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ABSTRACT

The Segment Anything Model (SAM) achieves remarkable promptable segmenta-
tion given high-quality prompts which, however, often require good skills to specify.
To make SAM robust to casual prompts, this paper presents the first comprehensive
analysis on SAM’s segmentation stability across a diverse spectrum of prompt
qualities, specifically imprecise bounding boxes and insufficient points. Our key
finding reveals that given such low-quality prompts, SAM’s mask decoder tends
to activate image features that are biased towards the background, or confined to
specific object parts. To mitigate these issues, our solution consists of calibrating
solely SAM’s mask attention by adjusting the sampling locations and amplitudes
of image features, while the original SAM model architecture and weights remain
unchanged. Consequently, our deformable sampling plugin (DSP) enables SAM to
adaptively shift attention to the prompted target regions in a data-driven manner.
During inference, dynamic routing plugin (DRP) is proposed that toggles SAM
between the deformable and regular grid sampling modes, conditioned on the input
prompt quality. Thus, our solution, termed Stable-SAM, offers several advantages:
1) improved SAM’s segmentation stability across a wide range of prompt quali-
ties, while 2) retaining SAM’s powerful promptable segmentation efficiency and
generality, with 3) minimal learnable parameters (0.08 M) and fast adaptation.
Extensive experiments validate the effectiveness and advantages of our approach,
underscoring Stable-SAM as a more robust solution for segmenting anything.

1 INTRODUCTION

The recent Segment Anything Model (SAM (Kirillov et al., 2023)) stands a significant milestone
in image segmentation, attributed to its superior zero-shot generalization ability on new tasks and
data distributions. Empowered by the billion-scale training masks and the promptable model design,
SAM generalizes to various visual structures in diverse scenarios through flexible prompts, such as
box, point, mask or text prompts. Facilitated by high-quality prompts, SAM has produced significant
performance benefit for various important applications, such as healthcare (Huang et al., 2023b;
Mazurowski et al., 2023), remote sensing (Wen et al., 2023; Ding et al., 2023), self-driving (Dikshit
et al., 2023; Fan et al., 2022b), agriculture (Nguyen et al., 2023; Liu, 2023), etc.

Previous works mainly focus on improving SAM’s segmentation performance assuming high-quality
prompts are available, such as a tight bounding box (e.g., produced by SOTA detectors (Jia et al.,
2023; Zhang et al., 2023a; Yang et al., 2022)) or sufficient points (Ke et al., 2023) (e.g., 10 points) for
the target object. However, in practice SAM and interactive segmentation are often given inaccurate
or insufficient prompts casually marked up by users as inaccurate box, or very sparse points are
given, especially in the crowd-sourcing annotation platform. Such inaccurate prompts often mislead
SAM to produce unstable segmentation results as shown in Figure 1. Unfortunately, however, this
critical issue has been largely overlooked, even though the suboptimal prompts and the resulting
segmentation stability problem are quite prevalent in practice .

Note that there is no proper off-the-shelf solution for solving SAM’s segmentation stability problem
with inaccurate prompts. Simply finetuning SAM’s mask decoder with imprecise prompts may easily
lead to catastrophic forgetting, undermining the integrity of the highly-optimized SAM model and
thus sacrificing the zero-shot segmentation generality. Although in the image domain deformable
attention (Dai et al., 2017) has shown impressive efficacy on adaptively shifting the model attention
to informative regions, which may naturally address the attention drift issue caused by the misleading
prompts, a straightforward implementation of this idea can again compromise SAM’s integrity.
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Figure 1: To illustrate SAM’s instability, the left figure compares the performance among SAM, HQ-
SAM and our Stable-SAM, when provided with suboptimal prompts. Our Stable-SAM consistently
surpasses other methods across prompts of different quality, demonstrating better or comparable
performance to the SAM prompted by ground truth box. The right figure displays the predicted
masks and sampled important image features of SAM and Stable-SAM prompted by the bounding
box (in green color), with larger orange circles indicating higher attention weights. (a) SAM yields
satisfactory segmentation results when provided with a high-quality box prompt. (b) SAM can be
very unstable, as shown here even a minor prompt modification makes SAM segment the background
instead. SAM incorrectly segments the background, where the inaccurate box prompt misleads SAM
to spend more attention to the background. (c) Our Stable-SAM accurately segments the target object
by shifting more feature sampling attention to it.

In this paper we present the first comprehensive analysis on SAM’s segmentation stability across a
wide range of prompt qualities, with a particular focus on low-quality prompts such as imprecise
bounding boxes or points. Our findings demonstrate that, when fed with imprecise prompts, the
SAM’s mask decoder is likely to be misguided to focus on the background or specific object parts,
where the cross-attention module is inclined to aggregate and activate image features of these regions
when mutually updating the prompt and image tokens. Such collaborative token updating mechanism
usually suffers from attention drift, where the suboptimal prompts misleadingly shift attention from
the target object to the background areas or specific object parts. The attention drift is accumulated
and propagated from the suboptimal prompt to the unsatisfactory segmentation results.

