
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RAGDP: RETRIEVE-AUGMENTED GENERATIVE DIF-
FUSION POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Policy has attracted attention for its ability to achieve significant accu-
racy gains in a variety of imitation learning tasks. However, since Diffusion Policy
relies on the Diffusion Model, it requires multiple denoising steps to generate a
single action leading to long generation times. To address this issue, methods like
DDIM and Consistency Models have been introduced to speed up the process.
While these methods reduce computation time, this often comes at the cost of ac-
curacy. In this paper, we propose RAGDP, a technique designed to improve the ef-
ficiency of learned Diffusion Policies without sacrificing accuracy. RAGDP builds
upon the Retrieval-Augmented Generation (RAG) technique, which is commonly
used in large language models to store and retrieve data from a vector database
based on encoded embeddings. In RAGDP, pairs of expert observation and ac-
tions data are stored in a vector database. The system then searches the database
using encoded observation data to retrieve expert action data with high similar-
ity. This retrieved expert data is subsequently used by the RAGDP algorithm to
generate actions tailored to the current environment. We introduce two action gen-
eration algorithms, RAGDP-VP and RAGDP-VE, which correspond to different
types of Diffusion Models. Our results demonstrate that RAGDP can significantly
improve the speed of Diffusion Policy without compromising accuracy. Further-
more, RAGDP can be integrated with existing speed-up methods to enhance their
performance.

1 INTRODUCTION

In the effort to teach behaviors to intelligent agents, imitation learning has been utilized to solve
various tasks (Schaal, 1999; Osa et al., 2018). With the success of Diffusion Models in other fields,
researchers has been experimenting using these models for imitation learning showing excellent
results (Team et al., 2024; Chi et al., 2023; Ze et al., 2024; Reuss et al., 2023; Chen et al., 2024),
with Diffusion Policy (Chi et al., 2023) achieving state-of-the-art performance in Behavior Cloning.

Despite these advancements, Diffusion Policy’s reliance on Diffusion Models introduces a signifi-
cant computational cost. The core challenge stems from the need to perform sequential denoising
of full Gaussian noise to generate a single sample, which greatly increases inference time. For
instance, Diffusion Policy operates using Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020), which require approximately 100 iterations of denoising to generate an action from
Gaussian noise. While reducing the number of denoising steps can improve speed, it often leads to
a trade-off in accuracy, as noise cannot be fully eliminated in fewer steps.

To further enhance speed, methods that reduce the number of required steps have been ex-
plored (Song et al., 2022; Salimans & Ho, 2022; Song et al., 2023; Kim et al., 2024). These ap-
proaches show an increase in generation speed, but involve inherent trade-offs in quality, for ex-
ample in multi-stage tasks. A reduction in accuracy, even if small, can have compounding effect
in imitation learning due to the covariant shift leading to sub-optimal policies (Ross et al., 2011;
Rajaraman et al., 2020). This limitation may further restrict applicability in domains that require
high-precision movements, such as robotics (Ke et al., 2021).

Recent advances in retrieval-augmented diffusion models, such as Retrieval-Enhanced Asymmet-
ric Diffusion (READ) (Oba et al., 2024) for motion planning, Retrieve-Augmented Generation
(RAG) (Lewis et al., 2021) for text generation, and ReDi (Zhang et al., 2023) for efficient image

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Diffusion-based Policies and RAGDP RAGDP can generate actions with two methods,
RAGDP-VP and RAGDP-VE; it can obtain neighborhood values from the knowledge-base and ad-
just the generation speed by parameter r.

generation, demonstrate retrieval in enhancing diffusion processes. However, these models focus
on refining trajectories or text generation, lacking the capability to generate action policies for im-
itation learning. Our method addresses this by introducing retrieval-based expert trajectories into a
diffusion framework for action policy generation. We focus on speeding up policy inference while
maintaining high-quality action generation, which is important for applications dependent on the
inference time.

We introduce Retrieve-Augmented Generation Diffusion Policy (RAGDP) accompanied with two
action generating methods, RAGDP-VP and RAGDP-VE used to accelerate the denoising process
in diffusion models for imitation learning. Analogical to RAG (Lewis et al., 2021), we store expert
observations and action data in a vector database. When denoising the current action, the model
can search the available database based on its encoded observation data to retrieve actions with high
similarity to generate more accurate actions more aligned with the expert data. Once expert actions
have been retrieved we can speed up the sampling process in two distinct ways explained in item 1.
(1) RAGDP-VP lets us skip the initial denoising stages and start later in the process depending on
hyperparameter r. (2) RAGDP-VE instead simply reduces the amount of steps taken. We present
the following contributions:

1. RAGDP: Retrive-Augmented Generative Diffusion Policy, which allows for the storage
and retrieval of expert trajectories from imitation learning data accompanied with two ac-
tion sampling algorithms RAGDP-VP and RAGDP-VE which combined speeds up diffu-
sion policy while keeping a high accuracy.

2. We provide extensive experimental results where we compare our work with current state-
of-the-art methods and show that we can reduce the generation time while maintaining
accuracy.

3. We demonstrate that RAGDP can be combined with existing speed-up methods, further
improving their accuracy.

2 RELATED WORK

Fast sampling methods for Diffusion Models
Several approaches have been proposed to accelerate Diffusion Models. For example, Denoising
Diffusion Implicit Models (DDIM) (Song et al., 2022) is a method that improves the sampling
method of DDPM and can be adapted to trained models. Progressive Distillation (Salimans & Ho,
2022) is proposed as a method that uses knowledge distillation to reduce the sampling steps of the
teacher model. Consistency Model (Song et al., 2023; Kim et al., 2024) is based on the Score-based
Generative Models (Song et al., 2020), which is formulated as a stochastic differential equation for
the Diffusion Models. Among these methods, since Progressive Distillation has a relatively high

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learning cost, we design a model based on DDIM and the Consistency Models. In this paper, we
show how these existing methods can be enhanced with RAGDP to improve the sampling efficiency
further during the inference.

