀z ∈ S.
Under this assumption, the expected loss function using a randomly drawn subset is equal to the
expected loss function using the full set:

E
(

Θ|Θ(t), δ
)

= −E(x,y)∼(X,Y )

∑
z∈S

δπ
(t)
z P

(
y | oz (x) , θ(t)

)
δ
∑
z∈S

π
(t)
z P

(
y | oz (x) , θ(t)

) log
(
π(t)
z P (y | oz (x) , θ)

)
= E

(
Θ|Θ(t)

)
.

A.2 PROOF OF THEOREM 2.1 (SPECIAL CASE OF LATENTAUGMENT)

A.2.1 UNCERTAINTY-BASED SAMPLING (UBS)

The loss function of UBS is

LUBS = E(x,y)∼(X,Y ) max
z∈K

[− log (P (y | oz (x) , θ))] .

If the inverse scale σ → 0, the conditional probability h̃z can be approximated by the indicator
function:

lim
σ→0

h̃z = lim
σ→0

exp
(
−hz

σ

)∑
r∈K

exp
(
−hr

σ

) = I [hz ≤ hr, ∀r ∈ K] ,

where I [·] is the indicator function such that I [·] = 1 if hz ≤ hr, ∀r ∈ K, and I [·] = 0, otherwise.

If πz = 1/S for all z and σ → 0 in the LatentAugment, h̃z → I [hz ≤ hr, ∀r ∈ K] =
I
[
P
(
y | oz (x) , θ(t)

)
≤ P

(
y | or (x) , θ(t)

)
, ∀r ∈ K

]
. Therefore, the expected loss function of the

LatentAugment is

Ẽ
(

Θ|Θ(t)
)
→ −E(x,y)∼(X,Y )EK∼S[∑
z∈K

I
[
P
(
y | oz (x) , θ(t)

)
≤ P

(
y | or (x) , θ(t)

)
, ∀r ∈ K

]
log (P (y | oz (x) , θ)) + log (1/S)

]
,

Ẽ
(

Θ|Θ(t)
)∣∣∣
θ=θ(t)

→ E(x,y)∼(X,Y )EK∼S max
z∈K

[
− log

(
P
(
y | oz (x) , θ(t)

))]
− log (1/S) .

Note that the first term is the same as the loss function of the uncertainty-based sampling evaluated at
θ = θ(t), while the second term is constant. Therefore, ∇θ Ẽ

(
Θ|Θ(t)

)∣∣∣
θ=θ(t)

→ ∇θ LUBS |θ=θ(t) ,
if πz = 1/S for all z and σ → 0.
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A.2.2 ADVERSARIAL AUTOAUGMENT (ADVAA)

The loss function of AdvAA is

LAdvAA = −E(x,y)∼(X,Y )EK∼A(S,µ)

[
1

K

∑
z∈K

log (P (y | oz (x) , θ))

]
,

where A (S, µ) is the adversarial network for the set of augmentation policies, S with parameter µ.
If σ → ∞ in the LatentAugment, h̃z → 1/K. Assume πz = 1/S for all z in LatentAugment.
Then, the loss function of the adversarial network with LatentAugment is equal to the loss function
of AdvAA plus constant:

EK∼ A(S,µ)

[
Ẽ
(

Θ|Θ(t)
)]
→ −E(x,y)∼(X,Y )EK∼A(S,µ)

[
1

K

∑
z∈K

log (P (y | oz (x) , θ))

]
−log (1/S) .

Therefore, ∇θEK∼A(S,µ)

[
Ẽ
(
Θ|Θ(t)

)]
→ ∇θLAdvAA, if πz = 1/S for all z and σ →∞.

A.3 COMPUTER RESOURCES

We train the models with the LatnetAugment using computers with 4 NVIDIA RTX 2080Ti GPUs
and 64 GB memory.

A.4 HYPERPARAMETERS

Table 4: Hyperparameters for the experiment. LR represents the learning rate, whereas WD repre-
sents the weight decay.

Dataset Model LR WD Batch Size Epoch

CIFAR-10 Wide-ResNet-40-2 0.1 0.0002 128 200
CIFAR-10 Wide-ResNet-28-10 0.1 0.0005 128 200
CIFAR-10 Shake-Shake (26 2x32d) 0.01 0.001 128 1800
CIFAR-10 Shake-Shake (26 2x96d) 0.01 0.001 128 1800
CIFAR-10 Shake-Shake (26 2x112d) 0.01 0.001 128 1800
CIFAR-10 PyramidNet+ShakeDrop 0.05 5E-05 64 1800
CIFAR-100 Wide-ResNet-40-2 0.1 0.0002 128 200
CIFAR-100 Wide-ResNet-28-10 0.1 0.0005 128 200
CIFAR-100 Shake-Shake (26 2x96d) 0.01 0.0025 128 1800

SVHN Wide-ResNet-28-10 0.005 0.001 128 160
ImageNet Resnet-50 0.1 0.0001 256 270

A.5 TEST ACCURACIES USING THE SAME TRANSFORMATIONS AS AA AND ADVAA.

