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ABSTRACT

Actor-critic methods are in a stalemate of two seemingly irreconcilable prob-
lems. Firstly, critic proneness towards overestimation requires sampling temporal-
difference targets from a conservative policy optimized using lower bound Q-
values. Secondly, well-known results show that policies that are optimistic in the
face of uncertainty yield lower regret levels. To remedy this dichotomy, we pro-
pose Decoupled Actor-Critic (DAC). DAC is an off-policy algorithm that learns
two distinct actors by gradient backpropagation: a conservative actor used for
temporal-difference learning and an optimistic actor used for exploration. We test
DAC on DeepMind Control tasks in low and high replay ratio regimes and ablate
multiple design choices. Despite minimal computational overhead, DAC achieves
state-of-the-art performance and sample efficiency on locomotion tasks.

1 INTRODUCTION

Deep Reinforcement Learning (RL) is still in its infancy, with a variety of tasks unsolved (Sutton &
Barto, 2018; Hafner et al., 2023) or solved within an unsatisfactory amount of environment inter-
actions (Zawalski et al., 2022; Schwarzer et al., 2023). Whereas increasing the replay ratio (ie. the
number of parameter updates per environment interactions step) is a promising general approach for
increasing sample efficiency and final performance of RL agents (Janner et al., 2019; Chen et al.,
2020; Nikishin et al., 2022; Li et al., 2022), it is characterized by quickly diminishing gains (D’Oro
et al., 2022) combined with linearly increasing computational cost (Rumelhart et al., 1986; Kingma
& Ba, 2014). Moreover, the limitations of robot hardware and data acquisition frequency constrain
the maximum achievable replay ratio (Smith et al., 2022). As such, it is worthwhile to pursue or-
thogonal techniques such as enhancing the properties of the underlying model-free agents. One
continuously researched theme is how a particular algorithm handles the exploration-exploitation
dilemma (Hessel et al., 2018; Fujimoto et al., 2019; Ciosek et al., 2019; Ecoffet et al., 2021).

In Actor-Critic (AC) algorithms, it’s common to employ a single policy for both exploration (gath-
ering new data to improve the current best policy) and exploitation (leveraging gathered data to
determine the best policy) (Silver et al., 2014; Schulman et al., 2015; Wu et al., 2017; Schulman
et al., 2017; Moskovitz et al., 2021). Algorithms like TD3 (Fujimoto et al., 2018) or SAC (Haarnoja
et al., 2018) achieve exploration by introducing symmetric noise to an exploitative action. However,
this noisy exploitation strategy necessitates careful balancing of policy entropy (Duan et al., 2016).
Whereas insufficient entropy leads to suboptimal policies due to inadequate exploration (Haarnoja
et al., 2018), excessive entropy results in suboptimal policies due to noisy critic network updates
and, consequently, poor Q-value approximator convergence (Van Seijen et al., 2009). Addition-
ally, optimizing the policy towards Q-value lower bound leads to an inadequate exploration of the
state-action subspace that yields critic disagreement (Ciosek et al., 2019; Moskovitz et al., 2021).

Using a single policy for both exploration and exploitation in AC algorithms has its roots in the Pol-
icy Gradient (PG) Theorem (Sutton et al., 1999) which states that PG is a function of Q-values under
the current policy. Thus, approaches building on PG would often use SARSA-type updates to train
the critic (Silver et al., 2014; Hafner et al., 2019a; Cetin & Celiktutan, 2023), as SARSA converges
to on-policy Q-values (Sutton & Barto, 2018). This in turn reinforces a single-policy setup for AC
algorithms. Recently, there have been works in relaxing the PG Theorem toward a dual-policy, fully
off-policy setup (Laroche & Tachet des Combes, 2021). An example of a dual-policy implemen-
tation is Optimistic Actor-Critic (OAC) (Ciosek et al., 2019). OAC uses two policies: optimistic
for exploration (ie. sampling actions when interacting with the environment); and conservative for
exploitation (ie. sampling actions for temporal-difference learning). Both policies are extracted
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(a) Low Replay Ratio (b) High Replay Ratio (c) Scaling-by-Resetting (d) DAC & DreamerV3

Figure 1: Decoupled Actor-Critic (DAC) achieves significant improvements on DeepMind Control
Suite despite minimally higher computational costs than Soft Actor-Critic (SAC), demonstrating
state-of-the-art performance in complex locomotion tasks. Figure 1a reports compute efficient ex-
periments, where algorithms perform only 3 updates per environment step. Figure 1b reports a
sample efficient, high replay ratio experimental setup. Figure 1c shows that DAC matches the per-
formance of state-of-the-art Scaled-by-Resetting (SR) SR-SAC despite using 5-times lower replay
ratio and no parameter resets, whereas SR-DAC outperforms both. Figure 1d compares low replay
DAC, DreamerV3, MPO and D4PG. The Figure highlights DAC’s competitive performance despite
significantly lower complexity, runtime, and computational demands than the model-based algo-
rithm. We detail the setting in Section 4 and Appendix G. 10 seeds, mean and 95% bootstrapped CI.

from a single conservative actor. Whereas the conservative policy is directly parameterized by the
actor, the optimistic policy stems from a local linear approximation of Q-value upper bound con-
strained by a desired Kullback-Leibler (KL) divergence. This yields an approximation of a policy
that is Optimistic in the Face of Uncertainty (OFU) (Wang et al., 2020b; Neu & Pike-Burke, 2020).
Unfortunately, OAC exploration is highly dependent on the chosen hyperparameter values.

To address the above shortcomings, we propose Decoupled Actor-Critic (DAC). DAC tackles the
exploration-exploitation dilemma by adopting a novel decoupled actor AC approach. As such, DAC
employs two actors, each independently optimized using gradient backpropagation with different
objectives. The optimistic actor is trained to maximize an optimistic Q-value upper bound while ad-
justing optimism levels automatically. This actor is responsible for exploration (sampling transitions
added to the experience buffer). In contrast, the conservative actor is trained using standard lower
bound soft policy learning (Haarnoja et al., 2018) and is used for sampling temporal-difference (TD)
targets and evaluation. Secondly, DAC addresses the shortcomings of OAC. By relaxing the first-
order Taylor approximation and explicitly modeling the second policy via an actor network DAC can
accurately approximate the maximum of arbitrary complexity Q-value upper bound (Hornik et al.,
1989). We perform experiments summarized in Figure 1, and show that DAC outperforms other
model-based RL agents. We highlight the main contributions of DAC below:

• We propose a novel off-policy dual-actor AC setup where each actor is trained via gradient
backpropagation of a specialized objective. We define the optimistic policy objective and
formulate a robust framework that introduces easily interpretable hyperparameters.

• We implement a module that automatically adjusts the level of optimism applied during
Q-value upper bound approximation, as well as the impact of the KL penalty. This in turn
allows DAC to accommodate various levels of epistemic and aleatoric uncertainties and
different reward scales without hyperparameter tuning.

• We show that DAC outperforms model-free benchmarks in terms of both sample efficiency
and final performance, in both low and high replay regimes. To facilitate further research,
we perform extensive ablations on various design choices (over 2000 training runs). We
release training logs, as well as implementations of DAC under the following URL.

