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ABSTRACT

Deep neural networks trained end-to-end to map a measurement of a (noisy)
image to a clean image perform excellent for a variety of linear inverse problems.
Current methods are only trained on a few hundreds or thousands of images
as opposed to the millions of examples deep networks are trained on in other
domains. In this work, we study whether major performance gains are expected
from scaling up the training set size. We consider image denoising, accelerated
magnetic resonance imaging, and super-resolution and empirically determine the
reconstruction quality as a function of training set size, while simultaneously
scaling the network size. For all three tasks we find that an initially steep power-
law scaling slows significantly already at moderate training set sizes. Interpolating
those scaling laws suggests that even training on millions of images would not
significantly improve performance. To understand the expected behavior, we
analytically characterize the performance of a linear estimator learned with early
stopped gradient descent. The result formalizes the intuition that once the error
induced by learning the signal model is small relative to the error floor, more
training examples do not improve performance.

1 INTRODUCTION

Deep neural networks trained to map a noisy measurement of an image or a noisy image to a clean
image give state-of-the-art (SOTA) performance for image reconstruction problems. Examples are
image denoising (Burger et al., |2012; Zhang et al.| 2017 Brooks et al., 2019} [Liang et al., [2021)),
super-resolution (Dong et al.,[2016; [Ledig et al., 2017} [Liang et al.| 2021)), and compressive sensing
for computed tomography (CT) (Jin et al.,2017), and accelerated magnetic resonance imaging (MRI)
(Zbontar et al., [2018}; [Sriram et al., [2020; Muckley et al., [2021} |[Fabian & Soltanolkotabi, [2022]).

The performance of a neural network for imaging is determined by the network architecture and
optimization, the size of the network, and the size and quality of the training set.

Significant work has been invested in architecture development. For example, in the field of acceler-
ated MRI, networks started out as convolutional neural networks (CNN) (Wang et al., [2016), which
are now often used as building blocks in un-rolled variational networks (Hammernik et al.l 2018
Sriram et al.| 2020). Most recently, transformers have been adapted to image reconstruction (Lin &
Heckel, 2022; Huang et al., [2022; |[Fabian & Soltanolkotabi, [2022]).

However, it is not clear how substantial the latest improvements through architecture design are
compared to potential improvements expected by scaling the training set and network size. Contrary
to natural language processing (NLP) models and modern image classifiers that are trained on billions
of examples, networks for image reconstruction are only trained on hundreds to thousands of example
images. For example, the training set of SwinlR (Liang et al., 2021), the current SOTA for image
denoising, contains only 10k images, and the popular benchmark dataset for accelerated MRI consists
only of 35k images (Zbontar et al.,2018)).

In this work, we study whether neural networks for image reconstruction only require moderate
amounts of data to reach their peak performance, or whether major boosts are expected from increasing
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Figure 1: Empirical scaling laws for CNN-based image reconstruction. Reconstruction perfor-
mance of a U-Net for denoising (a) and accelerated MRI (c) as a function of the training set size
N. In both experiments an initial steep power law R = SN transitions to a relatively flat one
already at moderate N. Thus we expect that training on millions of images does not significantly
improve performance. To obtain the scaling curves in (a),(c) we optimize over the number of network
parameters as shown in (b),(d). Colors in the plots on the left and right correspond to the same training
set size. Since for large training set sizes corresponding to the flattened scaling law, increasing the
parameters does not boost performance further, the decay in scaling coefficients is a robust finding.

the training set size. To partially address this question, we focus on three problems: image denoising,
reconstruction from few and noisy measurements (compressive sensing) in the context of accelerated
MRI, and super-resolution. We pick Gaussian denoising for its practical importance and since it can
serve as a building block to solve more general image reconstruction problems well (Venkatakrishnan
et al.,|2013). We pick MR reconstruction because it is an important instance of a compressive sensing
problem, and many problems can be formulated as compressive sensing problems, for example
super-resolution and in-painting. In addition, for MR reconstruction the question on how much data
is needed is particularly important, since it is expensive to collect medical data.

For the three problems we identify scaling laws that describe the reconstruction quality as a function
of the training set size, while simultaneously scaling network sizes. Such scaling laws have been
established for NLP and classification tasks, as discussed below, but not for image reconstruction.

The experiments are conducted with a U-Net (Ronneberger et al.;2015) and the SOTA SwinlR (Liang
et al., [2021), a transformer architecture. We primarily consider the U-Net since it is widely used
for image reconstruction and acts as a building block in SOTA models for image denoising (Brooks
et al., [2019; |Gurrola-Ramos et al.| [2021; Zhang et al.,[2021};|2022) and accelerated MRI (Zbontar
et al.} 2018 Sriram et al.,2020). We also present results for denoising with the SwinIR. The SwinIR
outperforms the U-Net, but we find that its scaling with the number of training examples does not
differ notably. Our contributions are as follows:

» Empirical scaling laws for denoising. We train U-Nets of sizes 0.1M to 46.5M parameters
with training set sizes from 100 to 100k images from the ImageNet dataset (Russakovsky
et al.,|2015) for Gaussian denoising with 20.17dB Peak-Signal-to-Noise ratio (PSNR). While
for the largest training set sizes and network sizes we consider, performance continues to
increase, the rate of performance increase for training set sizes beyond a few thousand
images slows to a level indicating that even training on millions of images only yields a
marginal benefit, see Fig. [T(a).

We also train SOTA SwinIRs of sizes 4M to 129M parameters on the same range of training
set sizes, see Fig. [J(a). Albeit it performs better than the U-Net, its scaling behavior is
essentially equivalent, and again after a few thousand images, only marginal benefits are
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expected. Scaling up its training set and network size did, however, give benefits, the largest
model we trained yields new SOTA results on four common test sets by 0.05 to 0.22dB.

* Empirical scaling laws for compressive sensing. We train U-Nets of sizes from 2M to
500M parameters for 4x accelerated MRI with training set sizes from 50 to 50k images
from the fastMRI dataset (Knoll et al., |2020b). We again find that beyond a dataset size
of about 2.5k, the rate of improvement as a function of the training set size considerably
slows, see Fig.[I|c). This indicates that while models are expected to improve by increasing
the training set size, we expect that training on millions of images does not significantly
improves performance.

* Empirical scaling laws for super-resolution. We also briefly study super-resolution, and
similarly as for denoising and compressive sensing find a slowing of the scaling law at
moderate dataset sizes. See appendix [C|

* Understanding scaling laws for denoising theoretically. Our empirical results indicate
that the denoising performance of a neural network trained end-to-end doesn’t increase as a
function of training examples beyond a certain point. This is expected since once we reach a
noise specific error floor, more data is not beneficial. We make this intuition precise for a
linear estimator learned with early stopped gradient descent to denoise data drawn from a
d-dimensional linear subspace. We show that the reconstruction error is upper bounded by
d/N plus a noise-dependent error floor level. Once the error induced by learning the signal
model, d/N, is small relative to the error floor, more training examples N are not beneficial.

Together, our empirical results show that neural networks for denoising, compressive sensing, and
super-resolution applied in typical setups (i.e, Gaussian denoising with 20.17dB PSNR, and multi-coil
accelerated MRI with 4x acceleration) already operate in a regime where the scaling laws for the
training set size are slowing significantly and thus even very large increases of the training data are
not expected to improve performance substantially. Even relatively modest model improvements
such as those obtained by transformers over convolutional networks are larger than what we expect
from scaling the number of training examples from tens of thousands to millions.

2 RELATED WORK

Scaling laws for prediction problems. Under the umbrella of statistical learning theory conver-

gence rates of 1/N or 1/v/N have been established for a range of relatively simple models and
distributions, see e.g.[Wainwright| (2019) for an overview.

For deep neural networks used in practice, a recent line of work has empirically characterized the
performance as a function of training set size and/or network size for classification and NLP (Hestness
et al., 2017; Rosenfeld et al.,2019; |[Kaplan et al., 2020; Bahri et al., |2021; Zhai et al., 2021}, |Ghorbani
et al., [2021; Bansal et al., [2022). In those domains, the scaling laws persist even for very large
datasets, as described in more detail below. In contrast, for image reconstruction, we find that the
power-law behavior already slows considerably at relatively small numbers of training examples.

Rosenfeld et al.|(2019)) find power-law scaling of performance with training set and network size
across models and datasets for language modeling and classification. However, because the work
fixes either training set or network size, while scaling the other, the scaling laws span only moderate
ranges before saturating at a level determined by the fixed quantity and not the problem specific error
floor. The papers [Kaplan et al.| (2020); Bahri et al.| (2021)); Zhai et al.| (2021)); \Ghorbani et al.| (2021);
Bansal et al.|(2022) including ours scale the dataset size and model size simultaneously, resulting in
an improved predictive power of the obtained scaling laws.

Hestness et al.|(2017) study models for language and image classification, and attribute deviations
from a power-law curve to a lack of fine-tuning the hyperparameters of very large networks. For
transformer language models Kaplan et al| (2020) find no deviation from a power-law for up to
a training set and network size of 1B images and parameters. Further, [Zhai et al.| (2021) find the
performance for Vision Transformers (Dosovitskiy et al., 2020) for few-shot image classification to
deviate from a power-law curve only at extreme model sizes of 0.3-1B parameters and 3B images.

The role of training set size in inverse problems. For image reconstruction and inverse problems
in general, we are not aware of work studying scaling laws in a principled manner, covering different



Published as a conference paper at ICLR 2023

328 4\\\‘ T T 1 \HH‘ T T \\’\u\‘ T \_\_,_\_J.A—H*‘ —] 328 = T T T 11 \‘ T T T T T T 1 -
/_\32.6—(3) JRSI I et 1 6] ®) =
g s24p-""" -~ 32.4 |- .
~—~ - . *r— —e
% s2.2 32.2 [ % -
g 32r 32 |- -
~ 318 31.8 [ -

31.6 - 31.6 [

Ll Lol Lo Lo
102 108 104 10° 107 108
Training set size [N Network parameters P

Figure 2: Empirical scaling laws for transformer-based image denoising. The colored curve in
(a) shows the best PSNR per training set size of a SwinlR (Liang et al.,2021) with varying network
sizes as depicted in (b). Colors in the plot on the left and right correspond to the same training set
size. The SwinlR outperforms the U-Net (gray curve from Fig.[I[a)), but as for the U-Net the rate
of improvement slows to a level that indicates that further increasing the dataset size would only
marginally improve performance.

problems and model architectures. But, when proposing a new method several works study perfor-
mance as a function of training set and/or network size. However, those studies typically only scale
the parameter of interest while fixing all other parameters, unlike our work, which scales dataset
size and network size together, which is important for identifying scaling laws. Below, we review
the training set sizes, and if available their scaling properties, used by the recent SOTA in image
denoising and accelerated MRI.

Zhang et al.|(2017) report that for DnCNN, a standard CNN, using more than 400 distinct images
with data augmentation only yields negligible improvements. (Chen et al.|(2021) pre-train an image
processing transformer (IPT) of 115.5M network parameters on ImageNet (1.1M distinct images),
and report the performance after fine-tuning to a specific task as a function of the size of the pre-
training dataset. IPT’s performance for denoising is surpassed by the latest SOTA in form of the
CNN based DRUnet (Chen et al.,|2021)), the transformer based SwinlIR (Liang et al.| 2021)) and the
Swin-Conv-Unet (Zhang et al.,[2022)) a combination of the two. Those models have significantly
fewer network parameters and were trained on a training set consisting of only ~10k images, leaving
the role of training set size in image denoising open.