To address this issue, we present a novel deformable sampling plugin (DSP) with two key designs to
improve SAM’s stability while maintaining its zero-shot generality. Our key idea is to adaptively
calibrate SAM’s mask attention by adjusting the attention sampling positions and amplitudes, while
keeping the original SAM model unchanged: 1) we employ a small offset network to predict the
corresponding offsets and feature amplitudes for each image feature sampling locations, which are
learned from the input image feature map; 2) then, we adjust the feature attention by resampling the
deformable image features at the updated sampling locations of the cross-attention module in SAM’s
mask decoder, keeping the original SAM model unchanged. In doing so, we can shift the feature
sampling attention toward informative regions which is more likely to contain target objects, and
meanwhile avoiding the potential model disruption of the original highly-optimized SAM. Finally, to
effectively handle both the high- and low-quality prompts, we propose a dynamic routing module to
toggle SAM between deformable and regular grid sampling modes. A simple and effective robust
training strategy is proposed to facilitate our Stable-SAM to adapt to prompts of diverse qualities.

Thus, our method is unique in its idea and design on solely adjusting the feature attention without
involving the original model parameters. In contrast, conventional deformable attention methods (Dai
et al., 2017; Xia et al., 2022) update the original network parameters, which is undesirable when
adapting powerful foundation models involving finetuning such large models in data-scarce scenarios.

Our model, Stable-SAM, benefits both the selective deformable attention and the powerful original
SAM model, with minimal addition of computational overhead and parameters. First, the SAM’s
segmentation stability is substantially improved across a wide range of prompt qualities, especially
with low-quality prompts. Besides, the original SAM’s powerful promptable segmentation efficiency
and generality are preserved well even in the data-scarce scenarios. Extensive experiments across
multiple datasets validate the effectiveness and advantages of our approach, underscoring its potential
as a robust solution for segmentation tasks.

2 RELATED WORKS

Segment Anything Model. The recent Segment Anything Model (Kirillov et al., 2023; Ravi et al.,
2024) has gained widespread recognition, attributed to its remarkable performance and generalization
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in image segmentation. SAM has been applied in a wide range of downstream tasks and applications,
including medical images (Ma et al., 2024; Zhang & Liu, 2023; Liu et al., 2024; Leng et al.,
2024), object tracking (Zou et al., 2024), data annotation (He et al., 2023; Wang et al., 2024), 3D
reconstruction (Cen et al., 2024; Yin et al., 2023), robotics (Huang et al., 2023a), and multimodal
tasks (Mo & Tian, 2023; Zhang et al., 2023b; Wang et al., 2023). Some researchers attempt to address
SAM’s computational limitations and improve its efficiency. Some works (Zhang et al., 2023c; Liu
et al., 2023b) focus on improving SAM’s segmentation quality and generalization to downstream
applications. Thus the foundation model finetuning methods (Chen et al., 2023; Wu et al., 2023) are
widely adopted for fast and effective SAM adaptation in specific segmentation scenarios.

Improving Segmentation Quality. Researchers have proposed various methods to enhance the
quality and accuracy of semantic segmentation methods. Early methods incorporate graphical models
such as CRF (Krähenbühl & Koltun, 2011) or region growing (Dias & Medeiros, 2019) as an
additional post-processing stage, which are usually training-free. Many learning-based methods
design new operators (Ke et al., 2022a;b; Kirillov et al., 2020) or utilize additional refinement
stage (Cheng et al., 2020; Shen et al., 2022). Recently, methods such as Mask2Former (Cheng et al.,
2022) and SAM (Kirillov et al., 2023) have been introduced, which address open-world segmentation
by introducing prompt-based approaches. Along this line, a series of improvements (Ke et al., 2023;
Li et al., 2023) have been proposed, focusing on prompt-tuning and improving the accuracy of
segmentation decoders. However, these methods overlook a crucial aspect, which is how to generate
high-quality segmentation results in cases where the prompt is inaccurate. This is precisely the
problem that our method aims to address.

Tuning Foundation Models. Pretrained models have played an important role since the very
beginning of deep learning (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016).
Despite zero-shot generalization grows popular in foundation models of computer vision and natural
language processing (Bommasani et al., 2021; Brown et al., 2020), tuning methods such as adapter (Hu
et al., 2022) and prompt-based learning (Houlsby et al., 2019; Hu et al., 2022) have been proposed
to generalize these models to downstream tasks (Fan et al., 2020; 2022a). These methods typically
involves additional training parameters and time. We propose a new method that makes better use of
existing features with minimal additional methods and can also produce competitive results.

Deformable Attention. Deformable convolution (Dai et al., 2017; Zhu et al., 2019) has been proved
effective to help neural features attend to important spatial locations. Recently, it has also been
extended to transformer-based networks (Chen et al., 2021; Yue et al., 2021; Zhu et al., 2020; Xia
et al., 2022). Such deformed spatial tokens are especially suitable for our task, which requires
dynamically attending to correct regions given inaccurate prompts. However, previous deformable
layers involve both offset learning and feature learning after deformation. In this paper, we propose a
new approach to adjust the feature attention by simply sampling and modulating the features using
deformable operations, without the need to train subsequent layers.