2 PRELIMINARIES

In this paper, we address policy learning in continuous action spaces. We consider an infinite-horizon
Markov Decision Process (MDP) (Puterman, 2014) which is described with a tuple (S,A,R, p, γ),
where states S and actions A are continuous, R(s, a, s′) is the transition reward, p(s′|s, a) is a
transition kernel and γ ∈ (0, 1] is a discount factor. A policy π(a|s) is a state-conditioned action

2

https://anonymous.4open.science/r/ICLR_submission-F026


Under review as a conference paper at ICLR 2024

(a) Critic Variance (b) Conservative Actor (c) Optimistic Actor

Figure 2: Pessimistic underexploration and state-action space coverage on the Pendulum task with
state representation embedded into 1 dimension. The dots represent 500 state-action samples gath-
ered using the latest policy (conservative (black) or optimistic (red)). Figure 2a displays the standard
deviation (σ) of the two critics, with smaller values observed in well-explored state-action regions.
In Figure 2b, we depict conservative policy probabilities. Due to lower bound optimization, the actor
prioritizes state-action subspaces that have already been explored and do not yield critic disagree-
ment. Figure 2c illustrates optimistic policy probabilities. Despite having similar entropy levels,
following the upper bound policy results in better coverage within critic disagreement regions.

distribution. Value is the expected discounted return from following the policy at a given state
V π(s) =

∫
[R(s, a, s′) + γV (s′)] ds′a. Q-value is the expected discounted return from performing

an action and following the policy thereafter Qπ(s, a) =
∫
p(s′) [R(s, a, s′) + γV (s′)] ds′. A

policy is said to be optimal if it maximizes discounted return for starting state distribution. Actor-
Critic (AC) for continuous action spaces performs simultaneous gradient-based learning of Q-values
(critic) and policy (actor) that seeks local optimum of said Q-values (Silver et al., 2014; Ciosek &
Whiteson, 2020). Critic parameters are updated by minimizing the SARSA temporal-difference
variants (Sutton & Barto, 2018). Modern AC methods employ a variety of countermeasures to
overestimation of Q-values, with bootstrapping using target network (Van Hasselt et al., 2016) and
lower bound Q-value approximation (Fujimoto et al., 2018) being most prominent. Soft SARSA
updates include policy stochasticity according to the following (Haarnoja et al., 2018):

Lθ = Qπ
θ (s, a)−

(
R(s, a) + γ (Qπ

lb(s
′, a′)− α log πϕ(a

′|s′))
)

a′ ∼ πϕ s, a, s′ ∼ D (1)

Where πϕ is the actor; Qπ
θ is the critic; Qπ

lb is the Q-value lower bound; α is the entropy temperature;
and D denotes the experience buffer (Mnih et al., 2015). To achieve a locally optimal policy, the
actor takes gradient steps aimed at maximizing the critic’s lower bound (Moskovitz et al., 2021).
The policy can use an exploration schedule (Fujimoto et al., 2018) or optimize its variance through
soft policy improvement based on an entropy target (Haarnoja et al., 2018):

Lϕ = −Qπ
lb(s, a) + α log πϕ(a|s) a ∼ πϕ s ∼ D (2)

As the actor models a parameterized distribution, gradients can be computed using the
reparametrization trick (Kingma et al., 2014). When enforcing action domain constraints through
hyperbolic tangent, minimizing policy log probabilities not only enhances exploration but also en-
courages the policy to maintain means within the non-saturated region of the hyperbolic tangent
(Wang et al., 2020a). Additionally, the temperature can be automatically adjusted to ensure that
average log probabilities match a specified target (Haarnoja et al., 2018):

Lα = −α
(
log πϕ(ai|si) +H∗) α ∈ (0,∞) a ∼ πϕ s ∼ D (3)

WhereH∗ is the fixed entropy target which is often a function of action dimensionality. Contrary to
fixed exploration scheduling, this method allows for heterogeneous variances across states. Given
the optimization objective, this mechanism promotes exploration in states that offer lower Q-value
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(a) Qσ
π/Q

µ
π (×102) (b) Optimism (c) KL Penalty Weight

Figure 3: Varying reward scales, uncertainty levels, and Q-value non-stationarity pose challenges in
setting fixed optimism (βub) and KL penalty weights. We examine three versions of the Cheetah
Run task: regular (blue), equivalent to the vanilla DMC task; scale (orange), where we rescale Q-
values by multiplying rewards; and uncertainty (pink), where we add Gaussian noise to rewards to
increase aleatoric uncertainty. In Figure 3a), we observe how the ratios Qσπ/Qµπ change during
training for these task variants. As training progresses, the divergence between policies maximizing
Q-value lower and upper bounds decreases for any fixed βub. In Figure 3b), we illustrate the DAC
optimism adjustment mechanism, which adapts βub to achieve a desired empirical KL divergence
between optimistic and conservative actors. This allows for task-dependent and phase-specific levels
of optimism βub. Finally, Figure 3c presents DAC’s KL penalty weight (τ ) on a logarithmic scale.
Similarly to optimism, DAC adjusts the impact of the KL until the divergence reaches target levels.

gradients. For both actor and critic, an ensemble statistic of k critic networks gives the Q-value
lower bound. Most commonly, an ensemble of k = 2 is used. Then:

Qπ
lb(s, a) = min

(
Q1

π(s, a), Q
2
π(s, a)

)
=

1

2

(
Q1

π(s, a) +Q2
π(s, a)

)
︸ ︷︷ ︸

Mean

− 1

2
|Q1

π(s, a)−Q2
π(s, a)|︸ ︷︷ ︸

Standard Deviation
(4)

This observation generalized Q-value lower bound (Ciosek et al., 2019; Moskovitz et al., 2021):

Qπ
lb(s, a) = Qµ

π(s, a) + βlb Qσ
π(s, a) (5)

Where Qµ
π is the critic ensemble mean; Qσ

π is the critic ensemble standard deviation; and hyperpa-
rameter βlb controls the level of conservatism of the algorithm (ie. decreasing βlb leads to bigger
penalization of critic disagreement). Setting βlb = −1 is equivalent to the standard minimum of
the two critics. Optimizing the actor with respect to the Q-value lower bound demotes state actions
for which the critic ensemble disagrees. Such effect is referred to as pessimistic underexploration
(showed in Figure 2) (Ciosek et al., 2019; Cetin & Celiktutan, 2023). OAC tackles the under-
exploration by exploring according to an optimistic policy πo

ϕ, which is itself extracted from the
conservative actor πc

ϕ. As such, OAC explores according to a transformed conservative policy πo

given by the following Lagrangian:

πe = argmax E
a∼πo

Qπ
ub(s, a) subject to DKL

(
πc
ϕ(s) ∥ πo

η(s)
)
≤ δ

with Qπ
ub = a∇ Qµ

π(s, a) + βub Qσ
π(s, a)

(6)

Where δ is the boundary hyperparameter, Qπ
ub is the Q-value upper bound approximated via a linear

first-order Taylor series, and βub hyperparameter controls the level of optimism. OAC exploration
was shown to improve sample efficiency and performance as compared to SAC (Ciosek et al., 2019).

3 DECOUPLED ACTOR-CRITIC

Traditionally, AC algorithms use a single actor network for three main tasks: exploration (ie. sam-
pling an action to add a transition to the experience buffer); temporal-difference learning (ie. sam-
pling an action to calculate the TD target); and evaluation (ie. sampling an action to assess the
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performance of an agent). Using a single actor for all tasks requires a delicate balance between opti-
mism and conservatism. Exploration tends to favor optimistic behavior policies due to lower regret
guarantees (Wang et al., 2020b), while TD learning leans towards conservatism due to the critic’s
tendency to overestimate (Hasselt, 2010). DAC addresses this dichotomy by introducing two distinct
actor networks: an optimistic one and a conservative one. The optimistic actor is trained to maxi-
mize the upper bound of the Q-value and is exclusively used for exploration. On the other hand, the
conservative actor is trained to maximize the lower bound of the Q-value and is employed for both
TD learning and evaluation. By performing conservative Q-value updates on optimistic state-action
samples, DAC achieves more effective exploration without the issue of Q-value overestimation.