The number of available training images for accelerated MRI is limited to few publicly available
datasets. Hence, current SOTA (Sriram et al., |2020; Fabian & Soltanolkotabi, 2022)) are trained on
the largest datasets available (the fastMRI dataset), consisting of 35k images for knee and 70k for
brain reconstruction (Zbontar et al., [2018}; [Muckley et al., [2021]).

Adaptations of the MLP-Mixer (Tolstikhin et al.,[2021]) and the Vision Transformer (Dosovitskiy
et al.,[2020) to MRI (Mansour et al.,[2022; |Lin & Heckell |2022)) ablate their performance as a function
of the training set size and find that non-CNN based approaches require more data to achieve a similar
performance, but potentially also benefit more from even larger datasets. However, those experiments
are run with fixed model sizes and only 3-4 realizations of training set size thus it is unclear when
performance saturates.

3 EMPIRICAL SCALING LAWS FOR DENOISING

In this section, we consider the problem of estimating an image x from a noisy observationy = x+z,
where z is additive Gaussian noise z ~ N(0, 02I). Neural networks trained end-to-end to map a noisy
observation to a clean image perform best, and outperform classical approaches like BM3D (Dabov
et al.| 2007) and non-local means (Buades et al.| | 2005) that are not based on training data.

Datasets. To enable studying learned denoisers over a wide range of training set sizes we work
with the ImageNet dataset (Russakovsky et al.,|2015). Its training set contains 1.3M images of 1000
different classes. We reserve 20 random classes for validation and testing. We design 10 training
set subsets Sy of sizes N € [100, 100000] (see Fig.ma)) and with S; C S; for i < j. To make the
distributions of images between the subsets as homogeneous as possible, the number of images from
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different classes within a subset differ by at most one. We generate noisy images by adding Gaussian
noise with variance of o, = 25 (pixels in the range from 0 to 255), i.e. 20.17dB in PSNR.

Model variants and training. We train a CNN-based U-Net, a detailed description of the model
architecture is in Appx. We also train the Swin-Transformer (Liu et al.,[2021) based SwinIR
model (Liang et al.||2021) that achieves SOTA for a variety of image reconstruction tasks, including
denoising. This model is interesting since transformers scale well with the number of training
examples for other domains, e.g., for image classification pre-training (Dosovitskiy et al., [2020).

For U-Net and SwinIR we vary the number of network parameters as depicted in Fig.[I](b) and Fig.2]
(b) respectively. Appx.[A.T]and[A.3]|contain detailed descriptions on how the models are trained and
the network size is adapted.

Results and discussion. Fig.[I(a) and Fig.[2(a) show the reconstruction performances of the best
U-Net and SwinlR respectively over all considered network sizes. Our main findings are as follows.

A training set size of around 100 is already sufficient to train a decent image denoiser. Beyond 100,
we can fit a linear power law to the performance of the U-Net with a scaling coefficient v = 0.0048
that approximately holds up to training set sizes of about 6k images. Beyond 6k, we can fit a second
linear power law with significantly smaller scaling coefficient oo = 0.0019.

Similarly, for the SwinIR we can fit a power law with coefficient @ = 0.0050 in the regime of little
training data and a power law with significantly smaller coefficient & = 0.0017 in the regime of
moderate training data, thus the two architectures scale essentially equivalently.

While denoising benefits from more training examples, the drop in scaling coefficient indicates
that scaling from thousands to millions of images is only expected to yield relatively marginal
performance gains. While the gains are small and we expect gains from further scaling to be even
smaller, our largest SwinIR trained on 100k images yields a new SOTA for Gaussian color image
denoising. On four common test sets it achieves an improvement between 0.05 to 0.22dB, see
Appx. [B] Visualizations of reconstructions from models along the curves in Fig.[T(a) and Fig. ()
can be found in Fig. [ Appx.[A]

Comparing the U-Net scaling to SwinIR scaling (Fig.[2(a)) we see that the effect of large training sets
on the performance of the U-Net can not make up for the improved modeling error that stems from
the superior network architecture of the SwinIR. In fact, the simulated scaling coefficient « = 0.0019
predicts a required training set size of about 150M images for U-Net to achieve the best performance
of the SwinlR, and that is an optimistic prediction since it assumes that the scaling does not slow
down further for another 3 orders of magnitude. Thus, model improvements such as those obtained
by transformers over convolutional networks are larger than what we expect from scaling the number
of training examples from tens of thousands to millions.

An interesting question is whether different noise levels lead to different data requirements, as
indicated by a different scaling behavior. We investigate the performance of U-Net for a smaller noise
variance o, = 15 in Appx. While the results are still preliminary, the qualitative scaling behavior
is similar; the difference are that the scaling law pertaining to smaller noise is slightly steeper, and
overall the performance improves by about 1.3dB in PSNR.

Finally, note that for our results we choose to re-sample the noise per training image in every training
epoch, since it makes the best use of the available clean images. However, fixing the noise is also
interesting, since it is more similar to a setup in which the noise statistics are unknown like in
real-world noise removal. See Appx. for additional results where the noise is fixed. We found
that compared to re-sampling the noise the performance of a U-Net drops by 0.3dB for small training
set sizes. As the training set size increases the performance approaches the one of re-sampling the
noise resulting in a steeper scaling law that flattens at slightly larger training set sizes.

Robustness of our finding of slowing scaling laws. Our main finding for denoising is that the
scaling laws slow at relatively small amounts of training data points (i.e., the scaling coefficient
becomes very small). We next argue why we think that this is a robust finding.

In principle it could be that the networks are not sufficiently large for the performance to improve
further as the dataset size increases. However, for the U-Net and training set sizes of 10k and 30k the
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performance increase already slows, and for those training set sizes, increasing the network size does
not improve performance, as shown in Fig. [T[b). For smaller network sizes the curves in Fig. [[(b)
first increase and then decrease indicating that we found network sizes close to the optimum.

The parameter scaling of the SwinIR in Fig. [2(b) indicates that for training set sizes of 10k and 100k
the performance still benefits from larger networks. Hence, the power law for those training set sizes
in Fig. [2{a) can become slightly steeper once we further increase the network size. However, for the
slope of the flat power law in (a) to reach the slope of the steep power law, the parameter scaling in
(b) for 100k training images would need to hold for another 2 orders of magnitude, i.e. about 12B
instead of the currently used 129M network parameters, which is very unlikely considering that the
current network sizes already suffice to saturate the performance for small/moderate training set sizes.

Finally, it could be that with higher quality or higher diversity of the data, the denoising performance
would further improve. In our experiments, we increase the training set sizes by adding more images
from the same classes of ImageNet, and we continue to test on different classes. Thus, it could be
that adding training examples from a different, more diverse data source leads to less of a slowing
of the scaling law in Fig.[T[a). We test this hypothesis by scaling our training set with 3k images
to 10k images not by adding more images from ImageNet but images from the datasets that are
used to train the original SwinIR, i.e., we add all images from DIV2K (Agustsson & Timofte, [2017),
Flickr2K (Timofte et al., 2017)) and BSD500 (Arbelaez et al.l 2011)) and add the remaining images
from WED (Ma et al.| [2017). Keeping all other hyperparameters fixed the U-Net obtains for this
dataset a PSNR of 32.239dB, which is slightly worse than the 32.252dB it achieves with our training
set with 10k images only from ImageNet. Hence, we reject the hypothesis that the drop in scaling
coefficients can be explained with how the training sets are designed in our experiment.

4 EMPIRICAL SCALING LAWS FOR COMPRESSIVE SENSING

We consider compressive sensing (CS) to achieve 4x accelerated MRI. MRI is an important medical
imaging technique for its non-invasiveness and high accuracy. Due to the physics of the measurement
process, MRI is inherently slow. Accelerated MRI aims at significantly reducing the scan time by
undersampling the measurements. In addition, MRI scanners rely on parallel imaging, which uses
multiple receiver coils to simultaneously collect different measurements of the same object.

This leads to the following reconstruction problem. We are given measurements y; € C" of the
image x € C" asy; = MFS;x + noise; fori = 1, ..., C, and our goal is to reconstruct the image
from those measurements. Here, C' is the number of receiver coils, the diagonal matrices S; € C™*"
are the sensitivity maps modelling the signal strength perceived by the i-th coil, F € C"*™ is the
discrete Fourier transform (DFT), and M € C"*" is a binary mask implementing the undersampling.

Classical CS approaches (Lustig et al.,[2008) first estimate the sensitivity maps with a method such
as ESPIRIT (Uecker et al.,[2014), and second estimate the unknown image by solving a regularized
optimization problem, such as total-variation norm minimization. Recently, deep learning based
methods have been shown to significantly outperform classical CS methods due to their ability to
learn more complex and accurate signal models from data (Knoll et al.| |2020a; Muckley et al., 2021).

Datasets. To explore the performance of learning based MR reconstruction over a wide range of
training set sizes, we use the fastMRI multi-coil brain dataset (Knoll et al., 2020b)), which is the
largest publicly available dataset for MRI. The dataset consists of images of different contrasts. To
ensure that the statistics of the dataset are as homogeneous as possible, we take the subset of the
dataset corresponding to a single contrast resulting in 50k training images. We design training set
subsets Sy of size N € [50,50000] (see Fig.|I|(c)) with S; C S; for i < j. For more information on
selection, division and subsampling of the dataset see Appx.

Model variants and training. We train the same U-Net model used in Section [3|and described

in Appx.[A.T]but with 4 blocks per encoder/decoder. The network is trained end-to-end to map a

coarse reconstruction Xcg to the ground truth image x. The coarse reconstruction is obtained as
1/2

XCR = (Zlczl |F’1yiyzp\2) ,where F~! is the inverse DFT, and yizr are the undersampled

measurements of the ¢-th coil, where missing entries are filled with zeros. We vary the number of
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network parameters as depicted in Fig. [T](d). Appx.[A.2]contains detailed descriptions on how the
model is trained and the network size is adapted.

Results and discussion. For each training set size Fig. (1| (c) shows the reconstruction performance
in structural similarity (SSIM) of the best model over all simulated network sizes. There are 2 main
findings. First, we can fit a linear power law with a scaling coefficient @ = 0.0072 that holds up to
training set sizes of about 2.5k images. Second, for training set sizes starting from 5k we can fit a
second linear power law but with significantly smaller scaling coefficient o = 0.0026.

Similar to denoising in Section [3|we conclude that while accelerated MRI slightly benefits form more
training examples, the drop in scaling coefficient indicates that it is unlikely that even training set
sizes of the order of hundreds of millions of images result in substantial gains. Visualizations of
reconstructions from models along the curve in Fig.[I](c) can be found in Fig.[5} Appx.[A.2]

Robustness of our finding of slowing scaling laws. Next, we argue why the drop in scaling
coefficient for accelerated MRI is a robust finding.

In Fig. [T] (d) we demonstrate that the network size does not bottleneck the performance of our
largest training sets. For each training set size the performance as a function of the number of
network parameters is relatively flat. Even small training sets benefit from large networks before their
performance slightly decays for very large networks. Hence, we expect that for large training sets the
performance as a function of network parameters would not increase significantly before decaying.

Finally, is there a different type of training data that would improve the scaling coefficient? We don’t
think so, since all experiments are for the very specific task of reconstructing brain images of one
particular contrast, which means that the examples that we add to increase the size of the training sets
is already the data most suitable to solve this task.

