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ABSTRACT

Autoregressive point cloud generation has long lagged behind diffusion-based
approaches in quality. The performance gap stems from the fact that autoregressive
models impose an artificial ordering on inherently unordered point sets, forcing
shape generation to proceed as a sequence of local predictions. This sequential bias
emphasizes short-range continuity but undermines the model’s capacity to capture
long-range dependencies, hindering its ability to enforce global structural proper-
ties such as symmetry, consistent topology, and large-scale geometric regularities.
Inspired by the level-of-detail (LOD) principle in shape modeling, we propose
PointNSP, a coarse-to-fine generative framework that preserves global shape struc-
ture at low resolutions and progressively refines fine-grained geometry at higher
scales through a next-scale prediction paradigm. This multi-scale factorization
aligns the autoregressive objective with the permutation-invariant nature of point
sets, enabling rich intra-scale interactions while avoiding brittle fixed orderings.
Experiments on ShapeNet show that PointNSP establishes state-of-the-art (SOTA)
generation quality for the first time within the autoregressive paradigm. In addition,
it surpasses strong diffusion-based baselines in parameter, training, and inference
efficiency. Finally, in dense generation with 8,192 points, PointNSP ’s advantages
become even more pronounced, underscoring its scalability potential.

1 INTRODUCTION
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Figure 1: A comprehensive performance compari-
son between PointNSP and recent strong baseline
methods across six key metrics.

Point clouds are a fundamental representation
of 3D object shapes, describing each object as
a collection of points in Euclidean space. They
arise naturally from sensors such as LiDAR and
laser scanners, offering a compact yet expressive
encoding of fine-grained geometric details. De-
veloping powerful generative models for point
clouds is key to uncovering the underlying dis-
tribution of 3D shapes, with broad applications
in shape synthesis, reconstruction, computer-
aided design, and perception for robotics and
autonomous systems. However, high-fidelity
point cloud generation remains challenging due
to the irregular and unordered nature of point
sets (Qi et al., 2017a;b; Zaheer et al., 2017). Unlike images or sequences, point clouds have no
inherent ordering—permuting the points leaves the shape unchanged—making naive order-dependent
methods poorly suited for their generation and analysis.

In recent years, diffusion-based methods (Zhou et al., 2021; Zeng et al., 2022; Ren et al., 2024) have
become the dominant paradigm for 3D point cloud generation, delivering strong results. However,
their Markovian assumption overlooks global context, often leading to incoherent shapes. Moreover,
diffusion models are computationally costly, as generating high-quality samples typically requires
hundreds to thousands of denoising steps—a burden that grows prohibitive when producing dense
point clouds. By contrast, autoregressive (AR) models condition on the full history, enabling explicit

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(c) Next-Scale Level-of-Detail Prediction (Ours)

Three Different Point Cloud 
Generation Paradigm

（b）Vanilla AR: Next-Point Prediction

（a）Diffusion: Iterative Denoising

Figure 2: Three types of point cloud generative models: (a) diffusion-based methods that iteratively
denoise shapes starting from Gaussian noise; (b) vanilla autoregressive (AR) methods that predict the
next point by flattening the 3D shape into a sequence; and (c) our proposed PointNSP, which predicts
next-scale level-of-detail in a coarse-to-fine manner.

modeling of long-range dependencies while generally offering faster sampling. Unlike diffusion
models, existing AR methods require flattening inherently unordered point clouds into sequences.
Point Transformers (Zhao et al., 2021; Wu et al., 2022; 2024) design specialized architectures for
unordered point sets and explore diverse point cloud serialization strategies to improve speed, at
the expense of relaxing permutation invariance. PointGrow (Sun et al., 2020) enforces a sequential
order by sorting points along the z-axis. ShapeFormer (Yan et al., 2022) voxelizes point clouds and
flattens codebook embeddings into sequences using a row-major order. PointVQVAE (Cheng et al.,
2022) projects patches onto a sphere and arranges them in a spiral sequence to establish a canonical
mapping. AutoSDF (Mittal et al., 2022) treats point clouds as randomly permuted sequences of
latent variables, while PointGPT (Chen et al., 2023) leverages Morton code ordering to impose
structure on unordered data. Although these approaches yield promising results, they still lag behind
state-of-the-art diffusion-based methods (Luo & Hu, 2021; Zhou et al., 2021; Zeng et al., 2022; Ren
et al., 2024) in generation quality. This is largely due to the restrictive unidirectional dependencies
imposed by fixed sequential orders, which collapse global shape generation into local predictions and
inherently violate the fundamental permutation-invariance property. This naturally raises the question:
can we achieve permutation-invariant autoregressive modeling for 3D point cloud generation?