Algorithm 1 Decoupled Actor-Critic Step

1: Input Models: πc
ϕ - conservative actor; πo

η - optimistic actor; Qπ
θ - critic ensemble; Qπ

t - target
critic; α - entropy temperature; βub - optimism; τ - KL penalty weight;

2: Input Hyperparameters: fσ - variance multiplier described in Eq. 7; x - copying frequency;
KL∗ - target KL divergence described in Eq. 9; βub

0 - initial βub; τ0 - initial τ
3: s′, r, t = ENV.STEP(a) with a ∼ fσ(π

o
η(a|s)) {sample from the optimistic actor}

4: BUFFER.ADD(s, a, r, s′, t)

5: if train step modulo x = 0; then
6: η ←− ϕ; βub, τ ←− βub

0 , τ0 {copy conservative parameters; reinitialize βub and τ}
7: end if
8: for i = 1 to ReplayRatio do
9: s, a, r, s′ ∼ BUFFER.SAMPLE

10: θ ←− θ −∇θLθ(s, a, r, s′, a′) with a′ ∼ πc
ϕ {update critic according to Eq. 1}

11: ϕ←− ϕ−∇ϕLϕ(s, a) with a ∼ πc
ϕ {update conservative actor according to Eq. 2}

12: η ←− η −∇ηLη(s, a) with a ∼ fσ(π
o
η) {update optimistic actor according to Eq. 7}

13: α←− α−∇αLα {update entropy temperature according to Eq. 3}
14: βub ←− βub −∇βLβ {update optimism according to Eq. 9}
15: τ ←− τ −∇τLτ {update KL penalty weight according to Eq. 10}
16: Qπ

t = POLYAK(Qπ
θ , Q

π
t ) {standard Polyak averaging}

17: end for

The pseudo-code illustrates a single DAC training step, where changes with respect to SAC are
colored. We summarize the most important novelties of the proposed algorithm: [1] Decoupled
Actors - the conservative actor is used for TD learning (pseudo-code line 10) and the optimistic
actor is used for exploration (pseudo-code line 3); [2] Unique Variance - the exploration policy can
have a different level of entropy as compared to the TD learning policy (pseudo-code line 3); [3]
Optimistic Policy Objective - the optimistic actor learns to maximize the regularized Q-value upper
bound (pseudo-code line 12) with the levels of optimism and KL penalty weight adjusted such that
the divergence target is met (pseudo-code lines 14 and 15). We describe all DAC modules in the
following subsections and provide a detailed comparison to OAC in Appendix B.2.

3.1 CONSERVATIVE ACTOR, ENTROPY TEMPERATURE AND CRITIC

The conservative actor denoted as πc
ϕ, optimizes a standard soft policy target described in Equation

2. Using a soft policy target allows for state-dependent exploration and regularizes the policy such
that the hyperbolic tangent output remains unsaturated. Furthermore, the non-zero variance of the
conservative actor regularizes the critic TD learning. Since the data in D is collected exclusively
by the optimistic actor, the conservative actor is updated fully off-policy. Following standard SAC,
we update the entropy temperature and the critic via Equations 3 and 1 respectively. For both up-
dates, the sampling is performed from the conservative actor πc

ϕ. Whereas in principle detaching
exploration from exploitation allows for zero variance when sampling the TD targets, we find that
including some levels of noise regularizes the critic. Finally, the critic uses layer normalization (Ba
et al., 2016) before every activation, which we found to slightly increase the base agent’s perfor-
mance. We discuss the design choices in more detail in Appendix A.
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3.2 OPTIMISTIC ACTOR

The optimistic actor, denoted as πo
η , optimizes an optimistic policy objective defined as follows:

Lη = −
(
Qµ

π(s, a) + βub Qσ
π(s, a)

)︸ ︷︷ ︸
Q-value upper bound

+ τDKL

(
πc
ϕ(s) ∥ πo

η(s)
)︸ ︷︷ ︸

Divergence penalty

a ∼ fσ(π
o
η) s ∼ D

(7)

Where βub is the optimism, τ is the KL penalty weight, DKL is the KL divergence between the
conservative and optimistic policies, and fσ is the standard deviation multiplier. Optimizing for the
Q-value upper bound results in a policy that is optimistic in the face of uncertainty, but also promotes
actions that generate critic disagreement. Since ensemble disagreement is often treated as a proxy
for sample novelty (Yahaya et al., 2019; Han et al., 2021), following such a policy yields more
diverse samples and as a result better coverage of the state-action space (Pathak et al., 2019; Lee
et al., 2021). Whereas coverage is not explicitly optimized for in traditional RL, there is a growing
body of research that hints toward the importance of data diversity in the context of RL (Xie et al.,
2022; Foster et al., 2022; Zhan et al., 2022). KL divergence, the second objective term, regularizes
the optimistic policy. While policies can be represented by various parameterized distributions,
we implement both actors as simple diagonal normal distributions, transformed by the hyperbolic
tangent activation. We compute the KL divergence in a closed form using the change of variables:

DKL

(
πc
ϕ(s) ∥ πo

η(s)
)
=

|A|∑
i=1

(
log

σi
ϕ(s)

σi
η(s)

+
σi
η(s)

2 +
(
µi
η(s)− µi

ϕ(s)
)2

2 σi
ϕ(s)

2
− 1

2

)
(8)

We derive the above statement in Appendix A. Using KL stabilizes the off-policy learning by ensur-
ing that the sampled trajectories are probable under the conservative actor policy (Sutton & Barto,
2018; Ciosek et al., 2019). Secondly, it guarantees that the optimistic policy optimizes for a specified
level of variance, which can be distinct from πc

ϕ. To this end, we define the function fσ as a simple
variance multiplication. As such, the optimistic actor will have a standard deviation fσ-times bigger
than the conservative policy (this is implemented by simply multiplying the modeled standard devi-
ations by fσ). This mechanism allows for separate entropy for TD learning and exploration while
retaining standard convergence guarantees of AC algorithms. In fact, as limD→∞ Qσ

π(s, a) = 0
(Van Hasselt et al., 2016), it follows that in the limit both actors recover a policy that differs only by
fσ . As shown in Figure 4, including the KL penalty is essential for the approach’s success.

Figure 4: Evaluating the impact of various design choices in DAC. The ablated design choices
include: (+KL) KL penalty on both actors; (−π) only optimistic actor; (−KL) not using KL at
all; (+Det) a deterministic conservative actor; (−τ) a fixed value of τ ; (−β) a fixed value of βub;
(−τ&β) fixed values of both; (−σ) same variance on both actors; (−copy) not copying parameters
during the training; and (−LN) DAC without layer normalisation. As follows, the application of
KL is of great importance, with both using KL penalty on both agents and not using it at all leading
to bad policies. βub adjustment has more impact on the performance than τ adjustment. Finally,
using DAC with parameter copying and layer normalization with DAC is beneficial. RR=3, 500k
steps, 10 tasks, 10 seeds, and 95% bootstrapped CI. We detail the tested variations in Appendix G.
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3.3 ADJUSTMENT OF βub AND τ

Since values of Qµ
π and Qσ

π depend on reward scales, as well as aleatoric and epistemic uncertainty
of the environment, the value of βub cannot be easily set. Furthermore, as shown in Figure 3, fixed
levels of βub yield decreasing the impact of uncertainty on the optimistic policy. DAC leverages an
observation that for βub = −βlb the optimistic actor recovers the objective of the conservative actor.
Then, βub can be defined such that the divergence between the conservative baseline policy and the
optimistic policy reaches a desired level. To this end, implement a module that automatically adjusts
the levels of optimism βub:

Lβub

=

(
βub + βlb

)(
DKL

(
πc
ϕ(s) ∥ πo

η(s)
)

|A|
− KL∗

)
βub ∈ (βlb,∞) s ∼ D (9)

Where KL∗ is the KL divergence target between the optimistic and transformed conservative poli-
cies, DKL is the empirical KL divergence, and |A| is the action dimensionality. If the empirical KL
divergence is bigger than the KL target, then βub is reduced with a limit at βlb. On the other hand,
if the empirical KL divergence is smaller than the target, then βub is increased with a limit at ∞.
This update mechanism allows us to define optimism level as a divergence between optimistic and
conservative policies. We update the KL penalty weight τ in the opposite direction:

Lτ = −τ
(
DKL

(
πc
ϕ(s) ∥ πo

η(s)
)

|A|
− KL∗

)
τ ∈ (0,∞) s ∼ D (10)

By dividing by |A| we allow for divergence per degree of freedom. As τ is increased when the
empirical KL target is bigger than the desired KL target, DAC can regularize the divergence be-
tween two actors even if the βub is at its negative limit. Conversely, an automatic reduction of τ
accompanies the increase of βub if reaching the divergence limit proves challenging. This adap-
tive approach, as illustrated in Figure 3c, accommodates different scales of Q-values and contrasts
with setups like OAC, where optimism is predefined by fixing βub at a specific value. However,
if the adjustment mechanism operates too slowly, the KL penalty may not be effectively enforced
during training, potentially causing the two agents to diverge. This divergence can result in fully
off-policy learning, insufficient coverage in the conservative policy region, and ultimately, subop-
timal agent performance. We believe that this issue may be connected to the deadly triad (Thrun
& Schwartz, 2014; Sutton & Barto, 2018) and recent findings highlighting the limitations of fully
off-policy learning, such as in the tandem setting (D’Oro et al., 2022). To mitigate the divergence
problem, we observed that initializing both agents with identical parameter values (ϕ0 = η0) makes
them less likely to diverge. Additionally, during training, we employ a hard parameter copy of the
conservative actor and reinitialize the optimistic actor with copies of these parameters.