5 UNDERSTANDING SCALING LAWS FOR DENOISING THEORETICALLY

We study a simple linear denoiser that is trained end-to-end to reconstruct a clean image from a noisy
observation, in order to understand how the error as a function of the number of training examples for
inverse problems is expected to look like.

We define a joint distribution over a signal and the corresponding measurement (x,y) as follows.
Consider a d < n dimensional subspace of R™ parameterized by the orthonormal basis U € R"*<,
We draw a signal approximately uniformly from the subspace x = Uc, where ¢ ~ A (0,I), and an
associated noisy measurement as y = x + z, where z ~ A'(0, 02I) is Gaussian noise. The subspace
is unknown, but we are given a training set {(x1,y1), ..., (Xx,¥n~)}, consisting of examples drawn
iid from the joint distribution over (x,y).

We assume that the signal lies in a low dimensional subspace. Assuming that data lies in a low-
dimensional subspace or more general, a union of low-dimensional subspaces, is common, for
example it underlies the denoising of natural images via wavelet thresholding (Donoho & Johnstonel,
1995; [Simoncelli & Adelson, |1996; (Chang et al.,[2000). Mohan et al.| (2020) found that even deep
learning based denoisers implicitly perform a projection onto an adaptively-selected low-dimensional
subspace that captures the features of natural images.

We consider a linear estimator of the form fw(y) = Wy, and measure performance in terms of

the expected mean-squared reconstruction error, defined as R(W) = 1E [||Wy - x||§}, where

expectation is over the joint distribution of (x,y).

The optimal linear estimator. The optimal linear estimator (i.e., the estimator that minimizes the

risk 1) is given by W* = < +102 UUT. The estimator projects the data onto the subspace and shrinks

towards zero, depending on the noise variance. The associated risk is R(W*) = 02 /(1 + o2).

An estimator based on subspace estimation. The optimal estimator W* requires knowledge
of the unknown subspace. We can learn the subspace from the noisy data by performing principal
component analysison Y = [y1,...,yn]. Specifically, we estimate the subspace as the d-leading
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singular vectors of the empirical co-variance matrix YY 7 € R™*", denoted by by U e R"*4_ If the
measurement noise is zero (i.e., of =0), U is an orthonormal basis for the d-dimensional subspace
U provided we observe at least d many linearly independent signals, which occurs with probability
one if we draw data according to the model defined above, and if the number of training examples
obeys N > d. There is a vast literature on PCA,; see |Vershynin|(2011;[2018); Rudelson & Vershynin
(2010); [Tropp| (2012)) for tools from high-dimensional probability to analyze the PCA estimate.

Now consider the estimator Wpca = 1+%IAHAJTy based on [V noisy training points. The estimator

assumes knowledge of the noise variance, but it is not difficult to estimate it relatively accurately. The
following result, proven in Appx.[F characterizes the associated risk.

Theorem 1. Suppose that the number of training examples obeys (d + no?)log(n) < N. For a
numerical constant c, with probability at least 1 — n='0 — 3¢~ 4 ¢, the risk of the PCA-estimate
is bounded by

R (Wpca) < R(W*) + ¢(d + no?)log(n)/N.

Thus, as long as the number of training examples N is sufficiently large relative to (d + no?), the
risk of the PCA-estimator is close to the risk of the optimal estimator.

Estimator learned end-to-end. We now consider an estimator learned end-to-end, by applying
gradient descent to the empirical risk L(W) = vazl IWy; — x; ||§ and we regularize via early-
stopping the gradient descent iterations. The risk of the estimate after & iterations of gradient descent,
WP¥, is bounded by the next result. This estimator mimics the supervised training we consider
throughout this section, with the difference that here we consider a simple neural network, and in the
previous sections we trained a neural network.

Theorem 2. Let W be the matrix obtained by applying k iterations of gradient descent with
stepsize 1 starting at W° = 0 to the loss L(W). Consider the regime where the number of
training examples obeys (d + no?)log(n) < N < &d/o? for an arbitrary & and N log(N) < n.
For an appropriate choice of the stepsize 1 there exists an optimal early stopping time kop; at
which the risk of the estimator fw(y) = WPFkerty is upper-bounded with probability at least

1—2¢N/8 _9e=N/18 _5p=9 _5e=d _ 9= — =N _ 9¢—1/2 by
nof) log (d + no?)log(n) (d+02n)logn

N 7

+ c€

R(Wkert) < (8 4 26)R(W™) + ¢ (1 +— ~

where c is a numerical constant.

The proof is provided in Appx.|[G] Similar to Thm.[T]the first term in the bound corresponds to the
noise-dependent error floor and the second two terms decrease in (d + no?)/N and represent the
error induced by learning the estimator with a finite number of training examples. Once this error is
small relative to the error floor, more training examples do not improve performance. See Appx.[E]
for a more detailed discussion on the estimator and the assumptions of Thm. 2}

Discussion. In Fig.|3] we plot the risk as a function of the training set size for the early-stopped
empirical risk minimization (ERM) and the PCA based estimator. Starting at a training set size
of N = 100, we see that the risk minus the optimal risk follows approximately a power law, i.e.,
log(R(W) — R(W*)) &~ —alog(N), as suggested by Thms. [1]and 2]

In practice, however, we don’t know the risk of the optimal estimator, R(W™*). Therefore, in the
second row of Fig. [3|and throughout our empirical results we plot the risk log(R(W)) as a function
of the number of training examples log(V) and distinguish different regions by fitting approximated
scaling coefficients « to log( R(W)) = —a/log(N). In our theoretical example, we can identify three
regions, coined in|Hestness et al.|(2017): The small data region in which the training set size does
not suffice to learn a well-performing mapping and the power-law region in which the performance
decays approximately as N with o < 0, and an problem-specific irreducible error region, which is
R(W*) here. Note that the power-law coefficient in the risk plot R(W) are smaller then those when
plotting R(W) — R(W*), an are only approximate scaling coefficients.

Already in this highly simplified setup of an inverse problem the true scaling coefficients heavily
depend on model parameters such as the noise variance as can be seen in Fig. 3] The scaling
coefficients further vary with the signal dimension d and ambient dimension n (see Appx. [E.IJ.
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Figure 3: Subspace denoising. Simulated risks of the early stopped ERM estimator W*ert (left) and
the PCA estimator Wpcy (right) over the training set size N. The signal and ambient dimensions are
d = 10,n = 1000 and we vary the noise level o,. We fit linear scaling laws ~ N to the power law
regions. As the noise level decreases the scaling coefficients « increase. Further, the learned estimator
exhibits steeper scaling than the PCA estimator. Error bars are over 5 independent runs.

6 CONCLUSION

We found that the performance improvement of deep learning based image reconstruction as a
function of the number of training examples slows already at moderate training set sizes, indicating
that only marginal gains are expected beyond a few thousand examples.

Limitations. This finding is based on studying three different reconstruction problems (denoising,
super-resolution, and compressive sensing), two architectures (U-net and SwinIR), and for each setup
we extensively optimized hyperparameters and carefully scaled the networks. Scaling gave new
state-of-the-art results on four denoising datasets, which provides some confidence in the setup.

Moreover, our statements necessarily pertain to the architectures and metrics we study. It is possible
that other architectures or another scaling of architectures can yield larger improvements when scaling
architectures. It is also widely acknowledged that image quality metrics (such as SSIM and PSNR)
do not fully capture the perceived image quality by humans, and it could be that more training data
yields improvements in image quality that are not captured well by SSIM and PSNR.

Most importantly, our findings pertain to standard in-distribution evaluation, i.e., the test images are
from the same distribution as the training images. To achieve robustness against testing on images out
of the training distribution recent work indicates a positive effect of larger and more diverse training
sets (Miller et al., 2021} Darestani et al., [2022; [Nguyen et al., 2022)). Thus it is possible that the
out-of-distribution performance of image reconstruction methods improves when trained on a larger
and a more diverse dataset, even though the in-distribution performance does not improve further.

Future research. We focus on supervised image reconstruction methods. For image denoising and
other image reconstruction problems self-supervised approaches are also performing very well (Laine
et al., [2019; [Wang et al., 2022} |Zhou et al., 2022)), even though supervised methods perform best
if clean images are available. It would be very interesting to investigate the scaling laws for self-
supervised methods; perhaps more training examples are required to achieve the performance of a
supervised setup. We leave this for future work.
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REPRODUCIBILITY

The repository at |https://github.com/MLI-lab/Scaling_Laws_For_Deep_
Learning_Based_Image_Reconstruction contains the code to reproduce all results in the
main body of this paper.
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A DETAILS OF THE EXPERIMENTAL SETUPS

A.1 EXPERIMENTAL DETAILS FOR EMPIRICAL SCALING LAWS FOR DENOISING WITH A U-NET

In this Section, we give a detailed description of the experimental setup that led to our results for
Gaussian denoising with a U-Net presented in Fig[I| (a),(b) and Section 3]

In addition, Fig. 4| shows examples of reconstructions from different models along the performance
curve in Fig.[T](a). In these examples the improvement in perceived image quality from increasing
the training set size from 100 to 1000 is larger than from increasing from 1000 to 10000 or from
10000 to 100000. This correlates with our quantitative findings in Fig. (1| (a).

Next, we describe the experimental details. We train U-Nets with two blocks in the encoder and
decoder part respectively and skip connections between blocks. Each block consists of two convolu-
tional layers with LeakyReLU activation and instance normalization (Ulyanov et al., 2017) after every
layer, where the number of channels is doubled (halved) after every block in the encoder (decoder).
The downsampling in the encoder is implemented as average pooling and the upsampling in the
decoder as transposed convolutions. As proposed by |Zhang et al.|(2017)) we train a residual denoiser
that learns to predict y — x instead of directly predicting x, which improves performance.

We scale the network size by increasing the width of the network by scaling the number of channels
per (transposed) convolutional layer. For denoising we trained U-Nets of 7 different sizes. We vary
the number of channels in the first layer in {16, 32, 64,128, 192, 256, 320}, which corresponds to
{0.1,0.5,1.9,7.4,16.7,30.0,46.5} million parameters. We do not vary the depth, since this would
change the dimension of the informational bottleneck in the U-Net and thus change the model family
itself.

The exact training set sizes we consider are {0.1,0.3,0.6, 1, 3,6, 10, 30, 60, 100} thousand images
from ImageNet. We center crop the training images to 256 x 256 pixels. We also tried a smaller
patch size of 128 x 128 pixels, but larger patches showed to have a better performance in the regime
of large training set sizes, which is why the results presented in the main body are for patch size
256 x 256. For a comparison between the scaling behavior of the two different patch sizes see Fig.[9]

Appx.

We do not use any data augmentation, since it is unclear how to account for it in the number of
training examples. For validation and testing we use 80 and 300 images respectively taken from 20
random classes that are not used for training.

We use mean-squared-error loss and Adam (Kingma & Ba, [2014) optimizer with 51 = 0.9, 82 =
0.999. For moderate training set sizes up to 3000 images we find that heuristically adjusting the initial
learning rate with the help of an automated learning rate annealing performs well. To this end, we
start with a learning rate of 10~* and increase after every epoch by a factor of 2 until the validation
loss does not improve for 3 consecutive epochs. We then load the model checkpoint from the learning
rate that was still performing well and continue with that learning rate. We observe that this scheme
typically picks an initial learning rate reduced by factor 2 for every increase in the number of channels
C. For training set sizes larger than 3000 we directly apply this rule to pick an initial learning rate
without annealing as we found this to give slightly better results. In particular, for number of channels
C = {128,192, 256, 320} we used initial learning rates = {0.0032, 0.0016, 0.0008, 0.0004}.