In this work, we introduce PointNSP, a novel autoregressive framework for 3D point cloud generation
that preserves global permutation invariance—a key property ensuring that shapes remain independent
of point ordering. Inspired by visual autoregressive modeling in 2D image synthesis (Tian et al., 2024),
PointNSP follows a coarse-to-fine strategy, progressively refining point clouds from global structures
to fine-grained details via next-scale prediction. Unlike prior approaches that predict one point at a
time (next-point prediction), PointNSP captures multiple levels of detail (LoD) (Luebke et al., 2003)
at each step, enabling more effective modeling of both global geometry and local structure. This
design offers two key advantages. First, it avoids collapsing 3D structures by eliminating the need
to flatten point clouds into 1D sequences: each step corresponds to a full 3D shape at a given LoD,
ensuring structural coherence and permutation invariance. Second, compared to diffusion-based
methods, PointNSP establishes a more structured and efficient generation trajectory, avoiding iterative
noise injection and denoising in 3D space. Together, these advances allow PointNSP to achieve high
generation quality while maintaining strong modeling efficiency. The comparisons across different
paradigms are illustrated in Figure 2.

We conduct extensive experiments on the ShapeNet benchmark to validate the effectiveness of
PointNSP across diverse settings. In the standard single-class scenario, PointNSP achieves state-
of-the-art (SOTA) generation quality, yielding the lowest average Chamfer Distance and Earth
Mover’s Distance—setting a new benchmark for autoregressive modeling. Beyond quality, PointNSP
also demonstrates substantially higher parameter efficiency, training efficiency, and sampling
speed compared to strong diffusion-based baselines. In the more challenging multi-class setting,
PointNSP maintains SOTA performance, evidencing superior cross-category generalization. Moreover,
PointNSP significantly outperforms existing approaches on downstream tasks such as partial point
cloud completion and upsampling, further highlighting the robustness and versatility of its design.
Comparative results across these metrics are presented in Figure 1. When evaluated on denser point
clouds with 8192 points, the advantages of PointNSP become even more pronounced, particularly in
the aforementioned efficiency metrics, underscoring its scalability potential.
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2 RELATED WORKS

Autoregressive Generative Modeling. The core principle of autoregressive generative models is
to synthesize outputs sequentially by iteratively generating intermediate segments. This paradigm
has achieved remarkable success in discrete language modeling through next-token prediction (Patel
et al., 2023; OpenAI, 2023). Inspired by these advances, researchers have extended autoregressive
modeling to other modalities, including images (Esser et al., 2021; Lee et al., 2022; Dosovitskiy
et al., 2021), speech (Zhang et al., 2023; Wu et al., 2023a), and multi-modal data (Zhou et al., 2024;
Team, 2024). Although these modalities are often continuous in nature, they are typically transformed
into discrete token representations using techniques such as VQ-VAE (VQ) (van den Oord et al.,
2017) or residual vector quantization (RVQ) (Lee et al., 2022), with generation performed over the
resulting tokens in predefined orders (e.g., raster-scan sequences). To relax the constraint of strict
unidirectional dependencies, MaskGIT (Chang et al., 2022) predicts sets of randomly masked tokens
at each step under the control of a scheduler. More recently, VAR (Tian et al., 2024) redefines the
autoregressive paradigm by predicting the next resolution rather than the next token. Within each
scale, a bidirectional transformer enables full contextual interaction among tokens, making VAR
especially effective for modeling unordered data such as 3D point clouds.