This section provides comparison between proposed LatentAugment (LA) and AutoAugment (AA)
or Adversarial AutoAugment (AdvAA) using same subset size and transformations. To compare
with the AA, we tested the proposed model using the same transformations as AA, which uses the
policy set with SamplePairing (Inoue, 2018), instead of Mixup (Zhang et al., 2017), and finally
applied the Cutout, instead of Cutmix. Table 5 shows the test accuracies for the Wide-ResNet 40-
2 model and Wide-ResNet 28-10 of the LA using the same transformation as AA. This table also
provides the result of UBS using same transformations as AA, reported by Wu et al. (2020).

AdvAA applies the same transformations as AA, although the subset size of AdvAA is 8. To com-
pare with AdvAA, we tested the model using the same subset size. Table 6 shows the test accuracy
of Wide-ResNet 28-10 of the LA using the same transformations as AA with subset size K = 8.
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Table 5: Test accuracies (%) on CIFAR-10 using the same transformations as AutoAugment (AA).
On the proposed LatentAugment (LA), averages of five runs are reported.

Model AA UBS LA (K = 6)

WRN40-2 96.30 - 96.91±0.05
WRN28-10 97.32 97.75 98.01±0.05

Table 6: Test accuracies (%) on CIFAR-10 using the same subset size and transformations as Ad-
versarial AutoAugment (AdvAA). On the proposed LatentAugment (LA), an average of five runs is
reported.

Model AdvAA LA (K = 8)

WRN28-10 98.10 98.16±0.07

A.6 TRANSFERABILITY ACROSS DATASETS AND ARCHITECTURES

This section evaluates transferability with LatentAugment across different datasets and model ar-
chitectures. We first take a snapshot of the unconditional probability πz of ResNet-50 on ImageNet
using LA, and then apply the fixed πz to train the models of Wide-ResNet 40-2 on CIFAR-10 or
CIFAR-100 using LA. Table 7 provides the experimental result of transferability. It suggests that
LA with policy transfer has still good performance.

Table 7: The test accuracies of the transfer the unconditional probability of augmentation policies.

Dataset Baseline LA (direct) LA (policy transfer)

CIFAR-10 94.7 97.27±0.09 97.21±0.09
CIFAR-100 74.0 80.90±0.15 80.77±0.14

A.7 ADDITIONAL EXPERIMENTS USING OTHER DATASETS

This section provides the results of additional experiments using datasets of MNIST (LeCun et al.,
1998), Fashion MNIST (Xiao et al., 2017), and Oxford flowers102 (Nilsback & Zisserman, 2008).

A.7.1 MNIST

The MNIST is a large database of handwritten digits. It has a total of 70,000 images, including
60,000 for the training set and 10,000 for the test set. Each example is a 28x28 grayscale image,
associated with a label from 10 classes. The baseline is trained with standard data augmentation
using zero-padding, and random crops. The proposed LatentAugment first applies the baseline
preprocessing, then applies LatentAugment using six policies randomly drawn from 256 policies,
and finally applies the Cutout. We use hyperparameters of WRN40-2 on CIFAR-10 in Table 4.

A.7.2 FASHION MNIST

The Fashion MNIST is a dataset of Zalando’s article images—consisting of a training set of 60,000
examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated
with a label from 10 classes. The baseline is trained with standard data augmentation using hori-
zontal flips with 50% probability, zero-padding, and random crops. The proposed LatentAugment
first applies the baseline preprocessing, then applies LatentAugment using six policies randomly
drawn from 256 policies, and finally applies the Cutmix. We use hyperparameters of WRN40-2 on
CIFAR-10 in Table 4
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A.7.3 OXFORD FLOWERS102

Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The flow-
ers chosen to be flower commonly occurring in the United Kingdom. Each class consists of be-
tween 40 and 258 images. Baseline augmentation uses the standard Inception-style pre-processing,
including horizontal flips with 50% probability and random distortions of colors. The proposed
LatentAugment first applies the baseline preprocessing, then applies LatentAugment using six poli-
cies randomly drawn from 256 policies, and finally applies the Cutmix. We use hyperparameters of
ResNet-50 on ImageNet in Table 4

Table 8: The test accuracies of the additional experiments using MNIST (LeCun et al., 1998), Fash-
ion MNIST (Xiao et al., 2017), and Oxford flowers102 (Nilsback & Zisserman, 2008).

Dataset Model Baseline LA

MNIST WRN40-2 99.66 99.77±0.02
Fashion MNIST WRN40-2 94.54 96.04±0.06

Flowers102 ResNet-50 95.70 98.19±0.09

A.8 CONVERGENCE OF LOSS FUNCTIONS

Convergence of the EM algorithm is usually defined as a sufficiently small change in the loss func-
tion (Aitkin & Aitkin, 1996). To confirm the convergence, Figure 4 shows the loss functions us-
ing the network models of Wide-ResNet 40-2, Wide-ResNet 28-10, Pyramid, and Shake-Shake on
CIFAR-10 and CIFAR-100. This figure indicates the convergence of an estimation using the EM
algorithm.

Figure 4: The loss functions of the different network models on CIFAR-10 and CIFAR-100.
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