3 SAM STABILITY ANLAYSIS

We perform empirical studies to illustrate the segmentation instability of the current SAM with
prompts of differing quality, thereby justifying our Stable SAM approach.

Prior segmentation studies have focused on achieving high prediction accuracy, gauged by the
Intersection-over-Union (IoU) between the predicted and ground truth masks. This focus on high
performance is justified as segmentation models typically produce deterministic masks for given
input images, without requiring additional inputs. However, SAM’s segmentation output depends on
both the image and the prompts, with the latter often varying in quality due to different manual or
automatic prompt generators. In practical applications of SAM, segmentation targets are typically
clear and unambiguous, independent of prompt quality.

Segmentation Stability Metric. Motivated by this application requirement, we introduce the
segmentation stability metric. Specifically, SAM is capable of producing a set of binary segmentation
maps M ∈ RB×H×W for a single target object using B prompts of differing qualities. We define the
segmentation stability (ST) within the set as:

ST =
1

B

B∑
i=1

IoU(Mi,Munion), (1)
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Figure 2: SAM performs badly when dealing with suboptimal prompts. This is mainly caused by
the undesirable feature attention, focusing on the background or specific object parts. The important
features are highlighted by the orange circles, with larger radius indicating higher attention score.
The green boxes denote the box prompts with added noise to the groundtruth boxes. The stars denote
the point prompts which are randomly sampled from the groundtruth masks.

where IoU(Mi,Munion) represents the Intersection-over-Union between the i-th segmentation map
Mi and the collective foreground region

⋃B
i Mi of all maps. This new metric assesses the consistency

across segmentations in each prediction, serving as a reliable indicator of stability, even without
access to the ground truth masks.

Model and Evaluation Details. The released SAM is trained with crafted prompts on large-scale
SA-1B dataset. We evaluate the segmentation accuracy and stability of the ViT-Large based SAM
with different prompt types and qualities, including box prompts with added noise (we insert the
uniform noise with the noise scale 0.4 into the box height, width and center position) and point
prompts with varying numbers of points (1, 3, 5, 10 positive points randomly selected from the ground
truth mask). For every input image and prompt type, we randomly select 20 prompts to compute their
segmentation stability, average mask mIoU, and boundary mBIoU scores. The evaluation utilizes four
segmentation datasets as in HQ-SAM: DIS (Qin et al., 2022) (validation set), ThinObject-5K (Liew
et al., 2021) (test set), COIFT (Mansilla & Miranda, 2019), and HR-SOD (Zeng et al., 2019).

Table 1: SAM’s segmentation accuracy and
stability under prompts of varying quality. All
evaluation metrics are averaged on four HQ
datasets.

Metric GT Box Noisy Box 1 Point 3 Points 5 Points 10 Points

mIoU 79.5 48.8 43.3 78.7 83.3 84.8
mBIoU 71.1 42.1 37.4 69.5 74.2 76.0

ST - 39.5 45.1 79.3 84.7 87.5

Table 1 tabulates that SAM’s segmentation accuracy
and stability significantly decrease with low-quality
prompts, such as imprecise box prompts or point
prompts with minimal points. The varying segmen-
tation accuracy and stability indicates that SAM’s
mask decoder performs distinctly when dealing with
prompts of varying qualities.

We visualize the image activation map for the token-
to-image cross-attention in SAM’s second mask decoder layer to better understand its response
to low-quality prompts. We focus on the second mask decoder layer for visualization because
its cross-attention is more representative, benefiting from the input tokens and image embedding
collaboratively updated by the first mask decoder layer. Figure 2 demonstrates that an inaccurate
box prompt causes SAM’s mask decoder to miss regions of the target object while incorrectly
incorporating features from the background, or focusing on specific object parts. It consequently
leads to degraded segmentation accuracy and stability.

Overall, the above empirical evidence suggests that SAM potentially suffers from the attention drift
issue, where suboptimal prompts misleadingly shift attention from the target object to background
areas or specific object parts, thereby compromising the segmentation accuracy and stability. This
motivates us to calibrate SAM’s mask attention by leveraging learnable offsets to adjust the attention
sampling position towards the target object regions, thus boosting segmentation accuracy and stability.

4 STABLE SEGMENT ANYTHING MODEL

We first revisit the recent Segment Anything Model (SAM) and deformable attention mechanism.

Segment Anything Model. SAM (Kirillov et al., 2023) is a powerful promptable segmentation model.
It comprises an image encoder for computing image embeddings, a prompt encoder for embedding
prompts, and a lightweight mask decoder for predicting segmentation masks by combining the
two information sources. The fast mask mask decoder is a two-layer transformer-based decoder to
collaboratively update both the image embedding and prompt tokens via cross-attention. SAM is
trained on the large-scale SA-1B dataset.
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Figure 3: (a) An illustration of our deformable sampling plugin (DSP) and deformable routing plugin
(DRP) in SAM’s mask decoder transformer. DSP employs a small (b) offset network to predict
the feature sampling offsets and amplitudes. Subsequently, DSP calibrates the feature attention by
resampling deformable image features at the updated sampling locations, and feeds them into SAM’s
token-to-image attention. DRP employs a small (c) MLP network to regulate the degree of DSP
activation based on the input prompt quality. Note that our DSP adaptively calibrates solely SAM’s
mask attention without altering the original SAM model.