Point Cloud Generation. Deep generative models have made significant strides in 3D point cloud
generation. For instance, PointFlow (Yang et al., 2019) captures the latent distribution of point
clouds using continuous normalizing flows (Rezende & Mohamed, 2015; Grathwohl et al., 2019;
Chen et al., 2018). Building on this foundation, a series of approaches—including DPM (Luo & Hu,
2021), ShapeGF (Cai et al., 2020), PVD (Zhou et al., 2021), LION (Zeng et al., 2022), TIGER (Ren
et al., 2024), PDT (Wang et al., 2025)—leverage denoising diffusion probabilistic models (Ho et al.,
2020; Song et al., 2021b) to synthesize 3D point clouds through the gradual denoising of input data
or latent representations in continuous space. While efforts to improve the sampling efficiency of
diffusion models—such as straight flows (Lipman et al., 2023; Liu et al., 2023; Wu et al., 2023b) and
ODE-based solvers (Song et al., 2021a)—have achieved acceleration, these methods often introduce
trade-offs that compromise generation quality. In contrast, autoregressive models for 3D point cloud
generation (Sun et al., 2020; Cheng et al., 2022; Chen et al., 2023) have received relatively less
attention, historically lagging behind diffusion-based techniques in terms of fidelity. In this work, we
reformulate point cloud generation as an iterative upsampling process, establishing a connection with
sparse point cloud upsampling approaches (Yu et al., 2018; He et al., 2023; Qu et al., 2024). A more
comprehensive review of related point cloud upsampling methods is provided in the Appendix F.

3 METHOD: POINTNSP

3.1 PRELIMINARIES: AUTOREGRESSIVE 3D POINT CLOUD GENERATION

A point cloud is represented as a set of N points X = {xi}Ni=1, where each point xi ∈ R3 corresponds
to a 3D coordinate. Prior autoregressive approaches (Cheng et al., 2022; Sun et al., 2020; Chen et al.,
2023) mainly follow the next-point prediction paradigm:

p(x1,x2, . . . ,xN ) =

N∏
i=1

p(xi|xi−1, . . . ,x2,x1). (1)

Training Eq. 1 requires a sequential classification objective. Each point xi is first converted into a
discrete integer token qi via VQ-VAE quantization (van den Oord et al., 2017), and the resulting tokens
are flattened into a sequence (q1, . . . , qN ) according to a predefined generation order. Autoregressive
modeling is then applied to this discrete sequence following the paradigm in Eq. 1. However, this
approach struggles to preserve permutation invariance, since the probability distribution depends
on the chosen token ordering and is not invariant to different permutations of the points. In this
work, instead of predicting the next point, we propose a novel autoregressive framework that predicts
the next-scale level-of-detail (LoD) of the point cloud X, while simultaneously preserving the
permutation invariance property:

p(π(x1, . . . ,xN )) = p(x1, . . . ,xN ), ∀ π ∈ SN . (2)

In general, we construct k different LoDs of X, forming a coarse-to-fine sequence of global shapes
X1, . . . ,XK , where each Xk ∈ Rsk×3 represents a global shape at resolution sk, obtained by
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downsampling the original X. Then, PointNSP is designed to learn the following distribution:

p(X1,X2, . . . ,XK) =

K∏
k=1

p(Xk|Xk−1, . . . ,X2,X1). (3)

In this work, we set s1 = 1 (a single starting point) and sK = N (total number of points). The
generation process can be interpreted as an autoregressive upsampling procedure with sequential
upsampling rates r1, r2, . . . , rK−1, satisfying the relationship rK−1 × · · · × r1 × s1 = sK = N .
Learning Eq. 3 requires a two-stage training process. The first stage involves training multi-scale
VQ-VAE tokenizers to progressively reconstruct different LoDs, while the second stage trains the
autoregressive transformer over the resulting multi-scale token sequence.

Algorithm 1 Multi-scale VQVAE encoder

1: Input: 3D point cloud X = {xi}Ni=1.
2: Hyperparameters: # scales {sk}Kk=1.
3: f = E(X), Q = [];
4: for k = 1, · · · ,K do
5: Xk = FPS(X, sk)
6: qk = Q(fk), fk = Query(f,Xk)
7: Q = queue_push(Q, qk)
8: zk = lookup(Z, qk)
9: zk = upsampling(zk, sK)

10: f = f − ϕk(zk)
11: end for
12: Return: token sequence Q.

Algorithm 2 Multi-scale VQVAE decoder

1: Input: token sequence Q.
2: Hyperparameters: # scales {sk}Kk=1.
3: f̂ = 0
4: for k = 1, · · · ,K do
5: qk = queue_pop(Q)
6: zk = lookup(Z, qk)
7: zk = upsampling(zk, sK)

8: f̂ = f̂ + ϕk(zk)
9: end for

10: X̂ = D(f̂)