4 EXPERIMENTS

We build our experiments on JaxRL code base (Kostrikov, 2021). Since all considered algorithms
other than SAC are extensions of thereof, we fix the pool of common hyperparameters on values that
are known to work well with SAC (Nikishin et al., 2022; D’Oro et al., 2022). All algorithm-specific
hyperparameters have fixed values between low and high replay ratio settings and are reported in Ap-
pendix E. Similarly, all algorithms except RedQ use the same network architectures and a standard

Figure 5: Impact of DAC hyperparameters on the final performance. All tested setups outperformed
baseline SAC (orange), demonstrating DAC robustness and stability. The thick dot is the configura-
tion used in the main experiment. 500k steps, 10 tasks, 10 seeds, mean and 95% bootstrapped CI.
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ensemble of two critics (Fujimoto et al., 2018; Haarnoja et al., 2018; Ciosek et al., 2019; Moskovitz
et al., 2021; Cetin & Celiktutan, 2023). For all experiments, we report robust evaluation statistics
generated via the RLiable package (Agarwal et al., 2021). The results for the main experiments are
presented in Figures 1, 6 & 7. Additionally, we run ablations on various design choices and hyper-
parameters which we report in Figures 4 & 5. We provide further experimental results in Appendix
D and information on the experimental settings in Appendix G

Low and High Replay We consider a set of 10 proprioceptive DeepMind Control Suite (DMC)
tasks (Tassa et al., 2018) listed in Appendix F for which we run experiments in low and high replay
regimes. In both, we use 106 environment steps for each task and algorithm. Firstly, we consider
a low replay ratio of 3 gradient steps per environment step. Such a low replay does not induce
loss of plasticity or overfitting in tested algorithms (Nikishin et al., 2022; Li et al., 2022). As such,
no parameter resets are required (D’Oro et al., 2022). We consider the following baselines: OAC
(Ciosek et al., 2019); ND-TOP (Moskovitz et al., 2021); SAC (Haarnoja et al., 2018); and TD3
(Fujimoto et al., 2018). Furthermore, we consider a high replay of 15 gradient steps per environment
step. Such replay is known to degenerate the performance of most algorithms unless regularization
is used (Chen et al., 2020; D’Oro et al., 2022). To this end, all algorithms perform full-parameter
resets in 50000th step, as well as every 250000 environment steps (Nikishin et al., 2022; D’Oro
et al., 2022). In this setup, we consider SR-SAC (D’Oro et al., 2022), SR-TOP and SR-OAC.

(a) Low Replay Ratio; No Resets

(b) High Replay Ratio; Full Resets

Figure 6: RLiable results for two regimes. Tasks used in the evaluation are listed in Appendix F.
DAC achieves the best final performance, with a pretty sizeable performance gap in the low replay
ratio regime. We use 10 tasks, 10 random seeds, and 106 environment steps. The bars indicate the
95% bootstrapped CI. We provide detailed training curves in Appendix H.

We find that low replay DAC achieves significantly better performance than the baseline algorithms
(Figures 1a and 6a). Notably, low replay DAC matches the performance of SR-SAC (Scaled-by-
Resetting SAC), despite SR-SAC utilizing 5-times bigger replay and resets (Figure 1c). Similarly,
scaled-by-resetting DAC (SR-DAC) outperforms the baseline algorithms in the high replay regime.
As shown in Figures 1b and 6b, SR-DAC achieves better performance than the baseline algorithms
and significantly surpasses the state-of-the-art model-free SR-SAC.

Dog Domain We assess DAC performance on three tasks from the complex dog domain. The
domain features a significantly larger action space than humanoid (31 dimensions compared to hu-
manoid’s 21). and remains unsolved by a model-free agent with proprioceptive input. Recently, it
was shown that a model-based agent TD-MPC achieves substantial improvements to SAC on the dog
tasks (Hansen et al., 2022). As such, we evaluate whether DAC can find policies better than SAC
and if it is capable of surpassing the performance of model-based TD-MPC on dog tasks. As TD-
MPC uses a variety of annealing mechanisms, a prioritized experience buffer, and a much greater
number of parameters, we decided to add one hidden layer to each network in DAC and increase the
copying frequency of the optimistic agent. We refer to such changed implementation as SR-DAC+.
We run the algorithm for 306 environment steps and compare its performance against both SR-SAC
and TD-MPC. We detail this experimental setting in Appendix G and E. We summarize the results
in Figure 7 and provide an additional comparison against TD-MPC in Appendix D.
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Figure 7: We find that SR-DAC achieves substantially better performance than SR-SAC, and
SR-DAC+ outperforms TD-MPC. To the best of our knowledge, SR-DAC+ achieves the highest
recorded performance on the dog tasks of a model-free RL algorithm. SR-DAC and SR-SAC use 10
seeds each, and SR-DAC+ and TD-MPC use 5 seeds each. Mean and 95% bootstrapped CI.

Whereas SR-SAC is unable to find a performing policy in the dog domain (a result consistent with
the evaluations performed in Hansen et al. (2022)), DAC is able to party solve all of the dog tasks.
Furthermore, we find that the SR-DAC+ matches the state-of-the-art model-based TD-MPC.

5 LIMITATIONS

Besides the limitations that DAC inherits from the soft actor-critic algorithmic family, DAC diver-
gence minimization presents unique optimization challenges. Unlike typical uses of KL divergence,
where the target distribution remains fixed (eg. Variational Autoencoders (VAE) (Kingma et al.,
2014)), DAC deals with a constantly evolving policy that is continually improving. Consequently,
the optimistic actor needs to keep up with the conservative actor’s changes. As depicted in Figure
4, DAC heavily relies on maintaining a low divergence between the actors. While DAC adjustment
mechanisms proved effective in the tested environments, there is no guarantee that they will suffice
in more complex ones. The second drawback of DAC lies in its inherent use of two actor networks,
which results in slightly increased memory and computational demands compared to the standard
Soft Actor-Critic (SAC) approach. In practice, the wall-clock time of DAC is around 10% greater
than that of SAC and is indistinguishable from the overhead induced by OAC, which requires ad-
ditional backpropagation through the critic ensemble. Moreover, since DAC initializes both actors
with identical parameters, they must share the same network architecture. However, as indicated by
Figure 4, simply copying parameters between them offers only minimal performance enhancement.
In light of this, we believe that the necessity for identical architectures can be mitigated by employ-
ing techniques like delayed policy updates (Fujimoto et al., 2018) or by learning rate scheduling.

6 CONCLUSIONS

In this paper, we introduced DAC, an off-policy algorithm that leverages two distinct actors trained
via specialized objectives. One actor, known as the conservative actor, is dedicated to TD learning
and evaluation tasks, while the other, the optimistic actor, is used in exploration. This allows DAC
to perform conservative Q-value updates at optimistic state-action samples. As a result, DAC di-
rectly addresses the optimism-pessimism dilemma commonly encountered in Actor-Critic agents.
To evaluate the effectiveness of the proposed method, we conducted experiments on a set of 10
complex locomotion tasks, considering two different replay ratio regimes. Our results demonstrated
that DAC significantly outperforms established benchmark algorithms in terms of both performance
and sample efficiency. To assess the impact of individual DAC components, we conducted extensive
ablation studies consisting of over 2000 runs. Finally, we showcased the robustness of DAC across
a range of hyperparameter settings, underscoring its suitability for practical applications.