Retrieval-Augmented Methods
While the most widely application of RAG (Lewis et al., 2021) is Large Language Models (Naveed
et al., 2024), there are several methods leveraging data retrieval in Diffusion Models. For instance,
ReDi (Zhang et al., 2023) achieves speed-up by retrieving noisy data paired with data that has some
noise removed. The Retrieval-Augmented Diffusion Model (Blattmann et al., 2022) retrieves both
during training and inference, with retrieval during training to augment the data and retrieval during
inference to search for appropriate conditional input.

In the context of robot learning, There are two lines of work leveraging trajectory retrieval. The
first one is methods that retrieve trajectories during model training. Some methods aim to improve
the dataset by retrieving data that is close to the expert during training. Nasiriany et al. (2022); Du
et al. (2023) utilize Varial Auto Encoders (VAEs) (Kingma & Welling, 2022) to embed observations
and the corresponding actions, and the trajectory retrievals are performed within the embedding
space. The other is to retrieve during both training and inference; ReMoDiffuse (Zou et al., 2024)
proposes to create a database of Text-Motion pairs and to make major architectural modifications to
input the retrieved data into the model. READ (Oba et al., 2024) proposes a model that works with
Image-Motion pairs, which retrieves trajectories during training and the image during inference.

However, these models primarily focus on refining trajectories or improving text and image genera-
tion, lacking application in action policy generation for imitation learning. RAGDP fills this gap by
integrating retrieval-based expert trajectories into a diffusion policy framework for efficient action
policy generation. By retrieving relevant expert demonstrations, RAGDP accelerates policy learn-
ing while maintaining high-quality action generation, making it particularly effective for real-time
robotic tasks.

Diffusion Model-based Data Editing
Diffusion Models are powerful tools for image editing tasks, and their methods can be classified
into three categories: training-based, testing-time finetuning, and training & finetuning free. While
most methods target image and text modalities, SDEdit (Meng et al., 2022) is a method that can be
utilized in the action space. SDEdit can obtain output in line with the input by reverse diffusion
process from the input data with noise added at a specific step. Other methods that potentially can
be applied in the action space include InstructPix2Pix (Brooks et al., 2023) and Denoising Diffusion
Bridge Models (DDBM) (Zhou et al., 2023); however, these methods are not suited to improving
the speed of generation. In this study, we focus on Training & Finetuning Free to consider methods
that deal with the action space (Huang et al., 2024). This let us use RAGDP without any additional
training of the diffusion model.

3 PRELIMINARIES

3.1 SCORE-BASED GENERATIVE MODELING

Score-Based Generative Model generalizes the Diffusion Model as a stochastic differential equation.
Let t denote the time direction and τ denote the diffusion direction; let At be the trajectory at
time step t and Ot be the data of the observed environment at that time. In the Diffusion Model,
the direction in which the amount of noise increases is considered the forward process, while the
direction in which the amount of noise decreases is considered the reverse process. Let σ(τ) be the
sampling scheduler of the diffusion model and take the range of σ ∈ [σmin, σmax]. Then, we define
two functions F : RDA × [σmin, σmax] → RDA and G : [σmin, σmax] → R. Where DA is the
dimension size of At. At this point, the forward process is as follows (Song et al. (2020)):

dAt(τ) = F (At(τ), σ(τ))dσ +G(σ(τ))dω. (1)

On the other hand, Reverse porcess is as follows:

dAt(τ) =

[
F (At(τ), σ(τ))−

1

2
G(σ(τ)2∇At

log pσ(At(τ)|Ot)

]
dσ +G(σ(τ))dω. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: a) Diffusion Policy Representation: Diffusion Policy behaves as a diffusion model that
takes data observed from the environment as conditional input and outputs trajectory data.
b) Observation and Prediction Horizons: The conditional input is Ot, chunked by To steps of
observed data ot, and the generated behavior is At, chunked by Tp steps of action step at.

The distribution that trajectory At follows is a conditional probability distribution based on the
observed data Ot.

Variance Preserving Stochastic Differential Equations
In the equation above, when σ(τ) = τ and the functions are F (At(τ), τ) = − 1

2β(τ)At(τ) and
G(τ) =

√
β(τ), then the equation represents Variance Preserving Stochastic Differential Equations

(VP-SDE). When the two functions are applied to the Equation 1 and the differential equation is
solved, the general solution is as follows:

At(τ) = α(τ)At + σ(τ)z where z ∼ N (0, I). (3)

Where α(τ) and σ(τ) are functions computed from β(τ) and have properties such as α(τ)2 +
σ(τ)2 = 1. Therefore, in VP-SDE, noise and data are mixed as a ratio at each step τ , resulting in
σ(τ) ∈ [0, 1]. DDPM is classified as this type of Diffusion Models.

Variance Exploding Stochastic Differential Equations
Then, if the function is set F (At(τ), τ) = 0 and G(τ) =

√
2σ(τ), called Variance Exploding

Stochastic Differential Equations (VE-SDE). The general solution in this case is as follows:

At(τ) = At + σ(τ)z where z ∼ N (0, I). (4)

In VE-SDE, there is no limit to the amount of noise, and σ ∈ [σmin, σmax]. VE-SDE based
EDM (Karras et al., 2022) models were employed in our experiments.

3.2 DIFFUSION MODELS IN BEHAVIOR CLONING

This section describes Diffusion Policy, a method of Behavior Cloning using the Diffusion Model.
Let ot be the observed data at a certain time and at be the behavior taken at that time, and D =

{(o(i)0 , a
(i)
0 , (o

(i)
1 , a

(i)
1), ..., (o

(i)
T , a

(i)
T)}Ni=1 be the training data of the model, where N is the number

of episodes collected by the expert. The behavior of the Diffusion Policy is illustrated in Figure 2.