Deformable Attention. Deformable attention (Xia et al., 2022) is a mechanism that enables the
model to focus on a subset of key sampling points instead of the entire feature space. This mechanism
naturally addresses the attention shift problem in SAM caused by low-quality prompts.

In the standard self-attention, given a feature map x ∈ RH×W×C , the attention weights are computed
across all spatial locations within the feature map.

In the deformable attention (Xia et al., 2022), a uniform grid of points r ∈ RHG×WG×2 are first
generated as the references1 with the sampled image feature xr ∈ RHG×WG×C . Subsequently, a
convolutional offset network θoffset predicts the offset ∆r = θoffset(xr) for each reference point. The
new feature sampling locations are given by r + ∆r ∈ RHG×WG×2. The resampled deformable
image features xr+∆r ∈ RHG×WG×C are then utilized as the features in the attention module.

Note that conventional deformable attention optimizes both the offset network and attention module.
Thus directly applying deformable attention to SAM is usually suboptimal, because altering SAM’s
original network or weights, e.g., substituting SAM’s standard attention with deformable attention
and retraining, may compromise its integrity.

4.1 DEFORMABLE SAMPLING PLUGIN

To address the attention drift issue while preserving SAM’s integrity, we propose a novel deformable
sampling plugin (DSP) module on top of SAM’s original token-to-image cross-attention module, as
shown in Figure 3.

Specifically, given the prompt token feature t ∈ RT×C and image feature xp ∈ RH×W×C , the
token-to-image cross-attention is:

CAttn(t, x) = σ(Q(t) ·K(xp)
T ) · V (xp), (2)

where p ∈ RH×W×2 represents the image feature spatial sampling locations, σ denotes the softmax
function, and Q,K, V are the query, key, and value embedding projection functions, respectively.

Our DSP adaptively calibrate the feature attention by adjusting solely feature sampling locations and
amplitudes without altering the original SAM model. Specifically, we utilize an offset network θoffset
to predict the feature sampling offset ∆p ∈ RH×W×2, akin to that in deformable attention:

∆p = θs(θoffset(xp)), (3)

where θs is a scale function sp · tanh(∗) to prevent too large offset, and sp is a pre-defined scale factor.
The offset network θoffset consists of a 1×1 convolution, a 5×5 depthwise convolution with the layer
normalization and GELU activation, and a 1× 1 convolution. The updated feature sampling locations

1With the grid size downsampled from the input feature map spatial size (H, W) by a factor of s, thus
HG = H/s and WG = W/s.
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are p+∆p. The numerical range of both p and p+∆p is clamped in {(0, 0), ..., (H − 1,W − 1)},
which is then normalized to the range [−1, 1] for feature sampling. The feature amplitudes are
predicted by the first convolutional layer and the image features xp are thus updated as x⋆

p, which are
used solely for computing the feature attention.

Subsequently, we resample and modulate deformable image features x⋆
p+∆p ∈ RH×W×C at the

updated sampling locations p+∆p with the learned feature amplitudes for keys and values. Thus,
our DSP calibrates the token-to-image cross-attention of SAM’s mask decoder as:

DCAttn(t, x) = σ(Q(t) ·K(x⋆
p+∆p)

T ) · V (x⋆
p+∆p). (4)

As p + ∆p is fractional, we apply a bilinear interpolation to compute x⋆
p+∆p as in Deformable

DETR (Zhu et al., 2020).

Note that our DSP only trains the deformable offset network to predict new feature sampling locations
p+∆p and feature amplitudes, and feeds the resampled and modulated deformable features x⋆

p+∆p
to SAM’s cross-attention module. Thus, the original SAM model remains unchanged.

4.2 DYNAMIC ROUTING PLUGIN

While our DSP can effectively handle suboptimal and even erroneous prompts, by redirecting SAM’s
attention to informative regions which are more likely to contain the target objects, high-quality
prompts can typically direct the model’s attention correctly to target regions. Thus, it is essential to
properly control the DSP’s activation to prevent unwanted attention shifts.

To address this issue, we propose a novel dynamic routing plugin (DRP) that regulates the degree of
DSP activation based on the input prompt quality. The DRP can be formulated as follows:

α = σ(MLP(to)) · s, (5)
where to ∈ R1×C is the prompt token feature corresponding to the output mask, MLP refers to a
small MLP network that includes an MLP layer with LayerNorm and GELU activation, as well as an
output MLP layer; s denotes a learnable scale and σ denotes the softmax function.

We utilize the predicted values of α = [α1, α2] ∈ R1×2 to adaptively route SAM between DSP
and original SAM’s attention mechanism. Consequently, the token-to-image cross-attention output
O(t, x) can be formulated as:

O(t, x) = CAttn(t, α1 · x⋆
p+∆p + α2 · xp) (6)

This soft dynamic routing strategy allows SAM to benefit from both DSP and its original zero-shot
generality, contingent upon the quality of the prompt.

4.3 ROBUST TRAINING STRATEGY

We propose a simple and effective robust training strategy (RTS) to assist our model to learn how to
correct SAM’s attention when adversely affected by bad prompts.