REPRODUCIBILITY

We provide the DAC implementation, results and scripts used to generate the results at the follow-
ing URL. For pseudo-code, implementation details, or additional information about specific design
choices, please refer Appendix A. We describe experimental settings in Section 4 and Appendix G.
Finally, we point the reader towards Appendix E for the hyperparameters used in experiments
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horizon with adaptive subgoal search. In The Eleventh International Conference on Learning
Representations, 2022.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. Offline reinforcement
learning with realizability and single-policy concentrability. In Conference on Learning Theory,
pp. 2730–2775. PMLR, 2022.

APPENDIX CONTENTS

We divide the Appendix into the following sections:

1. Further Description of DAC (Appendix A) — We provide additional rationale for certain
design choices in DAC, as well as additional implementation details.

2. Related Work (Appendix B) — We expand on the works related to DAC and provide a
detailed comparison to the mechanisms leveraged by Optimistic Actor-Critic (OAC).

3. Future Work (Appendix C) – we discuss a variety of research directions related to DAC
4. Additional Experiments (Appendix D) — We report the additional tests of decoupled ar-

chitecture in the context of value overestimation; performance impact of action repeat; and
additional evaluation against TD-MPC.

5. Hyperparameter Settings (Appendix E) — We list all hyperparameter settings required for
the reproduction of the experiments.

6. Tested Environments (Appendix F) — We list all DMC tasks using low replay, high replay,
and DreamerV3 experiments.

7. Experimental Settings (Appendix G) — We provide a detailed description of all experi-
mental settings used in the paper.

8. Learning Curves (Appendix H) — We share learning curves for the low replay, high replay,
and DreamerV3 comparisons.
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A FURTHER DESCRIPTION OF DAC

A.1 SOFT CONSERVATIVE ACTOR

When using a Tanh-Normal distribution to represent a policy, the soft policy learning (Haarnoja
et al., 2018) serves two key purposes: enforcing entropy; and enforcing non-saturation.

Enforcing entropy soft policy learning ensures a specific level of policy entropy, thereby ensuring
exploration during the learning (Haarnoja et al., 2018). Additionally, optimizing the objective func-
tion that balances entropy maximization and Q-values, enables policies to exhibit state-dependent
entropy promoting more exploration in low Q-value states. This stands in contrast to traditional
exploration methods employed by algorithms such as TD3, or TOP, where the policy maintains a
constant entropy across different states.

Enforcing non-saturation since the Tanh function saturates, increasing the distance between the
unsquashed distribution expected value and zero naturally decreases the distribution variance after
squashing, as illustrated in Figures 8a and 8b. Consequently, when employing soft learning, the
agent experiences a loss when shifting the policy away from zero. As depicted in Figures 8c and 8d,
this results in policies that concentrate within the non-saturated region of Tanh (Wang et al., 2020a)
and thus avoid bang-bang behaviour (Seyde et al., 2021).

(a) Normal (b) Tanh-Normal (c) Pre-Tanh µ (d) Post-Tanh Actions

Figure 8: Soft policy learning enforces prevents policy saturation. Figures 8a and 8b show three
Gaussians and the Tanh transformed counterparts. Before Tanh transformation, all policies have
equal variance (8a). However, since Tanh is nonlinear, applying the transformation changes the
policy variance depending on the location of the mean (8b). Because of this effect, when using soft
policy learning, the agent incurs loss when moving along the saturated portions of the Tanh activation
function. Figures 8c and 8d show policy means and executed actions for SAC with and without soft
policy learning on a Humanoid-Stand task. As follows, SAC without the entropy objectives follows
a bang-bang policy, whereas regular SAC anchors the policy within the non-saturated portion of
Tanh. To this end, soft policy learning reduces the risk of a bang-bang policy.

When designing DAC, we were interested in enforcing entropy and non-saturation on both conserva-
tive and optimistic actors. DAC achieves this by using soft policy learning on the conservative actor
(enforcing entropy and non-saturation) and using KL divergence on the optimistic actor (enforcing
similarity between the optimistic and conservative actors).

A.2 OPTIMISTIC POLICY LEARNING AND PARAMETER COPYING

We define the optimistic policy learning objective as follows:

Lη = −
(
Qµ

π(s, a) + βub Qσ
π(s, a)

)︸ ︷︷ ︸
Q-value upper bound

+ τDKL

(
πc
ϕ(s) ∥ πo

η(s)
)︸ ︷︷ ︸

Divergence penalty

a ∼ fσ(π
o
η) s ∼ D

(11)

For an explanation of each symbol, please refer to Section 3.2. In our approach, we emphasize
explicit upper bound optimization as the core principle of the optimistic policy objective. This
aspect of the objective aims to find a policy with minimal regret. It’s important to note that the
optimistic actor is exclusively employed for exploration purposes, ensuring that it doesn’t interfere
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with Q-value learning. This approach stands in contrast to the pessimistic lower bound approach
used in baseline algorithms such as SAC or TOP.

Furthermore, the optimistic policy objective features a KL divergence penalty. As shown in ablation
studies in Figure 4, such a penalty is of crucial importance for DAC performance. The penalty is
applied only to the optimistic actor and serves multiple purposes:

1. Reducing the degree of off-policy learning - since the exploration is done solely by the op-
timistic actor, the conservative actor is updated fully off-policy (ie. on transitions sampled
from the optimistic policy). This practice can lead to unstable learning, a problem known
as the ”deadly triad” (Sutton & Barto, 2018). By incorporating KL divergence into the op-
timistic objective, we ensure that the transitions sampled from the optimistic policy align
with the probabilities expected under the conservative policy. This serves to mitigate the
extent of off-policy learning.

2. Anchoring the adjustment mechanisms - as discussed in Section 3.3, the automatic adjust-
ment of βub (optimism) and τ (KL penalty weight) is anchored on some desired divergence
value (ie. it is designed to adjust βub and τ such that the divergence target is met). To this
end, without including the divergence penalty we would not be able to use the adjustment
mechanisms as designed.

3. Enforcing non-saturation of the optimistic policy - by minimizing KL between the conser-
vative actor and itself, the optimistic actor is enforced to mimic a policy that is trained via
soft policy learning. As such, the optimistic actor becomes disincentivized from saturating.

As discussed in Section ??, any differentiable divergence or distance function could be used in
place of the KL. What makes KL divergence appealing is that it has a closed-form solution for
any invertible and differentiable transformation of given distributions. Although it is a well-known
result, we leave it below for completeness. We denote x as samples from policy distributions before
applying the Tanh activation, pc and po as conservative and optimistic distributions on x, Tanh
application as y = h(x) and the resulting distributions as πc, πo. Then leveraging the change of
variables formula:

DKL

(
pc∥po

)
=

∫ ∞

−∞
pc(x) log

pc(x)

po(x)
dx

=

∫ ∞

−∞
πc(h(x)) |

dy

dx
(x)| log

πc(h(x)) | dydx (x)|
πo(h(x)) | dydx (x)|

dx

=

∫ ∞

−∞
πc(y) log

πc(y)

πo(y
dy = DKL

(
pc∥po

)
(12)

The above holds true for any distributions pc and po. Since we assume them to be diagonal Gaussian,
it follows that:

DKL

(
pc∥po

)
= DKL

(
πc∥πo

)
=

(
log

σc

σo
+

σ2
o + (µo − µc)

2

2σ2
c

− 1

2

)
(13)

Which concludes the derivation.

A.3 CRITIC REGULARIZATION

Recently, there has been a surge of works exploring the importance of critic regularization (Liu et al.,
2020; Laskin et al., 2020; Hiraoka et al., 2021; Gogianu et al., 2021; Li et al., 2022; D’Oro et al.,
2022). Whereas there is still a lot to understand about the interplay of TD learning and network
regularization, it is clear that a regularized critic allows a higher replay ratio to be used (Hiraoka
et al., 2021; Li et al., 2022; D’Oro et al., 2022). In this paper, we explore only two regularization
methods: layer normalization (Ba et al., 2016) and full-parameter resets (Nikishin et al., 2022).
Given the effectiveness of the only regularization we tested, we hypothesize that experimenting with
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methods like weight decay (Krogh & Hertz, 1991), spectral normalization (Gogianu et al., 2021)
or dropout (Srivastava et al., 2014) could further improve DAC performance. As follows from
the Figure 9, layer normalization has positive effects on DAC performance, particularly in the high
replay ratio regime. This suggests, somewhat surprisingly, that layer normalization might have some
synergy effect with full-parameter resets.