11: Return: reconstructed point cloud X̂

3.2 MULTI-SCALE LOD REPRESENTATION

Sampling Multi-Scale LoD Sequence. To obtain X1, . . . ,XK , we employ the Farthest Point
Sampling (FPS) (Eldar et al., 1997) algorithm to downsample the original point cloud X. FPS
offers two key advantages. First, it is permutation-invariant: point selection depends solely on spatial
locations (geometric distances) rather than the order of points in the input array. The stochasticity
of the downsampled point cloud arises only from the choice of the initial point, not from the input
ordering. Second, FPS operates directly on the original point cloud, enabling straightforward
querying of specific point embeddings via stored indices. Importantly, we do not fix the initial starting
point of FPS, so the sampled points in Xk vary during training. This inherent stochasticity enhances
model generalization, effectively serving as a form of data augmentation at each scale. Note that
X1, . . . ,XK are all obtained directly from the original point cloud X, i.e., Xk = FPS(X) for each
scale k, rather than using an iterative downsampling strategy such as Xk = FPSk(X) adopted in
2D image VAR (Tian et al., 2024), where FPSk denotes a nested operation with k loops. Directly
sampling points from X in this way increases the shape coverage at each scale of the LoD.

Multi-Scale Feature Extraction. For the encoder to obtain point features f ∈ RN×3 from the point
cloud X, any permutation-equivariant network NN(·) is applicable: the per-point features reorder
consistently with any permutation of the input points, i.e., π(NN(x1, ...,xN )) = NN(π(x1, ...,xN ))
for any permutation π. Therefore, permutation-equivariant architectures such as PointNet (Qi et al.,
2017a), PointNet++ (Qi et al., 2017b), PointNeXt (Qian et al., 2022) and PVCNN (Liu et al.,
2019) are all applicable. To construct the multi-scale representations, we extract latent features
f1 ∈ Rs1×d, . . . , fK ∈ RsK×d in a residual querying manner: each Xk retrieves features from the
portion of f not already captured by earlier scales, using the stored indices from downsampling. This
ensures that later scales focus on complementary information rather than duplicating what has already
been encoded. The resulting features are then used for multi-scale VQVAE codebook training.

Multi-Scale RVQ Tokenizer. We use residual vector quantization (RVQ) (Tian et al., 2024; Lee
et al., 2022) to approximate f progressively. Each residual feature fk is quantized into tokens
qk = {q1k, q2k, . . . , q

sk
k } = Q(fk) ∈ [V ]sk , where each qik indexes the nearest codebook embedding
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Figure 3: Illustration of training a multi-scale VQ-VAE for 3D point cloud reconstruction across
scales s1 to s4, resulting in a multi-scale token sequence Q = (q1, . . . , q4).

zv ∈ Rd: qik = argminv∈[v]∥zv−f i
k∥. This produces scale token sets q1, . . . , qK and corresponding

embeddings z1 ∈ Rs1×d, . . . , zK ∈ RsK×d, which together provide a residual approximation of the
original feature f as follows:

fk = fk−1 − ϕk(upsampling(zk, sK)), f0 = f (4)

Here ϕk(·) : RN×d → RN×d refines the latent embedding. The upsampling(·, sK) module consists
of a series of reshaping operations to upsample the latent zk ∈ Rsk×d to the highest (target) resolution
sK × d. Compared to the vanilla VQ (van den Oord et al., 2017), the above RVQ mechanism allows
finer approximation of the original f with more efficient codebook utilization. We could compute the
partial sum f̂ and reconstruct the final predicted 3D shape X̂ as follows:

X̂ = D(f̂), f̂ =

K∑
k=1

ϕk(upsampling(zk, sK)), zk = lookup(qk), (5)

where D(·) : RN×d → RN×3 is a simple MLP decoder. Eq. 5 shows that X̂ is obtained by
aggregating information across all scales of the level-of-detail (LoD). The pseudo-algorithms and
process are illustrated in Algorithm 1, Algorithm 2, and Figure 3.

Upsampling & Reconstruction. The upsampling operation in both Eq. 4 and Eq. 5 follows a
PU-Net (Yu et al., 2018) like operation, which consists of the duplicating and reshaping:

zk(sk × d)
duplicate−−−−→ zk(sk × r × d)

reshape−−−−→ zk((sk ∗ r)× d) = zK(sK × d), (6)

where the upsampling rate r = sK
sk

can be pre-computed. This upsampling operation can densify
points by arbitrary factors while preserving the fundamental permutation-equivariance property. The
reconstruction loss function to be minimized is defined as follows:

Lrecon = LCD(X, X̂) + LEMD(X, X̂) +

K∑
k=1

||f [k]− sg(zk)||22 (7)

Here, LCD denotes the Chamfer Distance loss, and LEMD denotes the Earth-Mover Distance loss.
These two terms are commonly used in prior works to measure the distance between point clouds
from complementary perspectives. The stop-gradient operation, sg[·], ensures that the latent features
f used for reconstruction remain consistent with the quantized latent vectors z.