For small training sets up to 1000 images we found that batch size of 1 works best. For larger training
sets we use a batch size of 10 and found that further increasing the batch size does not improve
performance.

We do not put a limit on the amount of compute for training. We use an automated learning rate decay
that reduces the learning rate by 0.5 if the validation PSNR has not improved by at least 0.001 for 10
epochs or 6 epochs for training set sizes starting from 6000 images. Once the learning rate drops to
10~ we observe near to no gains in validation loss and stop the training after 10 additional epochs.

For training set sizes up to 1000 we train 3 random seeds and pick the best run. As the variance
between runs compared to the gain in performance between different training set sizes decreases with
increasing training set size we only run one seed for larger training set sizes.
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The experiments were conducted on four NVIDIA A40, four NVIDIA RTX A6000 and four NVIDIA
Quadro RTX 6000 GPUs. We measure the time in GPU hours until the best epoch according to the
validation loss resulting in about 1800 GPU hours for the experiments in Fig. [T[a),(b).

A.2 EXPERIMENTAL DETAILS FOR EMPIRICAL SCALING LAWS FOR COMPRESSIVE SENSING
WITH A U-NET

In this Section, we give a detailed description of the experimental setup that led to our results for
compressive sensing MRI presented in Fig[T](c),(d) and Section 4]

In addition, Fig. [5|shows examples of reconstructions from different models along the performance
curve in Fig.[1|(c). In these examples the improvement in perceived image quality from increasing
the training set size from 500 to 2500 is larger than from increasing from 2500 to 10000 or from
10000 to 50000. This correlates with our quantitative findings in Fig. [I] (c).

The first in row in Fig. [5|shows an example in which all models including the one trained on the
largest training set fail to recover a fine detail. This is a known problem in accelerated MRI and has
been documented in both editions of the fast MRI challenge (Knoll et al.| [2020a; [Muckley et al.,
2021)) in which for all methods examples could be found in which fine details have not been recovered.
However, the question remains if more training data or better models would help or the details are
simply not there since the information is lost due to the large undersampling factors considered in the
fastMRI challenges and in this work.

Next, we describe the experimental details. For compressed sensing in the context of accelerated
MRI we trained U-Nets of 14 different sizes. We vary the number of channels in the first layer in
{16, 32,48, 64, 96,112,128, 144, 160, 176, 192, 208, 224, 256 }, which corresponds to {2, 8,18, 31,
70,95,124,157,193, 234,279, 327, 380, 496} million network parameters.

The exact training set sizes we consider are {0.05,0.25,0.5,1,2.5,5, 10, 25,50} thousand AXT2
weighted images from fastMRI multi-coil brain dataset (Zbontar et al.,[2018)), where AXT?2 corre-
sponds to all images of one type of contrast. We focused on images only from this type to make the
statistics of our datasets as homogeneous as possible. We do not use any data augmentation, since it
is unclear how to account for it in the number of training examples. We use 4732 and 730 additional
images for testing and validation.

We consider an acceleration factor of 4 meaning that we only measure 25% of the information.
We obtain the 4 times undersampled measurements by masking the fully sampled measurement y
with an equispaced mask with 8% center fractions meaning that in the center of y we take all the
measurements and take the remaining ones at equispaced intervals.

We use structural similarity (SSIM) loss and RMSprop optimizer with o = 0.99 as this is the default
in the fastMRI repository (Zbontar et al.,2018)) and we found no improvement by replacing it with
Adam. We do not put a limit on the amount of compute invested into training. We deploy an
automated learning rate decay that starts at a learning rate of 10~3 and decays by a factor 0.1 if the
validation SSIM has not improved by at least 10~ for 5 epochs. Once the learning rate drops to 10~°
we stop the training after 10 additional epochs. Only for the largest training set sizes 25k,50k we
found that an additional drop to 10~7 resulted in further performance gains. We use a batch size of 1.

For training set sizes up to Sk we train three models with random seeds and pick the best. For larger
training set sizes we only run one seed, since the variance between runs decreased.

The experiments were conducted on four NVIDIA A40, four NVIDIA RTX A6000 and four NVIDIA
Quadro RTX 6000 GPUs. We measure the time in GPU hours until the best epoch according to the
validation loss resulting in about 4250 GPU hours for the experiments in Fig. [T (c),(d).

A.3 EXPERIMENTAL DETAILS FOR EMPIRICAL SCALING LAWS FOR DENOISING WITH THE
SWINIR

In this Section, we give a detailed description of the experimental setup that led to our results for
Gaussian denoising with a SwinIR presented in Fig[Z] (a),(b) and SectionE}

In addition, Fig. 4] shows examples of reconstructions from different models along the performance
curve in Fig.[2](a). Despite of the best SwinIR clearly outperforming the best U-Net in terms of PSNR
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N = 10000 N = 100000

Figure 4: Reconstructions along the scaling law for denoising with a U-Net and SwinIR. The two
examples illustrate how the reconstruction quality improves as the training set size N increases. First
rows: ground truth and reconstruction, Second rows: residuals w.r.t. the ground truth.
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Ground Truth = = N = 10000 N = 50000

Figure 5: Reconstructions along the scaling law for compressive sensing MRI with a U-Net. The
two examples illustrate how the reconstruction quality improves as the training set size N increases.
For each example the first row shows the ground truth and the reconstruction with the respective
quantitative performance in SSIM and the second row shows the residual of each reconstruction with
respect to the ground truth.
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Table 1: Batch size and maximal number of steps for every experiment in Fig. 2. Each exper-
iment can be identified by the number of training examples N in thousands and the network size
small(S)/middle(M)/large(L)/huge(H).

N/P 0.1/S 0.1/M 0.1/L 0.3/S 03/M 0.3/L 1.0/
Batch size 8 20 6 8 20 6 8
#epochs (-10%) 1152 1152 11.52 5.76 5.76 5.76 3.84
N/P 1.o/oM 1.0L 10/M 10/L 100/M 100/L  100/H
Batch size 20 6 20 8 20 8 4

# epochs (-103) 432 3855 1232 128 0.128 0.128 0.128

Table 2: List of used network configurations of the SwinIR |Liang et al.| (2021). We consider
four network sizes small(S)/middle(M)/large(L)/huge(H) by varying the number of residual Swin
Transformer blocks, the number of Swin Transformers per block, the number of attention heads
per Swin Transformer, the number of channels in the input embedding and the width of the fully
connected layers in a Swin Transformer.

Size #blocks # transformers #heads #channels MLP width learning rate

S 5 5 6 120 240 2.107*
M 6 6 6 180 360 2.107%
L 8 8 6 240 720 1-107¢
H 11 8 8 360 720 5.107°

it is difficult for the naked eye to notice large differences in the quality of the reconstructions. This
indicates that for Gaussian denoising both models already operate in a regime, where improvements
to be made are only marginal.

Next, we describe the experimental details. To obtain Fig. 2] we train the SwinIR for color denoising
from |Liang et al.[(2021)) on the same training sets mentioned in Appx. With {0.1,0.3,1, 10,100}
thousand images from ImageNet. Instead of center cropping the training images to 256 x 256 we
have to crop to 128 x 128 pixels as larger input patches would make it computational infeasible for
us to train large versions of the SwinIR. The largest SwinIR alone took over 2 months to train on 4
NVIDIA A40 GPUs.

We train 4 different network sizes with {3.7,11.5,41.8,128.9} million parameters. We denote the
four network sizes as small(S)/middle(M)/large(L)/huge(H).

The training details and network configurations are as follows. The default SwinIR for denois-
ing (Liang et al., [2021)) was proposed for a training set size of about 10k images, 11.5M network
parameters and was trained with a batch size of 8 for 7' =1280 epochs, where the learning rate is
halved at [0.577,0.75T", 0.875T", 0.93751] epochs. We keep the learning rate schedule but adjust
the maximal number of epochs 7" according to the training set size. Table[I]shows batch size and
maximal number of epochs for every experiment in Fig.|2| We did not optimize over the choice of
the batch size but picked the batch size as prescribed by the availability of computational resources.

See|Liang et al.|(2021) for a detailed description of the SwinIR network architecture. We vary the
network size by adjusting the number of residual Swin Transformer blocks, the number of Swin
Transformers per block, the number of attention heads per Swin Transformer, the number of channels
in the input embedding and the width of the fully connected layers in a Swin Transformer. Table
contains a summary of the settings. When scaling up the network size, we invested in the parameters
that seemed to be most promising in the ablation studies in|Liang et al.|(2021).

The experiments were conducted on four NVIDIA A40 and four NVIDIA RTX A6000. We used
about 13000 GPU hours for the tranformer experiments in Fig.[2] For training the models in parallel
on multiple GPUs we utilize the torch.distributed package with the glow backend, instead
of the faster ncc1 backend, which was unfortunately not available on our hardware at that time.
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Table 3: Benchmarking results for Gaussian color image denoisng. Average PSNR on 4 common
test sets of our best U-Net (46.5M parameters, 100k training images) and three different versions
of the SwinIR (see Appx.[A.3). Values for the original SwinIR and SCUnet are taken from [Liang
et al.|(2021) and Zhang et al.[(2022)). Best and second best performance are in red and blue colors
respectively.

Dataset Noise U-Net SwipIR SCUnet SwinIR SwinIR SwinIR
level original original 10/M 10/L 100/H
CBSD68 25 31.57 31.78 31.79 31.72 31.78 31.84
Kodak24 25 32.78 32.89 32.92 32.97 33.05 33.14
McMaster 25 33.01 33.20 33.34 33.20 33.32 33.44
Urban100 25 32.17 32.90 33.03 32.63 32.90 33.21

B BENCHMARKING OUR MODELS FOR GAUSSIAN IMAGE DENOISING

In this Section, we evaluate the models we trained for image denoising in Section [3]on four common
test sets form the literature and show that the largest SwinIR trained on the largest dataset achieves
new SOTA for all four test sets and the considered noise level.

In Fig. [J]in the main body we compared the performance of the U-Nets and the SwinIRs trained
on subsets of ImageNet for image denoising. The models are evaluated on a test set sampled from
ImageNet. We observed that while SwinlIRs significantly outperform U-Nets, the performance gain
from increasing the training set size slows already at moderate training set sizes for both architectures
equally. However, there is still a moderat performance gain in scaling the models, and thus we expect
the largest SwinIR trained on the largest dataset to outperform the original SwinIR from|Liang et al.
(2021)). Our results in this section show that this is indeed the case.

In Table [3| we evaluate on the standard test sets for Gaussian color image denoising CBSD68 (Martin
et al. |2001), Kodak24 (Franzen, [1999), McMaster (Zhang et al., |2011) and Urban100 (Huang
et al., |2015). We observe a significant performance difference between the best U-Net (46.5M
parameters, 100k training images) and the other transformer based methods. As expected, our largest
SwinlR trained on the largest dataset SwinIR 100/H outperforms the original SwinIR, but also the
SCUnet (Zhang et al.| [2022)) a later SOTA model that has been demonstrated to outperform the
original SwinlR.

We also depict the gains for the SwinIR from just scaling up the network size and then from scaling
up network size and training set size. While this led to a new SOTA for Gaussian image denoising,
note that on the downside training the SwinIR 10/M, which is comparable to the original SwinIR,
took about 2 weeks on 4 NVIDIA A40 gpus, while training the SwinIR 100/H took over 2 months.