Figure 9: Layer normalization applied to critic slightly improves the performance of DAC. 10 tasks,
10 seeds, mean and 95% bootstrapped CI.

B RELATED WORK

B.1 UNCERTAINTY EXPLORATION AND KL CONSTRAINED POLICIES

The exploration-exploitation dilemma has been the subject of extensive research. One prominent
principle that has emerged in addressing this dilemma is Optimism in the Face of Uncertainty (OFU)
(Auer et al., 2002; Filippi et al., 2010; Ciosek et al., 2019), which prioritizes actions with a balance
of high expected rewards and uncertainty. Whereas OFU has been extensively studied in the tabular
and bandit RL setting (Auer et al., 2002; Garivier & Moulines, 2011; Kaufmann et al., 2012), it
has not yet become as standard in deep RL. However, it has been shown that DQN ensembles
used for uncertainty-driven updates can provide performance improvements (Osband et al., 2016;
Chen et al., 2017; Osband et al., 2018; Lee et al., 2021). Similarly, OAC (Ciosek et al., 2019) and
TOP (Moskovitz et al., 2021) leverage uncertainty estimates over the state-action value function for
exploration, albeit still using one conservative actor.

The optimism-driven exploration was also considered for model-based agents. Sekar et al. (2020)
and Seyde et al. (2022) consider exploration driven by reward model ensemble. Similarly to DAC,
Seyde et al. (2022) considers using an optimistic upper bound exploration policy and a distinct
exploitation policy. Furthermore, agents like RP1 (Ball et al., 2020) leverage reward uncertainty
despite access to the nominal rewards. Finally, a variety of agents that leverage MCTS have been
proposed (Silver et al., 2017; Schrittwieser et al., 2020; Zawalski et al., 2022). On a different note,
DAC might seem similar to natural actor-critic (Amari, 1998; Kakade, 2001; Peters & Schaal, 2008;
Schulman et al., 2015) due to the KL constraint in actor optimization. Whereas the natural policy
gradient uses KL to enforce the similarity between policies resulting in subsequent updates, DAC
leverages KL to constrain the optimistic policy to be within some range from the conservative policy
that is used for TD learning. This allows for optimistic exploration without Q-value overestimation.

B.2 COMPARISON TO OAC

DAC leverages two policies: a conservative one used for sampling the temporal-difference target
and evaluation; and an optimistic one used for sampling transitions added to the experience buffer.
Similarly to DAC, OAC performs evaluation and Bellman backups according to a conservative lower
bound policy. However, DAC differs from OAC on three main design choices: how to model the
optimistic policy; how to constraint the optimistic policy; and how to set the level of optimism βub.
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How to model the optimistic policy OAC models the optimistic policy by combining conservative
policy with the linear approximation of Q-value upper bound, and as such uses one actor network.
The linear approximation combined with constrained optimization results in simplistic solutions
along the constraint boundary (Protter et al., 2012). As such, OAC’s applicability is limited to small
δ values due to the Taylor theorem. In contrast to that, DAC uses two actors. Modeling the second
policy via an actor network allows for exploration policies that are far more complex than a linear
approximator. Whereas this introduces a computational cost, employing techniques like delayed
policy updates can result in costs smaller than that of OAC.

How to constraint the optimistic policy OAC enforces a hard KL constraint by directly solving
a Lagrangian. Since the Q-value upper bound is approximated via a linear function, the solution is
placed on the constraint boundary unless the slope is zero (Protter et al., 2012). In contrast, DAC
imposes KL as a soft constraint. Paired with the neural network approximator, this allows DAC to
balance the KL with potential gains to the upper bound and generate complex exploration policies.

How to set the level of optimism βub Finally, OAC treats βub as a hyperparameter which is fixed
during the training. Since values of Qµ

π and Qσ
π depend on reward scales, as well as aleatoric and

epistemic uncertainty of the environment, the value of βub has to be searched per task. Furthermore,
as shown in Figure 3, fixed levels of βub yield decreasing the impact of uncertainty on the optimistic
policy. DAC leverages that the desired level of optimism can be defined through divergence between
the conservative baseline policy and the optimistic policy optimizing objective related to βub. Such
definition allows for dynamics adjustment of both βub and the KL penalty weight τ .

B.3 REPLAY RATIO SCALING

Increasing the replay ratio was the key ingredient in increasing the sample efficiency and final per-
formance of many recent RL agents (Janner et al., 2019; Chen et al., 2020; Hiraoka et al., 2021;
Nikishin et al., 2022; Schwarzer et al., 2023). Moreover, many of the novelties brought by those
agents were focused on stabilizing the learning given the high-replay regime (Janner et al., 2019;
Chen et al., 2020; Hiraoka et al., 2021). A particularly interesting technique is scaling-by-resetting,
as it is applicable to most off-policy RL algorithms. DAC improvements are largely orthogonal to
the direction of increasing the replay ratio, but DAC also takes advantage of the scaling-by-resetting
technique. However, as the available replay ratio is often an exogenous constraint (eg. when running
models on the robot), we believe that testing new algorithms in both high and low replay is valuable.

C FUTURE WORK

One of the critical functions of DAC is limiting the divergence between the two actors (see Figure
4). This aspect raises an interesting question about the potential tradeoff between the performance
gains achieved by adhering to a low-regret optimistic policy and the performance losses incurred
from fully off-policy updates. To control the divergence between the two actors, we employ a KL
penalty, although we believe that alternative divergence or distance metrics could also be effective.
The main reason for using KL divergence in our implementation of DAC is that it is known to have a
closed-form solution for Tanh-Normal distributions which we use to model both policies. We think
that implementing DAC with regularization other than KL might result in better learning stability.

Novel mechanisms used by DAC are orthogonal to many recent improvements in DRL. As such,
investigating synergies between DAC and techniques like receding TD horizon (Kearns & Singh,
2000; Schwarzer et al., 2023), critic regularization (Gogianu et al., 2021), discount factor annealing
(Ye et al., 2021; Schwarzer et al., 2023), AVTD (Li et al., 2022), TOP (Moskovitz et al., 2021) or
increasing model size (Schwarzer et al., 2023; Hafner et al., 2023) might improve DAC performance.
Furthermore, distributional critics offer a capability to directly model both aleatoric and epistemic
uncertainties (Bellemare et al., 2017; Dabney et al., 2018; Moskovitz et al., 2021). We think that this
aligns with the DAC, as it builds policies leveraging epistemic uncertainty. Similarly, expanding the
size of the critic ensemble could lead to synergies and improvements surpassing those achieved by
conventional ensemble AC approaches (Lee et al., 2021; Januszewski et al., 2021). Finally, as shown
in Figure 4, the deterministic version of DAC underperforms its stochastic counterpart. Investigating
the factors contributing to this difference in performance is a compelling avenue for research.
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D ADDITIONAL EXPERIMENTS

D.1 CRITIC OVERESTIMATION

In this subsection, we investigate whether the decoupled architecture (using a conservative policy
for TD updates and optimistic policy for exploration) indeed mitigates Q-value overestimation char-
acteristic for non-conservative updates (Fujimoto et al., 2018; Moskovitz et al., 2021). As such, we
compare the environment returns to the returns implied by the critic of three actor-critic architec-
tures.

1. Conservative - SAC agent performing conservative (βlb = −1)
2. Optimistic - SAC agent performing optimistic updates (βlb = 1)
3. Decoupled - DAC performing conservative updates on the critic and the conservative actor;

optimistic updates on the optimistic actor (βlb = −1)

We conduct such measurements on 3 DMC environments of varying difficulty: hopper-hop;
quadruped-run; and humanoid-walk. The results are summarized in Figure 10. Assuming deter-
ministic transitions, the soft Q-value modeled by the critic is equal to the sum of discounted returns
and policy entropy. As such, to calculate the bias we have to subtract the entropy term from the
critic’s output. We estimate the entropy sum term by a geometric sum of negative average policy
log probabilities. Then, we again use the geometric sum and average recorded return to estimate the
real Q-values.