3.3 AUTOREGRESSIVE TRANSFORMER FOR NEXT-SCALE LOD PREDICTION

The next step is to train an autoregressive transformer on the multi-scale token sequence Q =
(q1, . . . , qK) obtained from the previous stage. Due to the strong local-geometry inductive bias
inherent in 3D structures and the relatively smaller dataset size compared to 2D images, a naive causal
transformer struggles to efficiently capture both intra-scale and inter-scale interactions. Consequently,
it becomes necessary to embed geometric information into the transformer design, though this
introduces additional challenges due to the unordered nature of point clouds.
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Figure 4: Illustration of training a multi-scale 3D point cloud causal transformer with intermediate
decoding, upsampling, position-aware soft masks, and block-wise causal masks.

Inter-Scale Interaction Modeling. Inter-scale interactions across all scales (q1, . . . , qK) are essen-
tial for the model to capture relationships between scales and to generate the next LoD conditioned
on the preceding ones. The model is guided by a key principle: tokens at scale q̂k are restricted to
attend only to tokens from the preceding scales q̂1, . . . , q̂k−1. Within each scale, however, all tokens
qk = (q1k, . . . , q

sk
k ) are allowed to fully attend to one another, ensuring that the model interprets

them as complete shapes at the corresponding resolution. To enforce this constraint, we construct the
causal mask M as a block-diagonal matrix, where each diagonal block Mk of size sk × sk is fully
unmasked: M = diag[M1,M2, ...,MK ]. This design allows bidirectional dependencies within
each scale while preserving a lower-triangular structure across scales, thereby preventing information
leakage from future tokens. To further distinguish scales, each token is assigned a scale embedding
sik ∈ Rd, implemented as a one-hot vector over the K scales and shared among tokens within the
same scale. Some algorithmic details are explained in the Appendix B.

Intra-Scale Interaction Modeling. Capturing intra-scale interactions within the token set qk =
(q1k, . . . , q

sk
k ) is crucial for the model to effectively understand shapes across different resolutions.

An important geometric prior is the relative distance between pairs of point tokens. Incorporating this
information into intra-scale bidirectional attention allows tokens to place greater weight on nearby
neighbors rather than starting from uniform attention. Specifically, we compute the position-aware
soft masking matrix Mp

k ∈ Rsk×sk , which is derived from the coordinate-based positional embedding
matrix Pk ∈ Rsk×d, as follows:

Mp
k = Softmax((PkWp)(PkWp)

T ), Wp ∈ Rd×d. (8)

Mp
k is a symmetric matrix, where each entry Mp

k[i, j] ∈ (0, 1) encodes the relative position between
points i and j. This raises a key question: how can we derive the positional embedding Pk for
each scale when no explicit 3D geometry is available at this stage? Our solution is an intermediate-
structure decoding strategy. Specifically, for each scale k, we apply the decoder D(·) to reconstruct
the intermediate structure X̂k−1 using all tokens predicted up to step k − 1:

X̂k−1 = D(

k−1∑
m=1

ϕm(upsampling(ẑm, sm))), {ẑ1, . . . , ẑk−1} = lookup(Z, {q̂1, . . . , q̂k−1}). (9)

X̂k−1 ∈ Rsk−1×3 serves as the input coordinate information for the next scale k prediction. The
positional embedding is derived as an absolute positional encoding based on the 3D coordinates
X̂k−1 using trigonometric functions (e.g. sin and cos). Constructing the encoding directly from 3D
coordinates, rather than point indices, preserves permutation equivariance. The detailed derivation of
P is provided in the Appendix B. Note that any positional encoding based on token indices should
not be applied, as it would violate the permutation-equivariant property.

The prediction of each token q̂ik is evaluated using the cross-entropy (CE) loss Li
k. We first compute

intra-scale loss Lk = 1
sk

∑sk
i=1 Li

k and then compute inter-scale loss Ltotal =
1
K

∑K
k=1 Lk. The

second stage training architecture is illustrated in Figure 4. We provide a theoretical analysis of the
permutation invariance of PointNSP ’s distribution modeling in Appendix A.
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Table 1: The Performance (1-NNA) is evaluated based on single-class generation. The second block
specifies the types of generative models used in each study. The best performance is highlighted in
bold, while the second-best performance is underlined. Performance is reported on two dataset splits:
the top corresponds to the random split, and the bottom corresponds to the LION split.