Robust Training Against Inaccurate Prompts. SAM’s training, including HQ-SAM (Ke et al.,
2023), typically utilizes high-quality prompts given by precise bounding boxes or multiple points to
accurately identify the target object. To address inaccurate prompts, our RTS incorporates prompts of
varying qualities during training. These prompts include groundtruth boxes, box prompts with added
noise (noise scale 0.4), and point prompts with varying numbers of points (1, 3, 10 positive points
randomly chosen from the ground truth mask).

Robust Training Against Ambiguous Prompts. In real segmentation scenarios, target objects
often occur in cluttered environment, either occluding others or being occluded. Even given an
accurate, tight bounding box, objects other than the target object will be enclosed. On the other
hand, target objects are typically unambiguous even other objects are enclosed. For instance, in MS
COCO, beds (occluded by quilt) are consistently regarded as target objects; the model must accurately
segment the entire bed including accessories such as pillows and bedding. Thus, SAM’s original
ambiguity-aware solution, which predicts multiple masks for a single prompt, is generally suboptimal
in well-defined realistic applications. To address such “ambiguous" prompts, our RTS incorporates
synthetic occlusion images to make SAM conducive to accurately segment target objects. We include
the implementation details of the occlusion image synthesis in the supplementary materials.
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Table 2: Comparison on four HQ datasets among SAM-based methods and Stable-SAM, under
prompts of varying quality. All models (except for methods in the first group) are trained on HQSeg-
44K dataset.

Noisy Box 1 Point 3 Points
Model Epoch mIoU mBIoU ST mIoU mBIoU ST mIoU mBIoU ST

SAM (baseline) - 48.8 42.1 39.5 43.3 37.4 45.1 78.7 69.5 79.3
PA-SAM (Xie et al., 2024) - 51.2 44.4 41.8 45.3 39.5 47.2 79.6 70.1 80.0
CAT-SAM (Xiao et al., 2024) - 51.5 44.8 42.1 45.7 39.9 47.6 80.0 70.6 80.5
RobustSAM (Chen et al., 2024) - 51.7 44.9 42.3 45.9 40.2 47.7 80.4 71.1 81.0
SAM 2 (Ravi et al., 2024) - 52.4 45.3 43.1 46.7 41.1 48.5 81.1 71.8 81.7

FT-SAM (finetuning SAM’s whole model) 12 32.5 27.7 24.1 28.6 22.8 30.3 46.2 35.4 43.1
DT-SAM (finetuning SAM’s mask decoder) 12 70.6 60.4 64.0 43.1 43.2 37.9 80.3 71.6 80.5
PT-SAM (finetuning SAM’s prompt token) 12 70.8 60.2 64.1 43.0 42.9 38.3 80.1 71.8 80.4

SAM with LoRA (Hu et al., 2022) 12 70.3 60.6 63.7 42.3 43.2 37.2 79.5 71.2 79.6
SAM with Adapter (Chen et al., 2022a) 12 70.5 60.0 63.2 42.7 43.3 37.5 79.8 71.4 80.0
HQ-SAM (Ke et al., 2023) 12 72.4 62.8 65.5 43.2 44.6 37.4 81.8 73.7 81.4

Stable-SAM 1 82.3 74.1 82.3 76.9 68.4 71.1 84.0 75.8 84.9
Stable-SAM 2 1 83.5 75.3 83.4 78.0 69.6 72.2 85.1 76.9 86.0

Our RTS is general and applicable to various SAM variants to improve their segmentation stability.
Notably, our Stable-SAM with DSP and DRP experience the most substantial improvements from the
application of RTS.

5 EXPERIMENTS

Datasets. For fair comparison we keep our training and testing datasets same as HQ-SAM (Ke et al.,
2023). Specifically, we train all models on HQSeg-44K dataset, and evaluate their performance on
four fine-grained segmentation datasets, including DIS (Qin et al., 2022) (validation set), ThinObject-
5K (Liew et al., 2021) (test set), COIFT (Mansilla & Miranda, 2019) and HR-SOD (Zeng et al.,
2019). Furthermore, we validate the model’s zero-shot generalization ability on three challenging
segmentation benchmarks, including COCO (Lin et al., 2014), SGinW (Zou et al., 2023) and
MESS (Blumenstiel et al., 2023). SGinW contains 25 zero-shot in-the-wild segmentation datasets.
MESS is a large-scale benchmark for holistically evaluating the zero-shot segmentation performance.

Input Prompts. We evaluate model’s accuracy and stability with prompts of differing type and
quality, as described in Sec. 3. For MS COCO and SGinW, we do not use the boxes generated
by SOTA detectors (Zhang et al., 2023a; Jia et al., 2023) as the box prompt. This is because their
predicted boxes are typically of high quality and cannot effectively evaluate the model’s segmentation
stability in the presence of inaccurate boxes. Instead, we introduce random scale noises into the
ground truth boxes to generate noisy boxes as the prompts. Specifically, to simulate inaccurate boxes
while still having some overlap with the target object, we select noisy boxes that partially overlap
with the ground truth boxes with IoU ranges of 0.5–0.6 and 0.6–0.7. We also evaluate our method
using the box prompts generated by SOTA detectors.