C EMPIRICAL SCALING LAWS FOR IMAGE SUPER-RESOLUTION WITH A U-NET

In this Section, we consider the problem of super-resolution, i.e., estimating an high-resolution
image from a low-resolution version of the image. This can be viewed as a compressive sensing
problem, since we can view the super-resolution problem as reconstructing a signal x € R™ from a
downsampled version y = Ax, where the matrix A € R”*" implements a downsampling operation
like bicubic downsampling, or blurring followed by downsampling. As first shown in the pioneering
work of |Dong et al.|(2014) data driven neural networks trained end-to-end outperform classical
model-based approaches (Gu et al.| 2012 Michaeli & Irani, 2013} |Timofte et al., 2013)).

Dong et al.|(2014) reports that for super-resolution with a simple three-layer CNN, the gains from
very large training sets do not seem to be as impressive as in high-level vision problems like image
classification. [Liang et al.|(2021)) plot the super-resolution performance of the SOTA SwinIR model
as a function of the training set size up to 3600 training examples for a fixed network size. When
plotting their results on a logarithmic scale, we observe that the performance improvement follows a
power-law. It is unclear, however, whether this power law slows beyond this relatively small number
of images.
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In this Section, we obtain scaling laws for super-resolution for a U-Net over a wide range of training
set and network sizes, similar as for denoising and compressive sensing in the main body.

Datasets. We use the same training, validation and test sets as described in Appx.[A.T| with training
set sizes N € [100, 100k] images from ImageNet. On top we add two larger training sets of size 300k
and 600k. Instead of center cropping the training images to 256 x 256 we follow the super-resolution
experiments in|Liang et al.| (2021) and train on images cropped to 128 x 128 pixels. We consider
super-resolution of factor 2 so the low-resolution images have size 64 x 64. The low-resolution
images are obtained with the bicubic downsampling function of Python’s PIL . Image package.

Model variants and training. We train the same U-Net model used in Section [3|and described in
Appx.[A.T]but with only one block per encoder/decoder as this resulted in slightly better results than
with two blocks. The network is trained end-to-end to map a coarse reconstruction, obtained through
bicubic upsampling, to the residual between the coarse reconstruction and the high-resolution ground
truth image.

We vary the number of the channels in the first layer in {8, 16, 32, 64, 128,192, 256, 320, 448, 564},
which corresponds to {0.007,0.025,0.10, 0.40, 1.6, 3.6, 6.4, 10.0, 20.0, 31.2} million network pa-
rameters. We do not use any data augmentation, since it is unclear how to account for it in the number
of training examples.

We use the /;-loss and Adam optimizer with its default settings. For all experiments we find a good
initial learning rate with the same annealing strategy as described in Appx.[A.T] However, instead of
picking the largest learning rate for which the validation loss does not diverge, we pick the second
largest, which leads to slightly more stable results. We start the annealing with learning rate of 10~°.
In the few cases, where our heuristic leads to a degenerated training curve, typically due to picking a
significantly too small or too large learning rate, starting the annealing with a smaller learning rate of
1075 resolves the problem.

We do not put a limit on the amount of compute invested into training. To this end, we deploy an
automated learning rate decay that reduces the learning rate by 0.5 if the validation PSNR has not
improved by at least 0.001 for 8 epochs. We stop the training once the validation loss did not improve
for two consecutive learning rates. For training sets up to 10000 images we found that batch size of 1
works best. For larger training sets we use a batch size of 10.

For training set sizes up to 10000 we train 3 random seeds and pick the best run. As the variance
between runs compared to the gain in performance between different training set sizes decreases with
increasing training set size we only run one seed for larger training set sizes.

The experiments were conducted on four NVIDIA A40, four NVIDIA RTX A6000 and four NVIDIA
Quadro RTX 6000 GPUs. We measure the time in GPU hours until the best epoch according to the
validation loss resulting in about 1500 GPU hours for the experiments in Fig. [6]

Results and discussion. For each training set size, Fig. [6[a) shows the reconstruction performance
in PSNR of the best model over all simulated network sizes in Fig. [6(b). Since the curves per
training set size in Fig. [f|(b) are relatively flat, further scaling up the network size is not expected to
significantly improve the performance on the studied training sets. Here are the two main findings:

A linear power law with a scaling coefficient a = 0.0075 holds roughly up to training set sizes of
about 30k images, and for training set sizes starting from 60k this slows to a linear power law with
significantly smaller scaling coefficient = 0.0029. With this slowed scaling law a training set size
of 1.6B images would be required to increase performance by another 1dB (assuming the relation
32.05N0-0029 persists, which is likely to slow down even further).

While slowing already at a few tens of thousands of training images, the scaling laws for super-
resolution do not slow as early as those for denoising and compressive sensing (see Fig[I)). This could
be partially due training on image patches of size 128 x 128 as opposed to size 256 x 256 used for
denoising.
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Figure 6: Empirical scaling laws for super-resolution with a U-Net. The curve in (a) contains the
best reconstruction performances per training set size over the different network sizes depicted in (b).
Colors in the plot on the left and right correspond to the same training set size. While the scaling
laws for super-resolution do not slow as early as those for Denoising and Compressive sensing (see
Fig, they are likely to slow further at a larger number of training examples

D ADDITIONAL EMPIRICAL SCALING LAWS FOR GAUSSIAN DENOISING

In this Section, we extend our results for Gaussian denoising with a U-Net from Section [3] with
two additional setups. Section considers fixing the noise sampled in each training epoch and
Section [D.2]investigates reducing the noise level from o, = 25 to o, = 15.

D.1 EMPIRICAL SCALING LAWS FOR DENOISING WITH FIXED NOISE

Our main results for denoising with a U-Net trained end-to-end discussed in Section [3| follow a setup
in which the noise per training example is re-sampled in every training epoch. We choose this setup
since it makes the best use of the available clean images. However, fixing the noise is also interesting
since it is closer to a denoising setup in which the noise statistics are unknown, which is the case in
some real-world noise removal problems. In such a problem, we would be given pairs of noisy and
clean image, and could not synthesis new noisy images from the clean images.

In this section, we follow the same experimental setup from Appx. to simulate the performance
of a U-Net for denoising with fixed noise for up to 100k training images (see Fig. [7). Compared
to re-sampling the noise, we observe a drop in performance of about 0.3dB for small training set
sizes. The performance difference at 10k images is reduced to 0.2dB resulting in a slightly steeper
scaling law for moderate training set sizes. However, at around 10k training images the scaling of
the performance of training with fixed noise also starts to flatten as it approaches the performance of
re-sampling the noise during training. This indicates that if the noise statistics are unknown, more
data is required to achieve the same performance as when they are known. However, in both cases
the scaling with training set size slows already down at moderate training set sizes.

D.2 EMPIRICAL SCALING LAWS FOR DENOISING WITH A SMALLER NOISE LEVEL

Our results for Gaussian denoising in Section [3|are for a fixed noise level of o, = 25. In this Section,
we repeat the experiments for Gaussian denoising with a U-Net described in Appx.[A.T| with smaller
noise level of o, = 15, in order to see how the scaling laws change. The results for both noise levels
are depicted in Fig.

We observe an improvement of about 2.3dB in PSNR, which is expected since the irreducible error
decreases for smaller noise levels. We also observe that the scaling coefficient for the smaller noise
level o, = 15 (i.e., o = 0.0026) is slightly steeper than that for the larger noise level o, = 25 (i.e.,
a = 0.0019). This coincides with the qualitative behavior of the curves for subspace denoising in
Figure 3] Apart from that the curves are qualitatively similar, in that a initially steep power law is
replaced by a slower one at around 6000 training images.
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Figure 7: Empirical scaling laws for denoising with fixed noise. The colored curve in (a) contains
the best reconstruction performances per training set size over the different network sizes depicted in
(b) for fixed noise realizations during training. Colors in the plot on the left and right correspond to
the same training set size. The gray curve is taken from Fig. [T[a) and shows the performance, when
the noise is re-sampled during training. The initial drop in performance due to fixing the noise during
training reduces as the training set size increase resulting in a slightly steeper scaling compared to
re-sampling the noise. Yet, we expect also the scaling of the performance of training with fixed noise
to flatten as it approaches the performance of re-sampling the noise.
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Figure 8: Comparison of empirical scaling laws for denoising with noise level 15 and 25. The
colored curves in (a) and (c) contain the best reconstruction performances per training set size over
the different network sizes depicted in (b) and (d) for noise level 15 and 25 respectively. Colors in the
plot on the left and right correspond to the same training set size. The curves in (c),(d) are taken from

Fig. [T[a).(b).
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Figure 9: Empirical scaling laws for denoising with a smaller patch size. The colored curve in
(a) contains the best reconstruction performances per training set size over the different network
sizes depicted in (b) for training patches of size 128 x 128. Colors in the plot on the left and right
correspond to the same training set size. The gray curve is taken from Fig. [[(a) and shows the
performance for training patches of size 256 x 256. Note that the x-axis shows the number of training
patches of size 128 x 128. Hence, one patch of size 256 x 256 is worth 4 patches of size 128 x 128.
We see that in the regime of large training set sizes larger patches performs better than more but
smaller patches.

D.3 EMPIRICAL SCALING LAWS FOR DENOISING WITH A SMALLER PATCH SIZE

Our results for Gaussian denoising in Section [3| with a U-Net were obtained for a constant training
patch size of 256 x 256 pixels across all network and training set sizes. In this Section, we repeat the
experiments for Gaussian denoising with a U-Net described in Appx.[A.T|with a smaller patch size of
128 x 128 pixels.

The results for both patch sizes are depicted in Fig.[9} We observe that in the regime of large training
set sizes, that we are primarily interested in, training on N patches of size 256 x 256 is more beneficial
than training on 4N patches of size 128 x 128. We therefore focus on patch size 256 x 256 in the
main body of this work.

E UNDERSTANDING SCALING LAWS FOR DENOISING THEORETICALLY -
SUPPLEMENTARY RESULTS

In this section, we provide additional details on the statements in Section [5]on understanding scaling
laws for denoising theoretically by studying a linear subspace denoising problem theoretically, and
provide additional numerical results.

Recall that we consider a linear estimator of the form fw(y) = Wy, and measure performance in
terms of the expected mean-squared reconstruction error (normalized by the latent signal dimension
d):

1
R(W) = —E [ Wy - x|3]
1 o?
= SI(W = DU} + = [W]5. ()

Above, expectation is over the joint distribution of (x,y), and the second equality follows from using
that x = Uc, where ¢ ~ N(0,1) is Gaussian, and y = x + z, where the noise z ~ N(0, o21) is
Gaussian.

The optimal linear estimator. The optimal linear estimator (i.e., the estimator that minimizes
the risk defined in equation (I)) is given by W* = —L,UU?. This follows from taking the

1+02
gradient of the risk (T)), setting it to zero, and solving for W. The estimator projects the data onto
the subspace and shrinks towards zero, depending on the noise variance. The associated risk is
R(W*) = 02/(1+ 02).

24



Published as a conference paper at ICLR 2023

Early-stopped empirical risk minimization. We consider the estimator that applies gradient
descent to the empirical risk

N
2 2
LW) =) Wy, —xill; = [WY = X]p, @
i=1
where X, Y € R™*¥ contain the training examples as columns, and early-stops after k iterations for
regularization.

We next discuss the early-stopped estimator W* in more detail. Fig. numerically demonstrates the
regularizing effect of early stopping gradient descent, where W = XY is the converged learned
estimator (see Appx.|[G| Eq. (3)). We see that regularization is necessary for this estimator to perform
well.