In the Diffusion Policy, the model takes observation data as input and outputs behavioral action
data. The input observation data is chunked for the past To steps Ot = [ot, ot−1, ...]. The output
action data is chunked for Tp steps of action step at and is At. Only Ta steps of it are executed. To
generate At using the Diffusion Model, Equation 2 can be utilized. ∇At

log pσ(At(τ)|Ot) in Equa-
tion 2 is called the score function and is the quantity that the model should acquire in training
sθ = ∇At log pθ(At,τ |Ot). The optimization algorithm for learning is called score matching and is
expressed by the following equation:

L(θ) = Et∼U [0,T],τ∼U [0,T],At∼p(At|Ot)

[
|sθ(At,τ , στ , Ot)−∇At

log pστ
(At,τ |Ot)|2

]
. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: RAGDP Representation: The RAGDP is divided into two parts: the first is the knowledge
base part, which is implemented as a vector database of observation and trajectory data pairs (sec-
tion 4.1); the second is the diffusion model part, which outputs the final trajectory data via Diffusion
Policy (section 4.2). The operation has two steps. Stage-1, which encodes the expert’s data into a
1D vector and stores it in a vector database; Stage-2 consists of searching for relevant actions with
observations made in the inference environment and generates them using a trained diffusion model.

4 APPLYING RETRIEVE-AUGMENTED GENERATION FOR DIFFUSION POLICY

This section describes the proposed method, RAGDP; the method consists of the retrieval part of
the actions from the training dataset (section 4.1) and the action generation part using the retrieval
action as an initial value for the denoising steps (section 4.2). The overall diagram of the proposed
method is shown in Figure 3.

4.1 RETRIEVAL

Implementing Vector Database
The knowledge-base in RAGDP is a vector database consisting of pairs of observation data and
corresponding expert trajectory data. When performing a search, the key vector is the observed data
of the training data, and the value vector retrieved during the search corresponds to the trajectory
data At of the training data. The query vector during retrieval is the observed data during inference.
In most of the previous studies, the embedding space is created by VAE for retrieval on observed
data before retrieval. In this study, the vectors obtained from the encoders of the observed data
implemented in Diffusion Policy are stored in the knowledge-base; the encoders in Diffusion Policy
are CNN models in the case of images and identity functions in the case of states data. It has been
shown that this encoder is better trained simultaneously with Diffusion Policy than pre-trained alone
on a large data set.

The vector database is implemented in Facebook AI Similarity Search (FAISS) (Johnson et al.,
2017), which uses a search method that indexes from L2 distances in Euclidean space.

Retrieving Strategy
In searching the vector database, the following issues are considered: when to search for a time step
t, how many samples with the highest search similarity should be obtained, and whether to use a
threshold for the search. RAGDP simply searches at every time step, does not use a threshold when
searching, and works to obtain the top one similarity sample.

4.2 GENERATION

Next, we will explain how to generate the final sample based on the samples obtained from the
Knowledge-base. The proposed method is based on SDEdit as a method that can be adapted to
the behavioral space from two perspectives: it can be used with existing Diffusion Models and it

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 RAGDP-VP (DDPM) Sampling Algorithm
Require: diffuse rate r, total denosing steps T , denosing scheduler στ , total episode steps T , pre-

trained model parameters θ, vector database {(Oexp
i , Aexp

i)|i ∈ {1, 2, . . . , Ndata}}.
1: for t = 1 to T do
2: Observe Ot

3: i← argmin
n=1...Ndata

∥Ot −Oexp
n ∥

4: Aret ← Aexp
i

5: τ∗ ← ⌊(1− r)T ⌋
6: z ∼ N (0, I)
7: At,τ∗ ←

√
ατ∗Aret +

√
1− ατ∗z

8: for τ = τ∗ to 0 do
9: z ∼ N (0, I) if τ > 0 else z = 0

10: At,τ−1 = 1√
ατ

(
At,τ − 1−ατ√

1−ατ
zθ(At,τ , τ, Ot)

)
+ στz

11: end for
12: Execute At,0

13: end for

can speed up the sample speed. The following two methods were implemented for the generation
algorithm.

RAGDP-VP
In VP-SDE, the parameters in Equation 3 are constrained by α(τ)2+σ(τ)2 = 1. This means that the
magnitude of the noise and the action are determined by a ratio. Therefore, the action retrieved from
the database is used to calculate the final output from the ratio of action and noise corresponding
to the starting diffusion step τ0. RAGDP-VP introduces a hyperparameter r, which determines the
initial position to start the denoising process. If the number of diffusion steps is T and the step to
start generating is τ0, then r = τ0/T . Since the parameter takes the range 0 < r < 1, the number
of steps to generate samples is (1 − r)T , which enables faster processing. In principle, RAGDP-
VP can be applied to both VP-SDE and VE-SDE Diffusion Models and Consistency Models. The
DDPM-based RAGDP-VP is shown in Algorithm 1.

RAGDP-VE
In the case of VE-SDE, α(τ) in Equation 3 is fixed by α(τ) = 1 . Therefore, there is no limit
on the size of the action and noise. Therefore, the action taken from the database adds noise of a
magnitude corresponding to the starting diffusion step τ0, and the output is obtained where this noise
becomes smaller. Therefore, RAGDP-VE always adds σmax without changing the amount of initial
noise and only changes the number of sample steps. Similarly, a hyperparameter r is introduced,
which similarly generates samples by calculating (1 − r)T steps. RAGDP-VE can be applicable
for VE-SDE based Diffusion Model only and Consistency Models. The EDM-based RAGDP-VE is
shown in Algorithm 2.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of RAGDP in enhancing the performance of tra-
ditional Diffusion Policy. The performance is benchmarked on the Behavior Cloning datasets:
Robomimic (Mandlekar et al., 2021) and Push-T. Our implementation of the diffusion model inte-
grates various diffusion policies, including DDPM, DDIM, and EDM. Additionally, we incorporate
Consistency Policy based on Consistency Trajectory Models (Prasad et al., 2024) for comparative
analysis. We aim to investigate the following: (1) How the performance of RAGDP varies as the
number of steps changes. (2) The impact of the hyperparameter r on both inference speed and
accuracy. (3) We make a comparison of RAGDP-VP and RAGDP-VE.