Model Generative Model Airplane Chair Car Mean CD ↓ Mean EMD ↓CD ↓ EMD ↓ CD ↓ EMD ↓ CD ↓ EMD ↓
1-GAN Achlioptas et al. (2018) GAN 87.30 93.95 68.58 83.84 66.49 88.78 74.12 88.86
PointFlow (Yang et al., 2019) Normalizing Flow 75.68 70.74 62.84 60.57 58.10 56.25 65.54 62.52
DPF-Net (Klokov et al., 2020) Normalizing Flow 75.18 65.55 62.00 58.53 62.35 54.48 66.51 59.52
SoftFlow (Kim et al., 2020) Normalizing Flow 76.05 65.80 59.21 60.05 64.77 60.09 66.67 61.98
SetVAE (Kim et al., 2021) VAE 75.31 77.65 58.76 61.48 59.66 61.48 64.58 66.87
ShapeGF (Cai et al., 2020) Diffusion 80.00 76.17 68.96 65.48 63.20 56.53 70.72 66.06
DPM (Luo & Hu, 2021) Diffusion 76.42 86.91 60.05 74.77 68.89 79.97 68.45 80.55
PVD-DDIM (Song et al., 2021a) Diffusion 76.21 69.84 61.54 57.73 60.95 59.35 66.23 62.31
PSF (Wu et al., 2023b) Diffusion 74.45 67.54 58.92 54.45 57.19 56.07 62.41 57.20
PVD (Zhou et al., 2021) Diffusion 73.82 64.81 56.26 53.32 54.55 53.83 61.54 57.32
LION (Zeng et al., 2022) Diffusion 72.99 64.21 55.67 53.82 53.47 53.21 61.75 57.59
DIT-3D (Mo et al., 2023) Diffusion - - 54.58 53.21 - - - -
TIGER (Ren et al., 2024) Diffusion 73.02 64.10 55.15 53.18 53.21 53.95 60.46 57.08
PointGrow (Sun et al., 2020) Autoregressive 82.20 78.54 63.14 61.87 67.56 65.89 70.96 68.77
CanonicalVAE (Cheng et al., 2022) Autoregressive 80.15 76.27 62.78 61.05 63.23 61.56 68.72 66.29
PointGPT (Chen et al., 2023) Autoregressive 74.85 65.61 57.24 55.01 55.91 54.24 63.44 62.24
PointNSP-s (ours) Autoregressive 72.92 63.98 54.89 53.02 52.86 52.07 60.22 56.36
PointNSP-m (ours) Autoregressive 72.24 63.69 54.54 52.85 52.17 51.85 59.65 56.13
LION Diffusion 67.41 61.23 53.70 52.34 53.41 51.14 58.17 54.90
TIGER Diffusion 67.21 56.26 54.32 51.71 54.12 50.24 58.55 52.74
PointNSP-s (ours) Autoregressive 67.15 56.12 54.22 51.19 53.98 50.15 58.45 52.49
PointNSP-m (ours) Autoregressive 66.98 56.05 54.01 53.76 53.12 50.09 58.04 52.30

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Table 2: Training time (in GPU hours, averaged over
three categories), sampling time (in seconds, averaged
over 10 samples), and model size (in millions of param-
eters). Ranked by MeanCD and MeanEMD.

Quality Rank Model Training Time
(GPU hours) ↓

Sampling Time
(s) ↓ Param (M) ↓

8 PointGrow 156 5.80 25
7 CanonicalVAE 142 5.45 30
6 PointGPT 185 5.32 46
5 PVD 142 29.9 45
4 LION 550 31.2 60
3 TIGER 164 23.6 55
2 PointNSP-s (ours) 125 3.21 22
1 PointNSP-m (ours) 178 3.59 32

Datasets. In line with prior studies, we
use ShapeNetv2, pre-processed by Point-
Flow (Yang et al., 2019), as our primary
dataset. Following previous experimental
setups, we focus on the three categories
with the largest number of samples: air-
planes, chairs, and cars. Each shape is
globally normalized and sampled to 2048
points. The training set comprises 2832 airplanes, 4612 chairs, and 2458 cars, while the evaluation
set contains 405 airplanes, 662 chairs, and 352 cars. Experiments are conducted on two data splits
inherited from LION (Zeng et al., 2022) and TIGER (Ren et al., 2024).