We next discuss Theorem [2] and the associated assumptions in more detail. Theorem considers
the following regime: (i) the number of training examples obeys (d + no?)log(n) < N and (ii)

N < &d/a?, for an arbitrary £, and (iii) N log(N) < n. For this regime, the theorem guarantees that

the risk of the optimally early-stopped estimator obeys, with high probability,
na?) gt no)log(n) [+ on)logn,

N

R(Wkert) < (8 4 26)R(W™) + ¢ (1 +— N

3
The theorem looks similar to that for the PCA estimate (Theorem E]) in that the risk is a constant
away from the optimal risk, with an error term that becomes small as (d + no?)/N becomes small.
However, the error bound does not converge to R(W™*) as the number of training examples, N,
converges to infinity. This is probably an artifact of our analysis, but it is unclear, at least to us, how
to derive a substantially tighter bound. In our analysis (see appendix [G), we balance two errors: One
error decreases in k and is associated with the part of the signal projected into the subspace, and the
second error increases with k£ and is associated with the orthogonal complement of the subspace.
We choose the early-stopping time to optimally balance those two terms, which yields the stated

bound (3).

Now with regards to the assumption: Assumption (iii) N log(N) < n means we are in the high-
dimensional regime; we think this is somewhat closer to reality (for example for denoising a 512 x 512
image, this would require the number of training examples to be smaller than 250k), but we can
derive an analogous bound for the regime N log(/N) > n, where the number of training examples is
larger than the ambient dimension.

Assumption (i) (d + no?)log(n) < N is relatively mild, as it is necessary to being able to somewhat
accurately estimate the subspace; this assumption is also required for the PCA estimate.

Assumption (ii) N < £d /o2, for an arbitrary &, is not restrictive in that £ can be arbitrarily large,
we make this assumption only so that the theorem can be stated in a convenient way. However,
assumption (ii) reveals a shortcoming of Theorem 2] which is that we cannot make the bound go to
zero as N — 00, since increasing £ increases one term in the bound, and decreases another one.

E.1 ADDITIONAL NUMERICAL SIMULATIONS

In this Section we provide further numerical simulations for the PCA subspace estimator and the esti-
mator learned with early stopped gradient descent discussed in Section 5] Theorem[Ijand Theorem2]
Similar to Fig. 3} Fig.|11/shows the risks R(W"e»t) and R(Wpca) as a function of the number of
training examples N for varying values of the signal and ambient dimension d and n, while fixing
all other model parameters. In the power law region we fit linear power laws with negative scaling
coefficients «. We observe steeper power laws (larger |«|) for smaller ambient dimensions n and
larger signal dimensions d. Also the scaling coefficients of the learned estimator consistently excel
the coefficients from the PCA estimator.

F PROOF FOR THEOREM I} RISK BOUND FOR PCA SUBSPACE ESTIMATION

We provide a bound on the risk of the estimator f(y) = Wpcay with Wpea = +UUT and

T = H% Recall that U € R"*? contains the singular vectors corresponding to the d-leading
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Figure 10: Effect of early stopping the learned estimator. The risk of the early stopped learned
estimator W¥e»* and converged estimator W as a function of the training set size N measured in
simulations. While both estimators approach the optimal performance R(W™*) for large N, early
stopping is critical for performance in the regime N =~ n. We consider the setup d = 10,n =
100, o, = 0.05. Error bars are over 5 independent runs.
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Figure 11: Additional numerical results for subspace denoising. Left and right show the simulated
risk of the early stopped empirical risk minimizer W¥ert and the PCA estimator Wpc, as a function of
the training set size V. In the upper part we fix the signal dimension and noise level d = 10,0, = 0.1
and vary the ambient dimension n. In the lower part we fix the ambient dimension and noise level
n = 1000, 0, = 0.1 and vary the signal dimension d. We fit linear scaling laws ~ N to the power
law regions. Similar to Fig. [3|we observe that with varying model parameters the scaling coefficients v
change. Further, the learned estimator exhibits steeper scaling than the PCA estimator over all settings.
Error bars are over 5 independent runs.
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singular values of YY . We define U, € R4 a5 the orthogonal complement of U. Starting
from the risk expression given in equation (I)) we obtain

1
R(Wpca) = =

i W e L N
= dH (r—1)OOT + U, 07) UH + 7202
1
:g(771)2HUTUH +7HUEUH + 7202
1 1~ 2
= (r—1)? < - HUTUH )+HUqu + 7207
d F
— (1 (r—1)? HUTUH (r —1)2 + o272
_1+202 1 UH Lol
~ (1+02) UL 1 1+02
(1) 14202 || ~p o2
< 2% g UH :
= (1+o22ll +1+o§
(i) 14202 (d+no?)log(2n) o2
- C(1+02)2 N 1+ 02
(d+no?)log(n) o?
= N 1+o2 @
Here inequality (ii) follows from Section equation (34) and holds 1n the regime (d +
o2)log(n) < N, for some constant ¢ and with probability at least 1 — —3e 4+ e

This concludes the proof.

G PROOF OF THEOREM [2 RISK BOUND FOR EARLY STOPPED EMPIRICAL
RISK MINIMIZATION

This section contains the proof of Theorem 2] The theorem characterizes the performance of the
learned, linear estimator W* that is obtained by applying k iterations of gradient descent with
stepsize 7 starting at WO = 0 to the loss L(W) in equation @])

We start by deriving a closed form expression for the estimator W¥. The gradient of the loss is
VwL(W) = (WY - X)YT,
and thus the iterations of gradient descent are
W = Wk — p(WhY — X)Y7
=WHFI-nYY") +9XY".

LetY =U,%, VI e RN and X = U, X, V] € R"*" be the singular value decompositions
of Y and X respectlvely and assume that the smgular values are non-zero and descending, i.e.,

Oy1 > 0y2 > .... Wehave, with Wy = 0and k > 1 that
k—1
WF=nXY") (I-nYY")
£=0
k—1
=nXV,%, U7 (Z(I nu,x2u’) )
=0

=XV,D, U],
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where we defined D, € RV*Y as a diagonal matrix with i-th diagonal entry given by (1 — (1 —
noz ;)*) /oy, and where we used the geometric series to obtain

k=1 2k
S0t = )
=0 N9y,i

Note that for & — oo and choosing 7 such that 1 — 770571- < 1 for all 7 we get

W™ =XV, %, U = XY 3)
Evaluating the risk from equation (T) at the estimator W* gives
k) T _ 2, 02 T||2
R(W*) = f|| (XV,DU, —DU|J, + —|[XV, DU, ||, (6)

To shorten notation we define

(d + no?)log(n)
N

no?log(n)

—

Y= @

P = (®)

We next provide bounds for the two terms on the right-hand-side of equation (6)), proven later in this
section.

Bound on the first term in equation (6): In Section|G.1|we show that provided N log(N) < n,
9d < N and (d + no?)log(n) < N, for some constant ¢, with probability at least 1 — 2¢=V/18 —

3nT10 —3e=d — e — N 26_”/2,thefollowingboundholds:
1 | ¢ &
EH(XVkaU;F UHF (0 N+ Y2 ar) D o (1—(1—no?, EZ (1—no2,)?
i—1 Ty i—1
c N o2
T, max 2
+E¢7,Z T(l—(l—na D)2+ e ©))
i=d+1 Y,r

Bound on the second term in equation (6): In Section|[G.2] we show
o2
l

N
Z J’”“ (1—no2;)k)2 (10)

a \N%

o? 2
XV, DU [, <

With equations (9) and (T0) in place and by splitting up the sum in (T0) we can bound the right hand
side of equation (6)) as

d d
1 1 c
R(Wk) g (CO n+C’YUx max +U§Ur max ZT 1 - (1 7770'3;1 gz 1 *UU
=1 Y, =1
c N g2
-l-c*y—&-g(i/w—kog) P R G L b (11)
i=d+1 Yt
Since the singular values of Y are in descending order o, 1 > 0, 2 > ..., this is, for any iteration k,
bounded as

X 1
R(Wk) S (CU n+ C,yo’a: max + Ugo‘i,maz) O'T + C<1 - 770-5,11)2]C

y,d
Moo
+C’y+ (1/)7+U ) :rmax Z O'T(l_ (1_770-73,i)k)2' (12)
i=d+1 Y
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k

This is a good bound if we’re at an iteration sufficiently large so that (1 — 7703,1) is small.

In (12) we have (1 — 77(712/’ 2)*" that is decreasing in the number of gradient descent steps & and also

decreasing in the stepsize 7 as long as 770571' < 1fori=1,...,d. Further, we have (1—(1 —770%)’“)2
that is increasing in k and also increasing in 7). The first term corresponds to the signal that we want
to fit sufficiently well, whereas the second term corresponds to the noise from which we want to fit as

little as possible. Hence, there exist optimal choices for k, 7 that trade-off the sum of the two terms.

In our setup the d leading singular values of Y corresponding to the signal are large and concentrate
around N (1 + o2), while the remaining singular values are small and concentrate around No?2.
Hence, we can apply a single step of gradient descent k = 1 to already fit a large portion of the signal,
while minimizing the portion of the noise that is fitted. For that we choose the stepsize 7 as large as
possible such that 7705,1‘ <1lfor:=1,...,dstill holds.

Next, suppose the following events hold

&1={0pa11 SN (02 +e(l+02))} (13)
E={o) ;> N1+o2)(1-¢)} (14)
& = {07 max < 4N} (15)
Es={o) , <NA+e)(1+02)} (16)
In Section[H.4] we show that
P[&] > 1—2e7 N8, (17)

In Section we also show that, provided that N > 3Ce~2(d + o2n) log n, for some constant C
and € € (0,1),

P&],P[&],P&]>1—eb—e ™ —n" (18)

We next bound the terms in equation (12)). As discussed, we set k£ = 1 and the stepsize as large as
possible, i.e. n =1/ (N(1+¢€)(1+02)) < 1/07 |, which holds on event £,. Finally, on event &;
we obtain

1 e\ 2
e(l — 7705,(1)% <c(l-nN(1+o2)(1—e)=c (1 - Z) < cé?.

Next we bound the sum in equation (T2). Towards this goal, we upper bound each term in the sum
with its linear approximation at the origin. We compute the derivative at the origin as

.01
;1_13% 8715(1 — (1=n9)*)* = (nk)*,
Thus, we have
N N
! 0% +e+eo?
— (1 —-(1-— 24k2< k222'<N]€222 < z po < 2 9
Z_:Zd;rl ai’i( (1 =n0y;)")” < Z_:Zd;rl MOy > M 0yd+1 = T+ 2(l4 022 = c(os + 2e),

on the event & and for 02 <1,k =1landn =1/ (N(1+€)(1 + o2)). Putting this together and on
the events &2, &5 we get the bound

o? c AR
RWF) <875 ey + el =nog )™ + 5 (07 + ) N 3 (1= (1= noy)")?
Z i=d+1  Y?
2 2 2

o2 5 ¢N (oinlogn (d+noZ)logn 9 9
< R
_81+U§+c*y+ce + 7 ( N N +o: ) (0F +2¢)

d 1 d 31 2 IN

< 8R(W™) + (L4t noz) log(n) m;[) 81 | e 4o <(( i ng;; °8n)” | Uzd ) (02 + 2¢).