5.1 EVALUATION SETUP

We trained the Diffusion Policy models using the Behavior Cloning dataset, as in the Equation 5,
and then creating a vector database from the training dataset. Finally, the accuracy and generation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 RAGDP-VE (EDM) Sampling Algorithm
Require: diffuse rate r, total denosing steps T , denosing scheduler στ , total episode steps T , pre-

trained model parameters θ, vector database {(Oexp
i , Aexp

i)|i ∈ {1, 2, . . . , Ndata}}.
1: for t = 1 to T do
2: Observe Ot

3: i← argmin
n=1...Ndata

∥Ot −Oexp
n ∥

4: Aret ← Aexp
i

5: n← (1− r)T
6: ∆τ ← ⌊Tn ⌋
7: At,T ← Aret + σmaxz
8: τ ← T
9: for j = 1 to n do

10: At,τ−∆τ = At,τ + (σ2
τ − σ2

τ−∆τ)sθ(At,τ , στ , Ot)
11: τ ← τ −∆τ
12: end for
13: Execute At,0

14: end for

Table 1: Task Details. #Rob: number of robots, #Obj: number of objects, ActD: action dimension,
PH: proficient-human demonstration, MH: multi-human demonstration, Steps: max number of roll-
out steps.

Task #Rob #Obj ActD #PH #MH Steps

Square 1 1 7 200 300 400
ToolHang 1 2 7 200 - 700
Transport 2 3 14 200 300 700

Push-T 1 1 2 200 - 300

speed of the trained model were measured in a test environment. Table 1 shows the tasks selected
for evaluation.

The tasks were benchmarked in a simulation environment, covering SQUARE-PH, SQUARE-MH,
TOOLHANG-PH, and PUSH-T. The performance of each task is the average of the models trained
on 3 different seeds. 56 different seeds were available in the evaluation environment, for a total of
168 measurements per task. The evaluation seed was not included in the training seed. For all exper-
iments, state data was used for observations. The column “Steps” in Table 1 specifies the maximum
number of steps allowed per episode. For SQUARE-PH, SQUARE-MH, and TOOLHANG-PH, ac-
curacy is reported as the average success rate of the task. For PUSH-T the accuracy measures the
target area coverage. The task was also validated in TRANSPORT-PH as a task with a large action
dimension DA. Here, SQUARE-PH, MH and PUSH-T are single-step tasks, while TOOLHANG
and TRANSPORT-PH are multi-step tasks as they move multiple objects.

Table 2: Model Details. The number of sample steps of the model used in the experiment and the
method of action generation are shown in the table.

Models Sampling Steps T Diffusion Policy RAGDP-VP RAGDP-VE

DDPM 100 ✓ ✓ ✗
DDIM 25 ✓ ✓ ✗
EDM 40 ✓ ✓ ✓
CTM 4 ✓ ✓ ✓

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Results of utilizing Diffusion Policy and RAGDP in the DDPM model. Using RAGDP-
VP sampling when utilizing RAGDP in the DDPM model. DDPM tends to rapidly lose accuracy
when de-noising steps are reduced, but the use of RAGDP-VP shows that accuracy is robustly main-
tained, except for PUSHT.

Figure 5: Results of utilizing Diffusion Policy and RAGDP in the EDM model. Using RAGDP-
VE sampling when utilizing RAGDP in the EDM model. EDM models show a relatively gradual
decrease in accuracy with respect to denoising step reductions. However, by utilizing RAGDP-VE,
the accuracy of the same models was improved.

We benchmarked the following diffusion-based models: DDPM, DDIM, and EDM for Diffusion
Policy (DP), and Consistency Policy (CP) models based on CTM. DDIM can be combined with
RAGDP-VP as there is a DiffEdit (Couairon et al., 2022) selection study. The DDPM, DDIM,
EDM, and CTM models were used for RAGDP-VP, while only EDM and CTM were used for
RAGDP-VE. The CTM is trained by knowledge-distillation of the trained EDM as a teacher model.
DPM-Solver++ (Lu et al., 2023) is used for EDM sampling.

5.2 EFFECTIVENESS OF RAGDP

We compared the effectiveness of the proposed method against existing Diffusion Policies, specifi-
cally those implemented with the DDPM and EDM models. We then demonstrated the relationship
between accuracy and the number of sampling steps with and without adaptation of RAGDP. The
results of the comparison for each model are shown in Figure 4 and Figure 5. The numbers shown
in the figure represent the average of the 3 seeds.

The figures demonstrate that, for RAGDP-VP(DDPM), accuracy remains relatively stable even as
the number of sampling steps decreases except for PUSHT which is more challenging for fewer
steps for both DDPM models. For RAGDP-VE(EDM), there is slight decline but still obtaining a
higher accuracy than EDM only.

In the Appendix C, we show graphs of RAGDP adapted to DDIM and Consistency Models, which
is a method for speeding up Diffusion Models, affected by the trade-off relationship in RAGDP-
VP. Conversely, the use of RAGDP in Consistency Models can extend the performance of existing
methods.

5.3 SPEEDUPS ON DIFFUSION POLICY

Sampling speed and accuracy measurements were then performed on various models. The ex-
perimental accuracy results are shown in Table 3 for RAGDP hyperparameters r, with values of
r = 0.25, 0.50, and 0.75. The combined speed and accuracy results are also shown in Figure 6,
indicating that the RAGDP can be used to increase sample speed without compromising accuracy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Inference speed and accuracy: 3 seeds average rewards are shown as accuracy on the
vertical axis and sampling speed on the horizontal axis. Speeds were measured on RTX 3060. The
upper left direction of the graph indicates better performance. The results of RAGDP-VP of DDPM
are compared with DDIM. The upper half of the figure shows that the accuracy of RAGDP-VP is
comparable to DDIM. As RAGDP-VP can also be adapted to DDIM, this result is included in the
Appendix C. Next, the lower half of the figure shows a comparison of RAGDP-VE with CTM. The
results show that by utilising RAGDP-VE for EDM, the accuracy reaches the same or better than
that of CTM at the same speed as CTM. The more results of adapting RAGDP with CTM are shown
in Figure 14.

Figure 7: Comparison of RAGDP-VP and RAGDP-VE performance in VE-SDE based Diffu-
sion Model: A comparison of VE-SDE-based EDM models in PUSHT-PH and TOOLHANG-PH
shows that RAGDP-VP is less accurate with respect to sampling steps, while RAGDP-VE is more
robust.