Metrics. In line with the benchmarks established by PVD (Zhou et al., 2021) and LION (Zeng
et al., 2022), we adopt the 1-NN (1-nearest neighbor) accuracy (Lopez-Paz & Oquab, 2017) as our
evaluation criterion. This metric has demonstrated its effectiveness in assessing both the quality
and diversity of the generated point clouds, with a score approaching 50% indicating exceptional
performance (Yang et al., 2019). To calculate the 1-NN distance matrix, we employ two widely
recognized metrics for measuring the distance between point clouds: Chamfer Distance (CD) and
Earth Movers’ Distance (EMD). We also present the mean CD and the mean EMD by calculating the
average CD and EMD across three distinct categories. To assess efficiency, we evaluate the training
time by documenting the GPU hours and gauge the sampling efficiency by reporting the average
inference time over 10 randomly generated samples.

4.2 PERFORMANCE COMPARISON FOR SINGLE-CLASS GENERATION

Results. To evaluate the performance of PointNSP, we compare it against several strong baseline
models. Specifically, we include state-of-the-art (SoTA) diffusion-based methods: DPM (Luo &
Hu, 2021), PVD (Zhou et al., 2021), LION (Zeng et al., 2022), DIT-3D (Mo et al., 2023), and
TIGER (Ren et al., 2024). We also evaluate PVD-DDIM (Song et al., 2021a), which is designed to
accelerate the sampling process of PVD. In addition, we include three leading autoregressive models:
PointGrow (Sun et al., 2020), CanonicalVAE (Cheng et al., 2022), and PointGPT (Chen et al., 2023).
We report results for two variants of our model—PointNSP-s and PointNSP-m—representing small
and medium parameter configurations, respectively. Note that we only compare against models with
publicly available code. Quality. As shown in Table 1, PointNSP consistently outperforms all baseline
models on both the conventional and LION data splits, achieving state-of-the-art generation quality
in terms of both CD and EMD metrics. Notably, even the lightweight PointNSP-s demonstrates
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SetVAE DPM PVD PointGrow Canonical
VAE LION TIGER Our

Figure 5: Our generation results (right) compared to baseline models (left). PointNSP generates
high-quality and diverse 3D point clouds.

Table 3: Ablation studies on the Transformer
backbones, upsampling networks, token embed-
ding, and FPS stochasticity.

Mask Upsampling FPS Stochasticity TE Mean CD ↓ Mean EMD ↓
Voxel PU-Net

✓ SE 64.25 60.53
✓ ✓ SE+A-PE 62.19 58.23
✓ ✓ SE+A-PE 63.05 58.47
✓ ✓ L-PE 63.22 59.71
✓ ✓ A-PE 62.12 60.02
✓ ✓ ✓ A-PE 61.28 57.32
✓ ✓ ✓ SE+L-PE 60.62 57.34
✓ ✓ ✓ SE+A-PE 59.65 56.13

Table 4: Multi-Class Generation results (1-NNA↓)
on ShapeNet dataset from PointFlow. All data
normalized individually into [-1, 1].

Airplane Chair Car
CD ↓ EMD ↓ CD ↓ EMD ↓ CD ↓ EMD ↓

PVD 97.53 99.88 88.37 96.37 89.77 94.89
TIGER 83.54 81.55 57.34 61.45 65.79 57.24
PointGPT 94.94 91.73 71.83 79.00 89.35 87.22
LION 86.30 77.04 66.50 63.85 64.52 54.21
PointNSP-s (ours) 78.95 68.84 58.79 55.10 59.97 52.89
PointNSP-m (ours) 75.42 66.54 56.03 52.22 57.95 49.55

competitive performance. Efficiency. Table 2 presents the training time, sampling time, and number
of parameters for several strong baseline models from Table 1, including PVD, LION, TIGER, and
PointGPT. In terms of training efficiency, PointNSP-s achieves the shortest training time among
all selected methods, while PointNSP-m demonstrates comparable training costs to state-of-the-art
diffusion-based approaches. For inference efficiency, both PointNSP-s and PointNSP-m outperform
selected strong baseline methods with significantly faster sampling speeds. This advantage is primarily
due to PointNSP’s parallel token generation within each scale. Additionally, PointNSP exhibits the
highest parameter efficiency among all compared approaches. Notably, PointNSP-s has a smaller
parameter size than PointGrow, despite the latter performing significantly worse in generation quality.
Compared to diffusion-based methods, PointNSP-m offers a substantial advantage in parameter
efficiency, requiring nearly half the number of parameters while maintaining superior performance.