(19)
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The bound holds provided 3Ce2(d + o2n)logn < N and N log(N) < n, for some constants ¢, C
and with probability at least 1 — 2e=N/8 — 2e=N/18 _ 5p=9 _5e=d _ 2= — ¢~ N _ 2¢7 /2,

To maximize the benefit from early stopping we set € as small as possible with respect to the condition
3Ce 2(d+ o?n)logn < N

2
. \/3C(d+ozn) logn. 20)

N
With that equation (T9) becomes

R(WH) < SR(W™) _’_C(d—l—nof)log(n) e (((al—i—na?)logn)2 N O’EN) <U2 N (d+ o2n) 10gn>

N dN d i N

9z

* no’? 2N 2
=8R(W*)+cey+cly 1+7 logn + 7 (02 + /)

2 2N
<8R(W™) + ¢y <1 + ng) logn + cazd (02 +7). 1)

We now consider the regime where N < ¢ U%, for a numerical constant &, to simplify the statement
further. For this regime, we have

2

z

n;’ ) logn + Cfﬁ

ROWH) < ROW*)(8 +26) + (1 +

This concludes the proof of Theorem 2]

G.1 PROOF OF EQUATION (@)

1
In this Section, we derive a bound for p H (XVkaUg — I)UH; the first term in (6). To this end,

we introduce further notation. Recall that Y = UyZyvg e RN and X = U, X, VI ¢ RN
are the SVDs of Y and X respectively. All derivations below hold regardless of whether N < n
or N > n. Exemplarily, we will show them for N < n. Thus, U, € RN 3, € RVXN,
V, e RN and U, € R4 3, € R4V, € RV*d,

Let Uy,U, € R™*4 be the d leading left singular vectors of Y and X (note that U,y = U,),
let Uy, Uy € R™*"—d pe their orthonormal complements. Let U, = [Uy; Uys] € R™*" and

fJI = [Uz1  Ujge] € R®*™. Analogous definitions can be made for the leading right singular
vectors of Y and X.

Recall that Dy, = diag (..., 1-(01- no2 ) /oy ...) ERNN Let Dy = [Dg 0] € RVX"
and define Dy; € R%*? and Dy, € RNV —4xn—d gych that

- D,y O
D, = - . 22
k { 0 Dkz] (22)

With these definitions in place we can write

|xv,D,U} ~pU|, = [0} (xv,D, U] - DU, 07|

= |(U]xXV,D, -T)ULU

F

_ ({UZ}XV.MI:)M UZ}XVsz:)M} B {I O}) {U;U}
U XVyiDir U XVieDyo 0 I/|U.,U

F
< |5 xV, D - DU U
n HU;XVyll”)klU;UHF
R 0
+ H (UZXVyQDkQ — [ID u),Uu (23)
F
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The first term in (23) is bounded in the regime n > N, for some constant ¢ and with probability at
least 1 — 2e~"/2 by

M&

d
1
— (1= (1 —noy k)2 + 2(1_77‘75,@)%-

=1 Yt =1

H(Uglxvylf)k1 - I)U;QUHF < co/n

(24)

See Section [G.1.1] for a proof. The second term in (23) is bounded for some constant ¢, with
probability at least 1 — 2n 710 — 2¢=¢ — ¢~ and in regime (d + no?)log(n) < N by

d 2
™ O-x max
HngxvleklU;UHF <eviy Y -1 no2 k)2, (25)
=1 Y,
See Section|[G.1.2]for a proof. The third term in 23) is bounded for some constant ¢, with probability
at least 1 — 2e~NV/18 — 3710 _3¢=d _ ¢=m _ ¢=N and in the regime (d + no?)log(n) < N,
Nlog(N) <mnand9d < N by

N 2
~ 0 (o)
H (UgXVy2Dk2 - [I}) U;UH <ec,| vy Z 02 (1= (1 =nol)E)? +c\/dy. (26)
F i=d+1 Yl

See Section[G.1.3|for a proof.

Combining those results we can bound equation @) in the regime N log(N) < n, 9d < N and
(d —|— no?)log(n) < N, for some constant ¢ and with probability at least 1 — 2¢~ /18 — 310
Bemd — e — =N _9e7n/2 44

d d
1 T 2 cafn 1 c
-lxv, DUy -nUlf, < (d d o mmv) ; JQL — 10y + 5 ; (1-nop,)?
o2
zm,am 2
+ <y Z 25t (L= (1= n03,)")? + e, 27
i=d+1 Yt

This concludes the proof of equation (9).

G.1.1 PROOF OF EQUATION (24)
In the regime n > N, for some constant ¢ and with probability at least 1 — 2e~"/2, the first term in
(23) is bounded by

. (0 _
H(Ujlxvlek1 . I)U;UHF < HU§1U;C12x1V£1Vy1Dk1 . IHF

IN

HUZJ]UQ:IEQ:lelVylf)kl — ZylﬁMH =+ }Eylf)kl — IHF

< U UaBaVE Y, = 20 ||Daa |+ D -1

(i d d

i) 1
< co/n Z 07(1 —(1- naz’i)k)Q + Z(l — ngz’i)%.

i=1 Y i=1

(28)

Inequality (i) uses HU;UH < 1. To obtain inequality (ii), we used that D) = diag(...,(1 —
(L=no2 )" /0oy, ..) € R and that

||U lezazlv Vyl - 2y1|| é HU:clzzlvgl - Uy12y1V§1||
< U2 VL - Uz, V]|
=z
< co\/n. (29)
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Here, the last inequality holds in the regime n > NN, for some constant ¢ and with probability at least
1 — 2¢~"/2 and follows from Section equation (64).

G.1.2  PROOF OF EQUATION (Z23)

For some constant ¢, with probability at least 1 — 2n ™10 — 4¢=¢ — ¢™™

no?)log(n) < N the second term in (23) is bounded by
|ULx VDU U] < [ULUA [VEV UL U] 150Dl |,

and in regime (d +

0| 15l B

(i1) d 2

< oA Z@(i—(i—na IR, (30)

i=1 Yl
Here, inequality (i) follows from HVaTﬂVyl || < 1and ||U51U|| < 1. For inequality (ii) we used
that Dyy = diag (..., (1= (1 —no2,)*)/oy,...) € R and the bound on ||UT, U, || from

Section[H.1] equation (33) that holds in the regime (d + no?)log(n) < N, for some constant ¢ and
with probabihty atleast 1 — 2n 710 — 2¢=4 — ¢,

G.1.3 PROOF OF EQUATION (26)

For some constant ¢, with probability at least 1 — 2e~N/18 — 3710 _3¢=4 _ =" _ =N and in
the regime (d + no?)log(n) < N and 9d < N we obtain

) 0] o B U7, XV,,,D, UL U
‘(UyXVyQDkQ H)U‘WU F Hi 2XV 2Dy U, U — UL U

< "Ulemlzwlvmlvy2Dk2Uy2UHF
+ HUZ"QUIIEI1V51V92]~)]€2U52UHF

+Vd||ULU||

()
< (VA + V8 Zar]| e +ev/dy

ii 2
(S) c, | ¥y Z ij’;nm (1= (1=noz k)2 + cv/dy. (31)
i=d+1 Ysr

Here, inequality (i) follows from ||UZ, U1 || < 1 and the bound in Section equations (34), (33)
and (36) and holds in the regime (d + no?)log(n) < N, Nlog(N) < n and 9d < N, for some
constant ¢ and with probability atleast 1 — 2e~N/18 — 3,710 _ 3¢~ _ ¢~ _ =N Inequality (ii)
holds in the regime (d + no?)log(n) < N, which implies 7 < 1 and we used the definition of Dy
from equation (22).

G.2 PROOF OF EQUATION (I0)

Recall that Dy, = diag (..., (1 — (1 — 5oy ;)") /oy, . ..) € RNV*N. The second term in equation ()
can be bounded as '

2 2
21XV, DUy ||} = Z||U.E, VIV, DU

o? T
< F eramHV v || ”Dk”F
‘75 3mm" 2 \k\2
< ggj o (= = )y (32)

where we used that ||VxT.Vy ||2 < 1 and the definition of Dy, from equation (22).
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H AUXILIARY PROOFS

In this Section we provide a summary of auxiliary proofs that are used to prove the main results in
Sections[Hand

H.1 APPLYING THE SIN-THETA THEOREM TO BOUND THE DISTANCE BETWEEN SUBSPACES

In this Section, we use the following variant (Cai et al., 2015, Prop. 1) of the sin-theta theorem (Davis
& Kahanl [1970) to bound the distances between subspaces occurring in the proofs in Section [Fland|G]

Proposition 1. Let Q and Q be n X n symmetric matrices. Let r < n be arbitrary and let U and U
be formed by the r leading singular vectors of Q and Q. Then

2
Q) —0:4+1(Q)

oo
or(

Q—QH. (33)

Recall that Y = U,X,V]I' € RN and X = U, %, VL € R™ are the SVDs of Y and
X respectively. Let Uy;,Uy; € R™*? be the d leading left singular vectors of Y and X, let
Uyo, Uy € R"™*"=4 be the orthonormal complements. Let U, = [Uy;; Uy € R™™™ and

sz = [Uz1  Uge] € R™ ™. Analogous definitions can be made for the leading right singular
vectors of Y and X.

We start by applying Proposition [I|to bound the distance between the subspaces spanned by the d
leading left singular vectors Uy, of Y and the subspace model U as

(Z) \/c(d + no?)log(n) N c(d +no?)log(n)

[UT 0| = [0, U, - U

(%)
<

1
’NYYT - UUut -2

N N
(id) 2
g C\/(d + 77,0';[) log(n)7 (34)

where inequality (i) follows from Proposition |1|and inequality (ii) holds with probability at least
1 —n"10 —2¢=9 4 ¢~ and follows from Section equation {@3). Inequality (iii) holds in the
regime (d + no?)log(n) < N.

Next, we establish a bound for the distance between the subspaces spanned by the d leading left
singular vectors of X and Y. We have that

HUg?UﬂH = ||Uy1U51 - leU%H
< || U, U}, — UUT|| + ||U, UL, — UUT|

@1

1
< ||l=YYT -UU”? - 21 —xXXT —uu”
=N Tz N

N

@ \/C(d +no2)log(n)  c(d+no?)log(n) L [edlog(n) | cdlog(n)

- N * N N N
< \/c(d + no2)log(n) n c(d 4+ no?)log(n)
- N N
(i) 2
z C\/(d + nJ;[) log(n) ’ (35)

where inequality (i) follows from Proposition[I]and inequality (ii) holds for some constant ¢ and with
probability at least 1 — 2n 710 — 2e~¢ 4+ ¢~ and follows from the results in Sectionequations
(@3),(@6). Inequality (iii) holds in the regime (d + no?)log(n) < N.
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Last, we establish a bound for the distance between the subspaces spanned by the right singular
vectors of X and Y. We have that with probability at least 1 — 2e=N/18 — 2510 _g=n _ =N _ o—d

Vi Vil = [Va Vi = Vi Vi |
Y'Y - XTX]|

Y e HYTY XTX||

L oT L ~ATyT
c NZ ZH+QCHNC U ZH

1
fzzT — 0’1

‘ T efo?1]] + 2

(uz) 47, 2]
[enod og cna og n) + co. Tog(N)
/nlog 2nlog (n) 02N log(N)?
+c N

(“’) nlog nlog(n) 02n10g( )
ca +c N

[no? log (36)

Inequality (i) follows from Proposmonl Inequality (i) follows from the fact that 0320’ a+1 = Oand
that LN < Uid holds in the regime 9d < N, with probability at least 1 — 2e~N/18 and for some
constant ¢ (see Section equation (63)).