(a) Hopper-Hop (b) Quadruped-Run (c) Humanoid-Walk

Figure 10: We evaluate critic overestimation associated with conservative (SAC with βlb = −1),
optimistic (SAC with βlb = 1) and decoupled agents (DAC). We observe that the baseline conser-
vative SAC tends to underestimate the returns. 5 seeds, mean, and 3 std.

We find that the decoupled architecture indeed prevents the overestimation associated with optimistic
TD updates. Interestingly, we observe that both conservative and decoupled architectures tend to
underestimate the returns. This observation is consistent with the earlier results pointing towards
over-conservatism of clipped double Q-learning (Moskovitz et al., 2021; Cetin & Celiktutan, 2023).

D.2 ACTION REPEAT EXPERIMENT

Furthermore, we validate the findings of our main experiment under a different setting of envi-
ronment Action Repeat (AR). AR is a key environment parameter that reduces the agent’s action
frequency while preserving the underlying environment dynamics. It achieves this by having the
agent repeat the same action for a set number of consecutive time steps instead of selecting a dis-
tinct action at each time step. When AR is employed, the transitions resulting from these repeated
actions are merged into a single transition, with rewards summed and the final next state used. Con-
sequently, higher AR values decrease the length of trajectories, thereby enhancing the diversity of
data the agent encounters within a fixed number of interactions. Action repeat is known to impact
the sample efficiency and the final performance of agents, and in the case of DMC, a variety of AR
settings have been considered. Common choices include repeats of: 1 (ie. no repeat) (D’Oro et al.,
2022; Li et al., 2022); 2 (ie. single repeat) (Hafner et al., 2019a; Nikishin et al., 2022); or varying
setting between the tasks (Hafner et al., 2019b; Yarats et al., 2020). As noted in Appendix E, we
use an action repeat of 2 throughout our experiments. However, for a matter of completeness, we
include an evaluation for AR of 1 on our benchmark of 10 DMC tasks in Figure 11 below.
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(a) AR= 1 & AR= 2 (b) AR= 1 Sample Efficiency

(c) AR= 1 Aggregate

Figure 11: DAC consistently improves performance across various AR settings. In Figure 11a,
we compare SAC and DAC under low replay conditions for two AR configurations. As evident,
higher AR values generally lead to superior performance for both algorithms, with DAC significantly
outperforming SAC in both scenarios. Figures 11b and 11c present additional results when AR is set
to 1. RedQ performs similarly to a well-tuned SAC with a replay of 3, whereas DAC outperforms
both. We include SR-SAC and RedQ as reported in D’Oro et al. (2022). 10 seeds (except for SR-
SAC which has 5 seeds), 10 tasks, and 95% bootstrapped CI.

D.3 TD-MPC EVALUATION

Figure 12 summarizes additional results for the TD-MPC comparison. We list all hyperparameter
differences to regular DAC implementation in Table 2..

Figure 12: We compare SR-DAC against SR-SAC and TD-MPC. We find that SR-DAC achieves
substantially better performance than SR-SAC, whereas SR-DAC+ performs better than TD-MPC.
The lower right graph shows the average from the following 6 tasks: hopper-hop; cheetah-run;
quadruped-run; humanoid-stand; fish-swim and cartpole-swingup sparse. SR-DAC and SR-SAC
use 10 seeds for each task, and SR-DAC+ and TD-MPC use 5 seeds for each task.
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E HYPERPARAMETER SETTINGS

In all experiments, all algorithms use the same network architectures and a standard ensemble of
two critics (except RedQ, which by design is required to increase the ensemble size). We fix the
shared pool of hyperparameters to single values, which we list under the category share in the table
below. We use the hyperparameter values which are known to work well with SAC (Nikishin et al.,
2022; D’Oro et al., 2022).

Table 1: Hyperparameter values used in the experiments.

HYPERPARAMETER NOTATION VALUE

NETWORK SIZE NA (256, 256)
ACTION REPEAT NA 2

OPTIMIZER NA ADAM
LEARNING RATE NA 3e− 4

BATCH SIZE B 3e− 4
DISCOUNT γ 0.99

INITIAL TEMPERATURE α0 1.0
INITIAL STEPS NA 10000

TARGET ENTROPY H∗ |A|/2
POLYAK WEIGHT τ 0.005

PESSIMISM βlb −1.0
TD3

POLICY UPDATE DELAY NA 2
EXPLORATION σ NA 0.5

TARGET POLICY σ NA 0.2
EXPLORATION NOISE CLIP NA [−0.5, 0.5]

OAC / SR-OAC
OPTIMISM βub 4.36

KL DIVERGENCE CONSTRAINT δ 3.69

ND-TOP / SR-TOP
OPTIMISM ARMS NA [0, 1]

BANDIT LEARNING RATE NA 0.1
POLICY UPDATE DELAY NA 2

EXPLORATION σ NA 0.5
TARGET POLICY σ NA 0.2

EXPLORATION NOISE CLIP NA [−0.5, 0.5]
REDQ

ENSEMBLE SIZE NA 10
ENSEMBLE SUBSET SIZE NA 2

DAC / SR-DAC
INITIAL OPTIMISM βub

0 0.0
INITIAL KL WEIGHT τ0 1.0

TARGET KL DIVERGENCE KL∗ 0.5
STANDARD DEVIATION MULTIPLIER fσ 1.25

ADJUSTMENT LEARNING RATE NA 3e− 5
ADJUSTMENT LEARNING RATE BETA NA 0.5

DAC+
INITIAL STEPS NA 25000
NETWORK SIZE NA (256, 256, 256)

COPYING FREQUENCY NA every 20000 steps

In the low replay ratio regime, all algorithms use 3 gradient steps per environment step. DAC
performs parameter copying in 60000th and 500000th steps. In the high replay ratio regime,

21



Under review as a conference paper at ICLR 2024

all algorithms use 15 gradient steps per environment step. All algorithms perform full pa-
rameter resets in [50000, 250000, 500000, 750000] steps. DAC performs parameter copying in
[25000, 125000, 375000, 625000, 875000] steps.

F TESTED ENVIRONMENTS

Below, we list tasks used in the low and high replay ratio regimes, as well as the ablation and
hyperparameter studies. We choose tasks from the benchmark, but we drop those that are trivially
solved by all the considered methods.

Table 2: 10 DMC tasks used in the model-free benchmark.

DOMAIN TASK

CARTPOLE SWINGUP-SPARSE
CHEETAH RUN

FISH SWIM
HUMANOID RUN, STAND, WALK

HOPPER HOP
PENDULUM SWINGUP
SWIMMER SWIMMER6

QUADRUPED RUN

When comparing against model-based, we choose the tasks proposed by the authors of DreamerV3
(Hafner et al., 2023). As such, we use 18 DMC tasks of easy to moderate level of difficulty. More-
over, we use the DreamerV3 performance curves provided by the authors.

Table 3: 18 DMC tasks used in the DreamerV3 benchmark.

DOMAIN TASK

ACROBOT SWINGUP
CARTPOLE BALANCE (SPARSE), SWINGUP (SPARSE)

CUP CATCH
FINGER SPIN, TURN-EASY, TURN-HARD
HOPPER HOP, STAND

PENDULUM SWINGUP
REACHER EASY, HARD
WALKER RUN, STAND, WALK

G EXPERIMENTAL SETTINGS

G.1 LOW AND HIGH REPLAY REGIMES

We consider the following set of continuous-action RL algorithms:

1. DAC / SR-DAC - Decoupled Actor-Critic. The approach proposed in this paper. DAC
refers to the base algorithm; SR-DAC refers to DAC with a high replay ratio and periodical
full-parameter resets.

2. SAC / SR-SAC - Soft Actor-Critic (Haarnoja et al., 2018) builds on DDPG (Silver et al.,
2014). SAC extends the standard approach with the following: stochastic policy with gra-
dients calculated via the reparametrization trick; automatic adjustment of entropy temper-
ature; clipped Q-learning; and maximum entropy updates on actor and critic networks.
SR-SAC refers to SAC with a high replay ratio and periodic resets of all networks (D’Oro
et al., 2022).