We do further investigations on how the average search distance affects the accuracy of RAGDP for
the more challenging environments in the Appendix B.2.

5.4 RAGDP-VP VS. RAGDP-VE

RAGDP-VP can also be utilized for VE-SDE-based models. In fact, SDEdit has shown that it can
be used in VE-SDE-based models to generate images according to the conditions. Therefore, it is
necessary to investigate how it behaves in the action space, so we compared the accuracy of sampling
with RAGDP-VP and RAGDP-VE in the VE-SDE-based EDM. The Figure 7 shows the results of
comparing the change in accuracy for each sampling technique by reducing the number of sampling
steps. RAGDP-VP has a trade-off between faithfulness to the input and realism. Therefore, when
the parameter r is large, the de-noising step is smaller and the amount of noise given is smaller, so
realism tends to be weaker and less accurate.

The Appendix C shows comparative results in the case of CTM: for EDM, RAGDP-VE is better,
but in some cases RAGDP-VP is better for CTM, where the noise magnitude can be controlled.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Accuracy and hyperparameter r: The effect of hyperparameter r on accuracy of the
EDM model is shown. It can be seen that the larger the r, the faster the generation speed increases,
but the accuracy tends to decrease.

5.5 CHOICE OF HYPERPARAMETER

Consider the choice of hyperparameter r. In image-based diffusion models, there is a known trade-
off between faithfulness to the input and realism. If the number of steps to denoise with respect to the
input is small, realistic samples cannot be generated, and conversely, if the number of denoise steps
with respect to the input is large, the faithfulness to the output to be obtained is reduced. Therefore,
in the image-based case, the weightspot is chosen, which is expressed in r as r ∈ [0.4, 0.7]. The
proposed method also measured the hyper-parameters with the EDM model, as shown in Figure 8.
From the figure, it can be seen that for each task, performance tends to decrease when r = 0.75
or higher. Therefore, it is considered optimal to determine parameters around this point where a
trade-off between task accuracy and speed can be made.

6 CONCLUSION

In this study, speed and accuracy benchmarks were created by utilising Diffusion Policy in DDPM,
EDM and CTM models. Then, using a vector database as a knowledge base, we proposed RAGDP,
a method that can improve sample speed without requiring additional training and without reducing
the accuracy of Diffusion Policy. in RAGDP, sample speed is determined by the parameter r and can
generate behaviour for VP-SDE and VE-SDE based Diffusion Models using the RAGDP-VP and
RAGDP-VE sampling methods. The proposed method is shown to be robust to a reduced number
of steps. And RAGDP-VP was shown to improve the performance of existing models by adjusting
the noise magnitude when utilising DDPM and when utilising CTM; RAGDP-VE was shown to be
effective for EDM-based models when speeding up the process.

However, several points need to be improved in the future. First, RAGDP is sensitive concerning
existing models and hyperparameters. Therefore, it is necessary to select hyperparameters in line
with specific tasks. This is because the initial values of the generation process vary. For example,
as Align Your Steps (Sabour et al., 2024) improves accuracy by compensating for the discretization
error of the scheduler, it may be necessary to consider a scheduler that follows the initial values.
Second, this study does not discuss the creation of a semantic space when searching with observed
data. Future work should investigate improving the embedded space to be searched for in behavioral
data as well.

REFERENCES

A. Blattmann, Robin Rombach, K Oktay, and Björn Ommer. Retrieval-augmented diffusion
models. ArXiv, abs/2204.11824, 2022. URL https://api.semanticscholar.org/
CorpusID:248377386.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
editing instructions, 2023. URL https://arxiv.org/abs/2211.09800.

Shang-Fu Chen, Hsiang-Chun Wang, Ming-Hao Hsu, Chun-Mao Lai, and Shao-Hua Sun. Diffu-
sion model-augmented behavioral cloning, 2024. URL https://arxiv.org/abs/2302.
13335.

10

https://api.semanticscholar.org/CorpusID:248377386
https://api.semanticscholar.org/CorpusID:248377386
https://arxiv.org/abs/2211.09800
https://arxiv.org/abs/2302.13335
https://arxiv.org/abs/2302.13335

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric A. Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. ArXiv, abs/2303.04137,
2023. URL https://api.semanticscholar.org/CorpusID:257378658.

Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
based semantic image editing with mask guidance, 2022. URL https://arxiv.org/abs/
2210.11427.

Maximilian Du, Suraj Nair, Dorsa Sadigh, and Chelsea Finn. Behavior retrieval: Few-shot imitation
learning by querying unlabeled datasets, 2023. URL https://arxiv.org/abs/2304.
08742.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. ArXiv,
abs/2006.11239, 2020. URL https://api.semanticscholar.org/CorpusID:
219955663.

Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong,
He Zhang, Shifeng Chen, and Liangliang Cao. Diffusion model-based image editing: A survey,
2024. URL https://arxiv.org/abs/2402.17525.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus, 2017.
URL https://arxiv.org/abs/1702.08734.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. ArXiv, abs/2206.00364, 2022. URL https://api.
semanticscholar.org/CorpusID:249240415.

Liyiming Ke, Jingqiang Wang, Tapomayukh Bhattacharjee, Byron Boots, and Siddhartha Srinivasa.
Grasping with chopsticks: Combating covariate shift in model-free imitation learning for fine
manipulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.
6185–6191. IEEE, 2021.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion, 2024. URL https://arxiv.org/abs/2310.
02279.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https:
//arxiv.org/abs/1312.6114.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models, 2023. URL https://arxiv.
org/abs/2211.01095.

Ajay Mandlekar, Danfei Xu, J. Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Mart’in-Mart’in. What matters in learning from offline
human demonstrations for robot manipulation. In Conference on Robot Learning, 2021. URL
https://api.semanticscholar.org/CorpusID:236956615.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations, 2022. URL
https://arxiv.org/abs/2108.01073.

Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior data
for skill-based imitation learning, 2022. URL https://arxiv.org/abs/2210.11435.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models, 2024. URL https://arxiv.org/abs/2307.06435.