Inequality (iii) holds for some constant ¢ and with probability at least 1 —2n =10 — ™" — =N — =4
and follows from the results in Section[H.2] equatlons @ @I) Inequality (iv) holds in the regime
Nlog(N) < n. Inequality (v) holds in the regime noz log(n) < N. To abbreviate notation from
now on we define

1
—CcTuTz
woTuZ|

no?log(n)

Y= 2 (37)

H.2 BOUNDING A SUM OF INDEPENDENT RANDOM MATRICES

The Matrix Bernstein inequality (Oliveira, [2010; [Tropp, 2012) can be used to bound a sum of
independent, bounded and centered random matrices. We state the theorem below and then show
how we applied it to bound several terms occurring in Sections[F and

Theorem 3 (Matrix Bernstein). Let Sq,...,S,, be independent, centered random matrices with
common dimension d X d, and assume that each one is uniformly bounded

E[Sk] =0 and ||Sk|| < L foreachk=1,...,n

Introduce the sum
n
2-3s.
k=1
and let v(Z) denote the matrix variance statistics of the sum:

v(Z) = max {|[E [22"] |, |E [2"Z]| }
= max{ éE [SkTsk}

Then with probability at least 1 — e~ and § > 0

n

Y E {sksﬂ

k=1

} |

1Z]| < L(5+log (2d)) + /20(Z) (5 + log(2d)).
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Recall our signal model to be Y = X + Z = UC + Z, with entries i.i.d. as ¢; ; ~ N(0,1) and
zij ~ N(0,02) and dimensions Y, X,Z € R"*Y  C € RV The subspace matrix U € R"*¢
has orthonormal columns.

We start by applying Theorem [3|to establish the following bound. With probability 1 — N 10 —

e~ N — ¢~ and for some unspecified numerical constant ¢ we have

%HCTUTZH < co. log(N). (38)

Proof of equation (38): We define Z = UTZ € R™*¥ . Note that the entries in Z are independent
and identically distributed like the entries in Z, i.e., Z; j ~ N(0, 02). Next we check the conditions

of applying Theoremlto bound HCTZ H . Note that

d
Cc’z = Z cizl, (39)

with c;, z[i] € RY being the rows of C, Z. Since c; has zero mean,
E [cz ] =0,
forall7 = 1,...,d. Further, we have
leiz|| = max [leziwll,

= max [z wl||eill,

wll,=

_ HZZH2 H H
124
= 1zl lleill
< co,N, (40)
where the inequality follows from equations (57),(56) and holds with probability at least 1 —e N e,
Finally we need to compute the matrix variance statistic v(CTZ). Note that
E [cl T(c;z T)T} E [Z] Zicic;” |
=02NI
—E |(i#]) ein] | @1)
and therefore
- 4 T d T
v(CTZ) = max { S E [cizgf(cizf) ] A E [(ciziT) cz-zﬂ }
i=1 i=1
= o2dN. (42)

With equations @@D in place we are ready to apply Theorem [3]to obtain with probability at least
1— N7~ e~ _ ¢~ and some constant ¢
co2dlog(N)

1 Ty1T
L eTuTz) </

+ co, log(N)

< co, log(N), (43)
where the last inequality holds since d < IN. This concludes the proof of equation (38).

In the remainder of this Section we apply the example in [Tropp, (2015} Sec. 1.6.3) that illustrates
how to use Theorem E] to bound the distance between sample and true covariance matrices. With

probability at least 1 — 0 and an unspecified numerical constant ¢ we have
N
1 r r ¢B|E[aa ][ log(n)  cBlog(n)
N ;,1 a;a;" — E [aa ] < \/ N + N ) (44)
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where we assume that the /5 norm of the random vector a € R™ is bounded ||a||§ <B.

In the following we show how to apply ([@4) to establish the following bounds. With probability at
least 1 — n~1% — 2e=¢ + ¢~ and for some unspecified numerical constant c

1 N
v vy —Elyy’] ‘
=1

< \/c(d + no?)log(n) n c(d + no?)log(n) .

1
= HNYYT O S |

45
N N (45)
With probability at least 1 — n =19 — ¢~ and for some unspecified numerical constant ¢
1 1
T T T T
Nzlxixi —E [xx7]|| = HNXX - Uu
cdlog(n)  cdlog(n)
. 46
< N T n (46)
With probability at least 1 — n~'% — e~ and for some unspecified numerical constant ¢
1 1
T T T 2
N§zizi —E [zz ] = HNZZ —o,1 ’
cnotlog(n)  cno?log(n) 47)

- N N

In the notation of the general example in (@4)), the proofs of @3)-[@7) consist of deriving expressions
for [|a]|; < B and ||E [aa”] | respectively.

Proof of equation @3): We have
||y||§ =clc+22"Uc+ 2"z
< (54 V5)d + bno?
< c(d+no?), (48)

for some constant ¢ and where the first inequality holds with probability at least 1 — 2e~% — e ™" as it
is shown in Section[H.3] Further, we have

|E [yy"]|| = [[UUT — o2 = 1 + o2 (49)
Since practical noise levels satisfy Uz < 1, there exists some constant ¢ such that
IyII5]|E [yy™]|| < e(d +no?), (50)

with probability at least 1 —2e~¢ —e~". Inserting (48)) and (50) in the general form in (@4)) concludes
the proof of equation {@3).

Proof of equation @6): We have
||x||§ =cle<cd (51
for some constant ¢ and where the inequality holds with probability at least 1 — e~¢ as it is shown in
Section Further, we have
B o] = [[OTH]| = 1. (52)
Inserting (31) and (32) in the general form in (@4) concludes the proof of equation (46).

Proof of equation @7): We have
|23 < eno? (53)

z)
for some constant ¢ and where the inequality holds with probability at least 1 — e~ as it is shown in
Section Further, we have
|E [zz"]| = o2 (54)

Inserting (33) and (34) in the general form in (@4) concludes the proof of equation (47).
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H.3 TAIL BOUNDS FOR INNER PRODUCTS OF GAUSSIAN VECTORS

Recall that ¢ ~ NV(0,1) € R? and z ~ NV(0, 02T) € R™ are the columns of C, Z respectively. Also
U € R™*? has orthonormal columns. In this section we state some relations on the concentration
of the inner products between those vectors. The chi-squared distributed c¢'c can be bounded with
probability at most e~ as

cfe>d+2vat +2t. (55)
Substituting ¢ with the signal dimension d gives
cl'c>5d, (56)
with probability at most e <. Using the same result we can write

T
z'z = 0’2" 7z > 5no?, (57)

with probability at most =™ and where z’ ~ N(0, I). Next we show that with probability at most
2¢~d

z"Uc > V/5d. (58)

To this end, note that for any (deterministic) vector ¢ we have z” Uc ~ N/ (0, ||c||§), and we apply a
simple tail bound for Gaussian random variables to get

z"Uc > llcll5t, (59)

with probability at most et Ttis straightforward to see that substituting ¢ with v/d, applying o)
to bound ||c||, and combining the results with a union bound results into the bound (38). We can
combine the results from this section to bound the sum

clec+22"Uc+ 2"z > (5+ V5)d + 5no?, (60)
with probability at most 2e~% + e~ ™.

H.4 BOUNDING THE EXTREME SINGULAR VALUES OF GAUSSIAN RANDOM MATRICES AND
EMPIRICAL COVARIANCE MATRICES

In this Section we state results for the extreme singular values of some of the matrices occurring in
Sections[Fland[G] Specifically, we establish equations (T7),(I8).(29) and (36) (ii).

A standard deviation inequality for the extreme singular values of some matrix A € RM*™ with
independent and identically standard normal distributed entries implies that (Rudelson & Vershynin,
2010, equation (2.3))

VM = Vm =t < 0pmin(A) < Omaz(A) < VM + V/m + t, 61)

with probability at least 1 — 2e~t"/2 for t > 0.

We start with the largest singular value 0 yqz 0f the feature matrix X € R™* N Recall that we have
X = UC with orthonormal U € R"*?¢ and C € R¥*Y with i.i.d. entries ¢; ; ~ N(0,1). Hence,
the singular values of UC are the singular values of C.

Applying equation (61)) to the matrix C under the assumption that the hidden signal dimension d and
the number of training examples N fulfill 4 < N and choosing t = N /2 we obtain

N
ax,mamgx/ﬁﬂ/ﬂg

=2VN, (62)
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which holds with probability at least 1 — 2¢~™/%. This establishes equation (T7). For o i, the
smallest non-zero singular value of X we have 0 1min = 03,4 = 0¢,q. In the regime 9d < N and

choosing t = v/N /3 we obtain

VN - m_ﬁqmm
Uy \F ¥

- - < Uz min

3
E\/N < G mins (63)

which holds with probability at least 1 — 2¢~/18 and for some constant c. This establishes (36) (ii).

Next, we state a bound on the largest singular value | Z|| of the noise matrix Z € R™*¥ withi.i.d.
entries z; j ~ N(0,02). Note that Z = 0. Z, where the entries of Z follow Z; ; ~ N (0, 1). Applying
equation (1) with t = /N + \/n yields
|1Z[| < co.(VN + V/n)
< co./n, (64)

with probability at least 1 — 2¢~"/2 and some constant c. For the last inequality we assumed n > N.
This establishes equation (29).

Finally, we derive bounds for some of the squared singular values of Y € R™*¥ | In particular, we
show that

00> (1—€eN(1+02), (65)
and
0rae1 SN (02 +e(l+02)), (66)
and finally
s SN(1+e+02)), (67)

both hold with probability at least 1 — e~¢ — e~ — n~? and for some constants C and € € (0, 1) in
the regime N > 3Ce=2(d + o2n) log n. This establishes equation (T8).

To this end, we rely on the following Corollary (Vershynin, 2011, Corollary 5.52).

Corollary 1 (Covariance estimation for arbitrary distributions). Let x be a random vector in R™
supported in some centered Euclidean ball whose radius we denote \/m. Consider N independent
samples x; arranged as columns of the random matrix A € R"*N. Denote ¥y = %AAT as the

sample covariance matrix and 3 as the true covariance matrix. Let € € (0,1) and t > 1. Then the

following holds with probability at least 1 — nt:

IfN > C(t/e)?||]| " 'mlogn then ||Sx — || < €]|Z].
Here C is an absolute constant.

We apply Corollaryto the random vectors y = Uc + z. Note that E [yy”]| = UU7 + 621 Further
note that E [||y||§} = d + o%n. We have

ylly < llclly + [z,
< V5d + +/bno?
< ev/d+ no?, (68)

where the second inequality follows from Section[H.3] (56), (57) and holds with probability at least

l—ed—em.
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Now we can apply Corollaryto make the following statement. For some constant C' and € € (0, 1)
if N > Cte=2(d + 02n) log n, then with probability at least 1 — e=% — e~ — n=*"

< €|[E [yy"]|| = e(1 +o2). (69)

1 T T
‘NYY —E [yy ]

Consequently the singular values o;(+YYT) and o;(E [yy”]) differ by at most €(1 4 ¢2) and we
can bound

%YYT)

> N(oa(E [yy"]) — e(1+02))

=N((1+ 03) —e(1+ ag))

=(1—€e)N(1+0?). (70)

Gi,d = Nog(

and further
1
oy 411 =Noyan (YYT)
< N (oy.a01 (Ey T]) e(1+02))
=N ( +e(l+02 )
=N(1+eo?+e), (71)
which concludes the proof of equations (63)) and (66).

In the same manner we bound

or 1 =Noy (leYYT>
< N (o1 (E[yy"]) +e(1+02))
=N(1+o02+e(l+02)
=N((1+e(1+02)), (72)
which concludes the proof of (67).
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