5.1 COMPARISON WITH SAM VARIANTS

We compare our method with SAM and three powerful SAM variants. HQ-SAM is a recent powerful
SAM variant for producing high-quality masks. We also try two popular model finetuning methods,
LoRA (Hu et al., 2022) and Adapter (Chen et al., 2022a), and three simple SAM variants by finetuning
the SAM’s whole model, its mask decoder and the prompt token, i.e., FT-SAM, DT-SAM and PT-
SAM, respectively. All our Stable-SAM models are trained by just one epoch for fast adaptation
unless otherwise stated. All other models are trained 12 epochs. More experimental results and
implementation details are included in the supplementary material.

Stability Comparison on Four HQ Datasets. Table 2 shows the segmentation accuracy and stability
on four HQ datasets, when models are fed with suboptimal prompts. Notably, the use of noisy box
prompts significantly reduces SAM’s performance, as evidenced by the drop from 79.5/71.1 (as
shown in Table 1) to 48.8/42.1 mIoU/mBIoU, accompanied by a low stability score of 39.5 ST. This is
probably because SAM was trained with solely high-quality prompts, thus seriously suffers from the
low-quality prompts during inference. Finetuning SAM’s whole model greatly impairs performance,
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Table 3: Comparison on MS COCO and SGinW datasets. All models (except for the SAM baseline)
are trained on HQSeg-44K dataset. All models are prompted by noisy boxes (N-Box) that overlap
with the ground truth boxes, with IoU ranges of 0.5-0.6 and 0.6-0.7.

MS COCO SGinW

N-Box (0.5-0.6) N-Box (0.6-0.7) N-Box (0.5-0.6) N-Box (0.6-0.7) Learnable
Model Epoch mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 Params Mem. FPS

SAM (baseline) - 27.3 60.2 40.9 75.0 26.0 60.8 39.5 73.2 (1191 M) 7.6 G 5.0

DT-SAM 12 12.2 22.7 15.8 28.7 10.4 21.5 13.6 27.1 3.9 M 7.6 G 5.0
PT-SAM 12 30.2 63.4 41.3 76.5 32.1 66.4 41.1 74.3 0.13 M 7.6 G 5.0
HQ-SAM 12 31.9 65.5 42.9 77.1 33.6 68.4 42.2 75.9 5.1 M 7.6 G 4.8

Stable-SAM 1 44.8 76.4 50.5 81.1 43.3 75.6 48.6 79.4 0.08 M 7.6 G 5.0

because it destroys the integrity of the highly-optimized SAM model and thus sacrificing the zero-shot
segmentation generality. The other five SAM variants, namely HQ-SAM, DT-SAM, and PT-SAM,
SAM with LoRA and SAM with Adapter, demonstrate relatively better stability in dealing with
noisy boxes, which can be attributed to their long-term training on the HQSeg-44K dataset. Note our
Stable-SAM can effectively address inaccurate box prompts, by enabling models to shift attention to
target objects. Given a single-point prompt, both SAM and its variants exhibit the lowest accuracy
and stability. This indicates they are adversely affected by the ambiguity problem arising from the use
of a single-point prompt. Although, in most practical applications, users prefer minimal interaction
with clear and consistent segmentation targets. Our method maintains much better performance and
stability when handling ambiguous one-point prompt, owing to our deformable feature sampling and
robust training strategy against ambiguity. When point prompts increase to 3, all methods perform
much better, while other methods still under-perform compared with ours.

Segment Anything Model 2 (SAM 2) (Ravi et al., 2024) is a unified model for video and image-
based promptable segmentation. SAM 2 outperforms SAM, due to its stronger backbone and larger
pretraining dataset. However, SAM 2 still suffers significantly from low-quality prompts, owing to
the overlooked segmentation stability problem. Our method can be seamlessly integrated into SAM 2
to enhance segmentation stability and performance under prompts of varying quality. Stable-SAM 2
exhibits substantial improvements in segmentation quality and stability, outperforming the original
Stable-SAM model.

Generalization Comparison on MS COCO and SGinW. Table 3 presents the segmentation accuracy
and stability when the models are generalized to MS COCO and SGinW with noisy boxes. Note that
the DT-SAM performs the worst, probably due to overfitting on the training set, which compromises
its ability to generalize to new datasets. Our method consistently surpasses all competitors, particularly
in handling inaccurate boxes (N-Box 0.5–0.6), where all noisy boxes have an IoU range of 0.5–0.6
with the ground truth boxes. Note that our method has a minimal number of extra learnable parameters
(0.08M) and can be quickly adapted to new datasets by just one training epoch. We also evaluate the
learnable parameters, training memory and inference speed of our method. The results demonstrate
that our approach is lightweight and efficient, with the negligible addition of 0.08 M parameters
having no impact on the efficiency of the original SAM model.

Table 4: Comparison on MS COCO with the
box prompts generated by SOTA detectors
(FocalNet-L-DINO and R50-H-D-DETR) or
noisy box prompts that overlap with the
ground truth boxes, with IoU ranges of 0.5-
0.6. All models (except for SAM) are trained
on HQSeg-44K dataset.