11

https://api.semanticscholar.org/CorpusID:257378658
https://arxiv.org/abs/2210.11427
https://arxiv.org/abs/2210.11427
https://arxiv.org/abs/2304.08742
https://arxiv.org/abs/2304.08742
https://api.semanticscholar.org/CorpusID:219955663
https://api.semanticscholar.org/CorpusID:219955663
https://arxiv.org/abs/2402.17525
https://arxiv.org/abs/1702.08734
https://api.semanticscholar.org/CorpusID:249240415
https://api.semanticscholar.org/CorpusID:249240415
https://arxiv.org/abs/2310.02279
https://arxiv.org/abs/2310.02279
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2211.01095
https://arxiv.org/abs/2211.01095
https://api.semanticscholar.org/CorpusID:236956615
https://arxiv.org/abs/2108.01073
https://arxiv.org/abs/2210.11435
https://arxiv.org/abs/2307.06435

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Takeru Oba, Matthew Walter, and Norimichi Ukita. Read: Retrieval-enhanced asymmetric diffu-
sion for motion planning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 17974–17984, June 2024.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. Foundations and Trends in Robotics, 7(1–2):
1–179, 2018. ISSN 1935-8261. doi: 10.1561/2300000053. URL http://dx.doi.org/10.
1561/2300000053.

Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy: Ac-
celerated visuomotor policies via consistency distillation, 2024. URL https://arxiv.org/
abs/2405.07503.

Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits
of imitation learning. Advances in Neural Information Processing Systems, 33:2914–2924, 2020.

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imita-
tion learning using score-based diffusion policies, 2023. URL https://arxiv.org/abs/
2304.02532.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models, 2024. URL https://arxiv.org/abs/2404.14507.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
URL https://arxiv.org/abs/2202.00512.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in
Cognitive Sciences, 3(6):233–242, 1999. ISSN 1364-6613. doi: https://doi.org/10.
1016/S1364-6613(99)01327-3. URL https://www.sciencedirect.com/science/
article/pii/S1364661399013273.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

Yang Song, Jascha Narain Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Er-
mon, and Ben Poole. Score-based generative modeling through stochastic differential equa-
tions. ArXiv, abs/2011.13456, 2020. URL https://api.semanticscholar.org/
CorpusID:227209335.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023. URL
https://arxiv.org/abs/2303.01469.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yun-
liang Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey
Levine. Octo: An open-source generalist robot policy, 2024. URL https://arxiv.org/
abs/2405.12213.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations, 2024. URL
https://arxiv.org/abs/2403.03954.

Kexun Zhang, Xianjun Yang, William Yang Wang, and Lei Li. Redi: Efficient learning-free diffusion
inference via trajectory retrieval, 2023. URL https://arxiv.org/abs/2302.02285.

Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models,
2023. URL https://arxiv.org/abs/2309.16948.

Qiran Zou, Shangyuan Yuan, Shian Du, Yu Wang, Chang Liu, Yi Xu, Jie Chen, and Xiangyang Ji.
Parco: Part-coordinating text-to-motion synthesis, 2024. URL https://arxiv.org/abs/
2403.18512.

12

http://dx.doi.org/10.1561/2300000053
http://dx.doi.org/10.1561/2300000053
https://arxiv.org/abs/2405.07503
https://arxiv.org/abs/2405.07503
https://arxiv.org/abs/2304.02532
https://arxiv.org/abs/2304.02532
https://arxiv.org/abs/2404.14507
https://arxiv.org/abs/2202.00512
https://www.sciencedirect.com/science/article/pii/S1364661399013273
https://www.sciencedirect.com/science/article/pii/S1364661399013273
https://arxiv.org/abs/2010.02502
https://api.semanticscholar.org/CorpusID:227209335
https://api.semanticscholar.org/CorpusID:227209335
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2403.03954
https://arxiv.org/abs/2302.02285
https://arxiv.org/abs/2309.16948
https://arxiv.org/abs/2403.18512
https://arxiv.org/abs/2403.18512

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 3: Accuracy results of single step tasks. The table shows the results of accuracy when
generating actions with the existing Diffusion Policy (DP), Consistency Policy (CP), and RAGDP,
measuring the accuracy when the parameter r of RAGDP is varied in three different patterns.

SQUARE (PH) SQUARE (MH) PUSH-T

DP(DDPM) 0.8929 ± 0.0473 0.7560 ± 0.0826 0.8811 ± 0.0436
RAGDP-VP(DDPM) r = 0.25 0.8572 ± 0.0358 0.7203 ± 0.0806 0.8853 ± 0.0248
RAGDP-VP(DDPM) r = 0.50 0.8810 ± 0.0104 0.6607 ± 0.0619 0.8881 ± 0.0230
RAGDP-VP(DDPM) r = 0.75 0.9167 ± 0.0676 0.6548 ± 0.0826 0.8632 ± 0.0249

DP(EDM) 0.9048 ± 0.0273 0.7322 ± 0.0619 0.9205 ± 0.0344
RAGDP-VE(EDM) r = 0.25 0.9405 ± 0.0103 0.7560 ± 0.0207 0.9372 ± 0.0191
RAGDP-VE(EDM) r = 0.50 0.9048 ± 0.0103 0.7322 ± 0.0310 0.9537 ± 0.0328
RAGDP-VE(EDM) r = 0.75 0.9346 ± 0.0273 0.7322 ± 0.0644 0.9438 ± 0.0127
RAGDP-VE(EDM) r = 0.90 0.7441 ± 0.1190 0.5239 ± 0.0516 0.8485 ± 0.0454

DP(DDIM) 0.8810 ± 0.0273 0.7441 ± 0.1190 0.8769 ± 0.0202
RAGDP-VP(DDIM) r = 0.25 0.8810 ± 0.0273 0.7441 ± 0.0450 0.8660 ± 0.0161
RAGDP-VP(DDIM) r = 0.50 0.9108 ± 0.0179 0.7441 ± 0.0413 0.8173 ± 0.0162
RAGDP-VP(DDIM) r = 0.75 0.8870 ± 0.0104 0.6667 ± 0.0574 0.1277 ± 0.0127