3. OAC / SR-OAC - Optimistic Actor-Critic (Ciosek et al., 2019) extends SAC by designing
an optimistic exploration policy that is a linear approximation to the Q-value upper bound.
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OAC was shown to perform better than SAC in the regime of a low replay ratio. SR-OAC
refers to OAC with a high replay ratio and periodic resets of all networks (D’Oro et al.,
2022).

4. ND-TOP / SR-TOP - Non-Distributional Tactical Optimism and Pessimism (Moskovitz
et al., 2021) builds. The algorithm builds on TD3 (Fujimoto et al., 2018) and addresses
the optimism-pessimism problem by introducing an external discrete bandit that learns βlb

from a set of predefined values. TOP was shown to perform better than OAC and SAC
in the regime of a low replay ratio. SR-TOP refers to TOP with a high replay ratio and
periodic resets of all networks (D’Oro et al., 2022).

5. RedQ - Randomized Ensembled Double Q-Learning (Chen et al., 2020) is an algorithm
designed explicitly for high replay ratio regimes. RedQ avoids plasticity loss/overfitting by
using an ensemble of Q-networks and performing every update using a small subset of the
ensemble.

6. D4PG - Distributed Distributional Deterministic Policy Gradients (Barth-Maron et al.,
2018) is a distributed version of DDPG leveraging distributional critics, prioritized ex-
perience buffer and N-step returns.

7. MPO - Maximum a Posteriori Policy Optimisation (Abdolmaleki et al., 2018) is an off-
policy algorithm based on coordinate ascent on a relative entropy objective.

8. DreamerV3 - a state-of-the-art model-based algorithm (Hafner et al., 2023). It was shown
to perform well across a wide range of tasks, including DMC. We use the results provided
by the authors.

9. TD-MPC - Temporal Difference Learning for Model Predictive Control (Hansen et al.,
2022) a state-of-the-art model-based algorithm leveraging model of the environment for
critic-bootstrapped model-predictive control. In particular, TD-MPC was the first algorithm
to reliably solve the dog domain tasks for proprioceptive control.

We take the maximum average performance of all algorithms (eg. first average over the seeds and
tasks, then take the results from the argmax of the average). In those experiments, the algorithms
are tested on 10 tasks listed in Table 2. Each is run for 106 environment steps and 10 random seeds.

G.2 DREAMERV3 AND TD-MPC COMPARISON

In Figure 1d we compare DAC to DreamerV3. For this comparison, we use the results provided by
the authors of Hafner et al. (2023) in their official repository. As such, we restrict the comparison
to 18 tasks considered in the DreamerV3 paper (Hafner et al., 2023) listed in Table 3. For this
comparison, the low replay DAC uses 10 seeds and DreamerV3 uses 5 seeds.

In Figures 7 and 12 we compare DAC to TD-MPC. For this comparison we use the results provided
by the authors of Hansen et al. (2022) provided in their official repository. We run SR-SAC and SR-
DAC for 106 and SR-DAC+ for 306 environment steps. For this comparison, SR-SAC and SR-DAC
use 10 seeds each, whereas SR-DAC+ and TD-MPC use 5 seeds each.

G.3 ABLATION STUDIES

In Figure 4, we evaluate the impact of removing or adding components to DAC. The ablation study
features DAC and 10 other variations thereof in low replay ratio (3 gradient steps per environment
step) without using layer normalization on the critic network. Below, we describe the variations:

1. (+KL) - in DAC, only the optimistic actor backpropagates the KL penalty portion of the
loss (ie. only the optimistic actor adjusts its parameters such that the KL is minimized).
We add the KL penalty to the conservative actor as well. This results in low divergence
between the two actors, at the cost of both policies being suboptimal.

2. (−π) - in this ablated setting, we consider SAC with only an optimistic actor. As such,
this setting performs exploration, TD learning, and evaluation according to the optimistic
policy. As in this version, there is only one actor, we cannot use the optimism adjustment
mechanism.
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3. (−KL) - this tested configuration does not use KL penalty on any of the actors. As such,
the optimistic actor is unconstrained and can diverge from the conservative one. This results
in fully off-policy learning and poor coverage of the state-action space that is used in the
TD updates.

4. (+Det) - here, we set the conservative actor to be a fully deterministic policy. To this
end, the optimistic actor performs exploration and is stochastic, whereas the conservative
one performs deterministic TD updates. We find that such a setup quite often results in
an overestimation of the Q-values, pinpointing towards regularizing properties of the soft
SARSA. This is the first configuration to work better than the baseline SAC.

5. (−τ&β) - this configuration does not use automatic adjustment of optimism or the KL
penalty weight. As such, it is DAC with fixed optimism and fixed KL penalty weight
throughout the training. Despite its simplicity, this configuration works significantly better
than vanilla SAC.

6. (−β) - this configuration does not use the automatic adjustment of optimism, but it still
uses automatic adjustment of the KL penalty weight. Results indicate that the adjustment
of optimism has a bigger impact on the performance than the adjustment of the KL penalty
weight alone.

7. (−τ) - this configuration does not use automatic adjustment of KL penalty but still uses
automatic adjustment of the optimism. Removing the automatic adjustment of the KL
penalty did not have a very big impact on the performance. We hypothesize that this is due
to the constant scale of returns between the environments.

8. (−Copy) - here, we use DAC but we omit the optimistic actor parameter copying as well as
optimism and KL penalty weight reinitialization. We find that parameter copying offered
marginal performance benefits.

9. (−σ) - in this version of the algorithm, we do not use the σ multiplier. As such, the same
level of variance is applied for exploration, as well as TD updates. We find that using σ
multiplier yields marginal improvements.

10. (−LN) - here, we use complete DAC formulation, albeit we skip the layer normalization in
the critic. We find that adding layer normalization increases the performance as compared
to basic DAC.

We take the maximum average performance of all algorithms (eg. first average over the seeds and
tasks, then take the results from the argmax of the average). Each tested variation is run on the
entire set of 10 hard DMC tasks listed in Table 2. Each variation is run for 500k environment steps
and 10 random seeds. As such, the results shown in Figure 4 feature 1200 training runs.

G.4 HYPERPARAMETER SEARCH

Figure 5 features the results of the hyperparameter stability tests. To this end, we conduct 500k
environment step training runs of DAC with different hyperparameter settings in the low replay ratio
regime (3 gradient steps per environment step). We consider a variety of values for 3 hyperparame-
ters that are specific to DAC:

1. KL Divergence Target (KL∗) - The target KL divergence between two actor networks.
DAC adjusts optimism and KL penalty weight until the target divergence is met. We test 4
configurations of KL∗.

2. Standard Deviation Multiplier (fσ) - A multiplier defining how much bigger or smaller the
standard deviation of an optimistic actor is as compared to the conservative one. We test 5
configurations of fσ .

3. Copying Frequency - The frequency of optimistic actor copying conservative actor param-
eters. We consider the following settings: performing no copying; copying in the early
stage of the training (50k step); copying every 250k steps; copying every 125k steps and
copying every 67.5k steps.

Similarly to the ablation study, each hyperparameter setting is tested on tasks listed in Table 1. Each
setting is run for 500k environment steps and 10 random seeds. As such, the results shown in Figure
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5 feature 1300 training runs. We find that DAC consistently improves on SAC performance across a
variety of hyperparameter setting.

H LEARNING CURVES

In the following section, we share the training curves for the Dreamer, low replay ratio, and high
replay ratio experiments.

Figure 13: Results for the Dreamer evaluation. DAC uses no LayerNorm, a low replay ratio (RR =
3) and no parameter resets. 500k steps, 10 seeds, mean and 3 standard deviations CI.
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Figure 14: Results for low replay ratio (RR = 3) experiments. 106 environment steps, 10 seeds,
mean, and 3 standard deviations CI.
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Figure 15: Results for high replay ratio (RR = 15) experiments. 106 environment steps, 10 seeds,
and 3 standard deviations of the mean.
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