FocalNet-L-DINO R50-H-D-DETR Noisy Box
Model mAP mAP50 mAP mAP50 mAP mAP50

SAM 48.5 75.3 41.5 63.7 27.3 60.2

PT-SAM 48.6 75.5 41.7 64.2 30.2 63.4
HQ-SAM 49.5 75.7 42.4 64.5 31.9 65.5
Ours 48.3 74.8 42.2 64.0 44.8 76.4

Comparison Based on Detector Predicted Box
Prompts. Existing zero-shot segmentation methods
typically choose powerful object detection models
to generate high-quality boxes as the input prompts,
such as FocalNet-L-DINO (Zhang et al., 2023a; Yang
et al., 2022). We also evaluate our method in such set-
ting. Table 4 presents that our model achieves compa-
rable performance as SAM and PT-SAM when using
the FocalNet-L-DINO generated high-quality boxes
as prompts. When using the R50-H-Deformable-
DETR (Zhu et al., 2020) as the box prompt generator,
our method achieves comparable performance as HQ-
SAM. Note that training and implementing SOTA
detectors typically require large computational re-
sources and the cross-domain generalization is still very challenging. In practice, users tend to
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Figure 4: Visual results for box prompts (1st row), for point prompts (2nd row). Within each image
group in the first three rows, the three figures represent the results of SAM with GT box prompt,
SAM with noisy box prompt, and Stable-SAM with noisy box prompt, respectively. The last two
rows display the results of SAM and Stable-SAM with point prompts.

leverage interactive tools to annotate objects for their personalized datasets. Our method substantially
surpasses other competitors in such scenario, when the box can roughly indicate the target object.

Table 5: Comparison with various interactive
segmentation methods (with their respective
backbone models). All methods (except for
SAM) are trained on SBD dataset, and evalu-
ated on SBD and DAVIS datasets.

SBD DAVIS
NoC85/NoC90 NoC85/NoC90

BRS (Jang & Kim, 2019) (DenseNet) 6.59/9.78 5.58/8.24
RITM (Sofiiuk et al., 2022) (HRNet-18) 3.39/5.43 4.94/6.71
PseudoClick (Liu et al., 2022) (HRNet-18) 3.38/5.40 4.81/6.57
FocusCut (Lin et al., 2022) (ResNet-101) 3.40/5.31 4.85/6.22
FocalClick (Chen et al., 2022b) (HRNet-18s) 4.30/6.52 4.92/6.48
SimpleClick (Liu et al., 2023a) (ViT-L) 2.69/4.46 4.12/5.39

SAM (ViT-L) 5.93/7.51 4.78/5.96
PT-SAM (ViT-L) 4.03/5.40 4.27/5.42
Stable-SAM (ViT-L) 2.93/4.59 4.01/5.13

Interactive Segmentation. Our method can be uti-
lized for interactive segmentation. We train PT-SAM
and Stable-SAM on SBD (Hariharan et al., 2011)
dataset, and compare them to traditional interactive
segmentation methods and SAM on the challeng-
ing SBD (Hariharan et al., 2011) and DAVIS (Per-
azzi et al., 2016) datasets. We use the Number of
Clicks (NoC) metric to compute the number of clicks
required to achieve the target IoU of 85% / 90%
(NoC85 / NoC90). Table 5 shows that SAM per-
forms well without finetuning. Finetuning SAM’s
prompt tokens (PT-SAM) further improves the per-
formance, especially on SBD. Stable-SAM performs
comparable or better than other methods.

5.2 ANALYSIS ON STABLE-SAM

We perform detailed analysis on Stable-SAM on its network modules, model scalability, low-shot
generalization, point prompt quality, backbone variants, relation to other methods, and stability
visualization. More experimental analysis are included in the supplementary material.

Table 6: Ablation study on deformable sam-
pling plugin (DSP), dynamic routing plugin
(DRP) and robust training strategy (RTS).
All models (except for SAM) are trained on
HQSeg-44K dataset.

Noisy Box 1 Point
Model mIoU mBIoU ST mIoU mBIoU ST

SAM (baseline) 48.8 42.1 39.5 43.3 37.4 45.1

+ DSP 69.9 60.2 67.2 46.8 40.8 48.0
+ DSP + RTS 81.7 73.5 81.6 75.9 67.5 70.6
+ DSP + DRP + RTS 82.3 74.1 82.3 76.9 68.4 71.1

Deformable Sampling Plugin. Table 6 shows DSP
can be trained with high-quality prompts (without
RTS) to improve the performance and stability on
low-quality prompts, although the model still exhibits
some instability. When equipped with RTS, DSP can
effectively learn to shift SAM’s attention to target ob-
jects when subjecting to inaccurate prompts. To delve
deeper into the deformable sampling mechanism, we
visualize the sampled feature points and their corre-
sponding attention weights. Figure 4 illustrates how
our DSP effectively shifts model’s attention to the
target object, resulting in increased attention weights.
Consequently, the cross-attention module aggregates more target object features into the prompt
tokens, thereby improving the segmentation quality of the target objects.