CP(CTM) 0.8393 ± 0.0536 0.6310 ± 0.0207 0.7985 ± 0.0265
RAGDP-VP(CTM) r = 0.25 0.9048 ± 0.0546 0.5179 ± 0.0619 0.7996 ± 0.0180
RAGDP-VP(CTM) r = 0.50 0.8989 ± 0.0273 0.5953 ± 0.0826 0.8077 ± 0.0106
RAGDP-VP(CTM) r = 0.75 0.8155 ± 0.0806 0.5120 ± 0.0722 0.1548 ± 0.0273
RAGDP-VE(CTM)r = 0.25 0.7738 ± 0.0450 0.5298 ± 0.1341 0.7629 ± 0.0289
RAGDP-VE(CTM)r = 0.50 0.8096 ± 0.0744 0.5238 ± 0.0207 0.7215 ± 0.0260
RAGDP-VE(CTM)r = 0.75 0.8215 ± 0.0309 0.5238 ± 0.0207 0.7503 ± 0.0476

Table 4: Accuracy results of multi step tasks. Accuracy of action generation in multi-step tasks.
TOOLHANG (PH) TRANSPORT (PH)

DP(DDPM) 0.4286 ± 0.0179 0.7679 ± 0.0179
RAGDP-VP(DDPM) r = 0.25 0.4643 ± 0.0779 0.7619 ± 0.0372
RAGDP-VP(DDPM) r = 0.50 0.3929 ± 0.0536 0.7857 ± 0.0644
RAGDP-VP(DDPM) r = 0.75 0.4107 ± 0.0357 0.7500 ± 0.0618

DP(EDM) 0.5477 ± 0.0516 0.7679 ± 0.0715
RAGDP-VE(EDM) r = 0.25 0.5417 ± 0.0273 0.8155 ± 0.0273
RAGDP-VE(EDM) r = 0.50 0.5000 ± 0.0779 0.7738 ± 0.0273
RAGDP-VE(EDM) r = 0.75 0.5417 ± 0.1032 0.8095 ± 0.0844

A DETAILED EXPERIMENTAL RESULTS

Detailed results of measuring the accuracy of the 3-seed average with various hyperparameters are
shown in the Table 3 and Table 4.

Figure 9 shows the effect of reducing the number of steps when utilising RAGDP-VP and RAGDP-
VE in Transport-PH.

B MORE STUDIES ON KNOWLEDGE-BASE

B.1 IMPLEMENTING KNOWLEDGE-BASE

In this section, we describe how we converted the training data to knowledge-base. The training
data to be stored in knowledge-base is based on the policy of storing arrays similar to the Diffusion
Policy.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 9: Results of utilizing RAGDP-VP and RAGDP-VE in TRANSPORT-PH task: It can
be seen that RAGDP works even in the TRANSPORT task, where the action dimension is twice as
large.

Figure 10: Behavior Cloning tasks: In this study, 3 datasets of single robot tasks, SQUARE,
TOOLHANG, TRANSPORT and PUSHT, were used.

Table 5: Row numbers of the Knowledge-base.
Tasks Row numbers

SQUARE-PH 28754
SQUARE-MH 78631

TOOLHANG-PH 94562
TRANSPORT-PH 92352

PUSHT-PH 24208

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 11: Knowledge-base average search distance results.: The results of inferring RAGDP-VP
(DDPM) with the TOOLHANG-PH task and RAGDP-VE (EDM) with the SQUARE-MH task are
shown.

The retrieved vector is an array of To ×Do, and the output vector is TA ×DA. Table 5 shows the
number of rows in the knowledge-base created for all training data. All data is normalized prior to
input, as is the training data.

B.2 KNOWLEDGE-BASE STUDIES

From the above experimental results, we obtained that there are some patterns in which the use
of RAGDP improves accuracy slightly. Therefore, it is necessary to investigate how the use of
Knowledge-base affects accuracy. As a simple experiment, we recorded the similarity of searches for
a task and examined the patterns of success and failure. The tasks selected were TOOLHANG-PH
and SQUARE-MH, which have relatively high failure patterns. The model took the average of the
three seeds of RAGDP-VP (DDPM) and RAGDP-VE (EDM). The results are shown in Figure 11.
The vertical axis of the figure represents the average of the similarity distance L = 1

T
∑T

t=1 |Ot −
Oexpert

t |2 obtained for all episodes and test environments. From the figure, it can be seen that the
more successful the task is, the smaller the distance obtained from the knowledge-base.

In the Appendix B.3, we also experimented with the behavior of accuracy when the knowledge-base
was created with untrained data. From the experimental results, it was found that the accuracy of
the knowledge-base was not degraded when it was created with trained data.

B.3 KNOWLEDGE-BASE AND TRAINING DATASET

In robomimic, we also experimented with the behavior of the knowledge-base when it is created
with untrained data: the PH and MH datasets. PH is the data that performed skilled human. The
MH task consists of “better”, “okay”, and “worst” data. Therefore, as an experiment, we created a
knowledge-base in SQUARE-MH for the model trained in SQUARE-PH and a knowledge-base for
the model trained in SQUARE-MH, and measured the accuracy of each when generated by RAGDP.
The results are shown in Table 6 and Table 7, respectively.

B.4 STUDY OF KNOWLEDGE-BASE SIZE

Variation with respect to the amount of databases was investigated: as the number of datasets in
behavior cloning is limited, experiments were conducted with a small amount of databases. In the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Result of creating a knowledge-base with SQUARE-MH for a model trained with
SQUARE-PH. Each accuracy represents the average of three seeds. The model is RAGDP-VE
(EDM).

Knowledge-base Accuracy (r = 0.25) Accuracy (r = 0.50) Accuracy (r = 0.75)

SQUARE-PH (base) 0.9405 ± 0.0103 0.9048 ± 0.0103 0.9346 ± 0.0273
SQUARE-MH 0.8870 ± 0.0450 0.8869 ± 0.0744 0.7917 ± 0.1077

Table 7: Result of creating a knowledge-base with SQUARE-PH for a model trained with
SQUARE-MH. Each accuracy represents the average of three seeds. The model is RAGDP-VE
(EDM).