Dynamic Routing Plugin. We leverage DSP to dynamically route the model between the regular
and deformable feature sampling modes, conditioned on the input prompt quality. We find that DRP
tends to route more DSP features when dealing with worse prompts. The DSP routing weight α1
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is increased from 0.469 to 0.614 when we change the point prompt from three points to one point.
It indicates that lower-quality prompts rely more on DSP features to shift attention to the desirable
regions. Table 6 shows that DRP can further improve model’s performance, especially when handling
the challenging one-point prompt scenario.

Table 7: Ablation study on Robust Training
Strategy (RTS) and model scalability. All
models in this table (except for SAM) are
trained on HQSeg-44K dataset by 12 training
epochs, unless stated otherwise, with or with-
out Robust Training Strategy (RTS). All mod-
els are evaluated on four HQ datasets with GT
box prompt and noisy box prompt.

Groundtruth Box Noisy Box
Model mIoU mBIoU mIoU mBIoU ST

SAM (baseline) 79.5 71.1 48.8 42.1 39.5

Without RTS:
PT-SAM 87.6 79.7 70.6 60.4 64.0
HQ-SAM 89.1 81.8 72.4 62.8 65.5
Ours (1 epoch) 87.4 80.0 69.6 60.0 66.5
Ours (12 epochs) 89.1 82.1 72.7 63.2 67.4

With RTS:
PT-SAM 86.8 78.4 82.1 73.1 78.7
HQ-SAM 87.4 79.8 82.9 74.5 80.4
Ours (1 epoch) 86.0 78.4 82.3 74.1 82.3
Ours (12 epochs) 87.4 80.1 84.4 76.7 85.2
HQ-SAM + Ours 88.7 81.5 86.1 78.7 86.3

Robust Training Strategy. Robust training is critical
for improving model’s segmentation stability, but is
usually overlooked in previous works. RTS can guide
the model, including our DSP, to accurately segment
target objects even when provided with misleading
low-quality prompts. Table 7 shows that RTS sub-
stantially improves the segmentation stability of all
the methods, albeit with a slight compromise in per-
formance when dealing with high-quality prompts.
Note that from the application of RTS, which can
be attributed to our carefully designed deformable
sampling plugin design.

Model Scalability. Our method solely calibrates
SAM’s mask attention by adjusting model’s feature
sampling locations and amplitudes using a minimal
number of learnable parameters (0.08 M), while keep-
ing the model architecture and parameters intact. This
plugin design grants our method with excellent model
scalability. Table 7 shows that our model can be
rapidly optimized by just one training epoch, achiev-
ing comparable performance and stability. By scaling the training procedure to 12 epochs, our method
achieves the best performance across all prompting settings. Additionally, our method can cooperate
with other SAM variants. For instance, when combined with HQ-SAM, the performance and stability
are further improved.

Table 8: Low-shot generalization comparison.
All models are trained with RTS by 12 training
epochs, with 220/440 train images. All models
are evaluated on four HQ datasets with noisy
box prompt and 1 point prompt.

Noisy Box 1 Point
Model mIoU mBIoU ST mIoU mBIoU ST

SAM (baseline) 48.8 42.1 39.5 43.3 37.4 45.1

220 train images:
PT-SAM 77.6 67.7 72.6 71.8 63.2 73.0
HQ-SAM 73.5 62.3 67.7 71.3 62.6 72.4
Ours 78.8 70.0 78.9 73.0 64.7 74.5

440 train images:
PT-SAM 78.6 69.0 74.4 76.2 67.4 75.0
HQ-SAM 77.4 67.1 75.6 74.6 64.6 71.9
Ours 81.6 73.5 82.6 79.8 71.5 82.5

Low-Shot Generalization. Customized datasets
with mask annotation are often limited, typically
consisting of only hundreds of images. For a fair
comparison, all methods in Table 8 are trained with
RTS by 12 training epochs. Table 8 shows that HQ-
SAM performs worst when trained with a limited
number of images (220 or 440 images), which can be
attributed to its potential overfitting problem caused
by the relatively large learnable model parameters
(5.1 M). In contrast, PT-SAM’s better performance
with minimal learnable parameters (0.13 M) further
validates this hypothesis. Our plugin design, coupled
with minimal learnable parameters, enables effective
low-shot generalization, and thus achieves the best
performance in such scenario.

6 CONCLUSION

In this paper, we present the first comprehensive analysis on SAM’s segmentation stability across a
wide range of prompt qualities. Our findings reveal that SAM’s mask decoder tends to activate image
features that are biased to the background or specific object parts. We propose the novel Stable-SAM
to address this issue by calibrating solely SAM’s mask attention, i.e., adjusting the sampling locations
and amplitudes of image feature using learnable deformable offsets, while keeping the original SAM
model unchanged. The deformable sampling plugin (DSP) allows SAM to adaptively shift attention to
the prompted target regions in a data-driven manner. The dynamic routing plugin (DRP) toggles SAM
between deformable and regular grid sampling modes depending on the quality of the input prompts.
Our robust training strategy (RTS) facilitates Stable-SAM to effectively adapt to prompts of varying
qualities. Extensive experiments on multiple datasets validate the effectiveness and advantages of our
Stable-SAM.
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