Knowledge-base Accuracy (r = 0.25) Accuracy (r = 0.50) Accuracy (r = 0.75)

SQUARE-MH (base) 0.7560 ± 0.0207 0.7322 ± 0.0310 0.7322 ± 0.0644
SQUARE-PH 0.6965 ± 0.0309 0.7262 ± 0.0677 0.7143 ± 0.0357

experiment, 100% of the database was created with all training data, and the accuracy and search
distance were investigated when the database was varied to 10% and 1%. The results are shown in
Figure 12. From the figure, it can be seen that the retrieval distance tends to decrease as the database
size increases. However, it can be seen that accuracy has not changed significantly. Therefore,
accuracy is not considered to be directly related to retrieve distance. Therefore, it is thought that
quality, not quantity, may be important in terms of the data that should be stored in the database.
Research (Du et al., 2023) has shown that accuracy can be improved with less data by retrieving
data at the time of training.

Figure 12: Result of varying the size of the database. The behavior of SQUARE-PH and MH
with respect to the respective hyperparameter r was measured with the EDM-based RAGDP-VE.
The left-hand side shows the results for accuracy and database size, while the right-hand side shows
the results for retrieve distance and database size. The results show that the retrieve distance tends
to decrease as the database size increases. However, the accuracy has not changed significantly.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 13: Results of utilizing Diffusion Policy and RAGDP in the DDIM model. Using RAGDP-
VP sampling when utilizing RAGDP in the DDIM model. RAGDP-VP has a trade-off between
faithfulness for the input and realism for the output; in the case of DDIM, the small number of
sampling steps shows that the trade-off effect is stronger when the number of steps is smaller.

Figure 14: Results of utilizing Consistency Policy and RAGDP in the CTM model. Both
RAGDP-VP and RAGDP-VE can be used in CTM. The results show that when the number of steps
is 2, RAGDP-VP reaches the same or better accuracy than the existing CTM. This is because when
using RAGDP in CTM, if the amount of noise is too large for the action taken in the search, the
effect will be small. Therefore, it is necessary to determine the appropriate noise level. Conversely,
RAGDP-VE cannot control the size of the noise, which means that it is equal to or less than existing
CTMs.

C RAGDP IN FAST SAMPLING METHODS

This section shows the results of adapting RAGDP in existing acceleration methods. First, the results
of adapting RAGDP-VP to DDIM are shown in Figure 13.

The results of adapting the RAGDP to the CTM are then shown in the Fig Figure 14. Although this
study experiments with methods that focus on reducing the number of steps, it can be said that, in
the case of CTM, the behaviour in the amount of noise is also important.

D CODE IMPLEMENTATIONS

1 class RobotFAISS(object):
2 def __init__(
3 self,
4 index_name:str, # toolhang.index
5 vector_dimensions:int,
6 vector_db_folder:str=’./db’,
7) -> None:
8 self.index_name = index_name
9 self.dict_name = index_name.replace(".index", ".pkl")

10 self.vector_dimensions = vector_dimensions
11 self.vector_db_folder = vector_db_folder
12

13 self.index : Optional[faiss.IndexFlatL2] = None
14 self.vector_dict : Dict[int, np.array] = {}
15

16 def initialize_index(self) -> None:
17 index = faiss.IndexFlatL2(self.vector_dimensions)
18 index_path = os.path.join(self.vector_db_folder, self.index_name)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

19 write_index(index, index_path)
20 self.index = index
21

22 def initialize_dict(self) -> None:
23 vector_dict : Dict[int, np.array] = {}
24 dict_path = os.path.join(self.vector_db_folder, self.dict_name)
25 with open(dict_path, ’wb’) as f:
26 pickle.dump(vector_dict, f)
27 self.vector_dict = vector_dict
28

29 def load_index(self) -> faiss.IndexFlatL2:
30 index_path = os.path.join(self.vector_db_folder, self.index_name)
31 index = read_index(index_path)
32 return index
33

34 def load_dict(self) -> Dict[int, np.array]:
35 dict_path = os.path.join(self.vector_db_folder, self.dict_name)
36 with open(dict_path, "rb") as f:
37 vector_dict = pickle.load(f)
38 return vector_dict
39

40 def load(self):
41 self.index = self.load_index()
42 self.vector_dict = self.load_dict()
43

44 def initialize_db(self, input_vectors:List[np.array], result_vectors:
List[np.array]):

45 """
46 - input_vectors: obs_vectors reshaped in 1D (normalized)
47 - result_vectors: action_vectors reshaped in 1D (noramlized)
48 """
49 self.initialize_index()
50 self.initialize_dict()
51

52 # Create Dict
53 for i, (input_vector, result_vector) in enumerate(zip(

input_vectors, result_vectors)):
54 self.vector_dict[i] = result_vector
55 dict_path = os.path.join(self.vector_db_folder, self.dict_name)
56 with open(dict_path, ’wb’) as f:
57 pickle.dump(self.vector_dict, f)
58

59 # Create Index
60 vectors = np.array(input_vectors, dtype=np.float32)
61 index_path = os.path.join(self.vector_db_folder, self.index_name)
62 self.index.add(vectors)
63 write_index(self.index, index_path)
64

65 def search(self, query_vector:np.array, k:int) -> List[np.array]:
66 query_vector = query_vector.reshape(1, -1)
67 scores, indices = self.index.search(query_vector, k)
68 result_vectors = [
69 self.vector_dict[int(i)] for i in indices[0]
70]
71 return result_vectors

Listing 1: FAISS Vector Database code

18

	Introduction
	Related Work
	Preliminaries
	Score-Based Generative Modeling
	Diffusion models in Behavior Cloning

	Applying Retrieve-Augmented Generation for Diffusion Policy
	Retrieval
	Generation

	Experiments
	Evaluation Setup
	Effectiveness of RAGDP
	Speedups on Diffusion Policy
	RAGDP-VP vs. RAGDP-VE
	Choice of hyperparameter

	Conclusion
	Detailed experimental results
	More studies on knowledge-base
	Implementing knowledge-base
	Knowledge-base Studies
	Knowledge-base and training dataset
	 Study of knowledge-base size

	RAGDP in fast sampling methods
	Code Implementations