Ground-truth Partial PointGPT PVD PointNSP (Ours) Ground-truth Partial PointGPT PVD PointNSP (Ours)

Figure 6: (Left) Visualizations of point cloud completion results. (Right) Visualizations of point
cloud upsampling results.

4.3 ABLATION AND ANALYSIS

Neural Architectures & Training Strategies We conduct comprehensive ablation studies to
assess the impact of various architectural components and training strategies. First, we compare two
upsampling strategies: voxel-based representations and PU-Net. Our experiments show that PU-
Net consistently outperforms voxel-based upsampling, owing to its permutation-equivariant design.
Second, we evaluate the effectiveness of the position-aware masking strategy, which significantly
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boosts model performance. Third, we analyze the contribution of each embedding module in the
token embedding (TE) layer, with results highlighting the notable impact of the scale embedding. We
also compare learnable positional encoding (L-PE) with absolute PE (A-PE), finding that absolute
PE yields better performance. Finally, we investigate the effect of FPS stochasticity, arising from
the inherent randomness of the FPS algorithm. We compare against a variant with a fixed starting
point, which produces deterministic downsampling. The results demonstrate that FPS stochasticity
consistently enhances model generalization. These findings are summarized in Table 3, with additional
ablation results—such as the effect of varying the number of scales—provided in the Appendix C.

4.4 MULTI-CLASS GENERATION & DENSE POINT CLOUD GENERATION

Beyond the single-class generation setting, we further evaluate all models on the more challenging
multi-class generation task introduced by LION (Zeng et al., 2022), aiming to assess their ability to
generalize across diverse object categories. Specifically, we train PointNSP and all baseline models
using class conditioning over 55 distinct categories from ShapeNet. This conditional setup allows
the model to capture class-specific characteristics while also leveraging shared geometric patterns
across categories. As shown in Table 4, PointNSP significantly outperforms all strong baselines. We
provide visualizations of diverse shape classes in Appendix E. We further evaluate all models on
high-resolution point cloud generation with up to 8192 points. Empirical results demonstrate that
PointNSP maintains superior performance across all major metrics, with a widening performance
margin as resolution increases—particularly training and inference speed (Results are shown in
Table 5 (right) and the Appendix D).

4.5 POINT CLOUD COMPLETION & UPSAMPLING

We evaluate PointNSP on two key downstream tasks: point cloud completion and upsampling. For
completion, we follow the experimental setup of PVD (Zhou et al., 2021). For upsampling, we
use a factor of r = 2, increasing the input point clouds from 1024 to 2048 points. As shown
in Table 5 (Left & Middle), PointNSP consistently achieves the best performance on point cloud
completion. For the upsampling task, it outperforms all selected baselines across both metrics,
highlighting its effectiveness on diverse downstream applications and its potential as a foundation
model. Visualization results for these two tasks are presented in Figure 6 and Appendix E.

Table 5: (Left) The shape completion task in PVD; (Middle) Our own upsampling task by upsampling
to denser point clouds; (Right) Denser point cloud generation with 8192 points.

Category Model CD ↓ EMD ↓

Airplane

SoftFlow 40.42 11.98
PointFlow 40.30 11.80
DPF-Net 52.79 11.05
PVD 44.15 10.30
PointNSP-m (ours) 40.12 10.08

Chair

SoftFlow 27.86 32.95
PointFlow 27.07 36.49
DPF-Net 27.63 33.20
PVD 32.11 29.39
PointNSP-m (ours) 27.02 28.78

Car

SoftFlow 18.50 27.89
PointFlow 18.03 28.51
DPF-Net 13.96 23.18
PVD 17.74 21.46
PointNSP-m (ours) 13.84 20.68

Category Model CD ↓ EMD ↓

Airplane

PVD 73.56 71.65
TIGER 71.65 59.94
PointGPT 72.11 60.12
LION 70.41 59.65
PointNSP-m (ours) 68.89 58.86

Chair

PVD 53.81 64.61
TIGER 52.80 52.98
PointGPT 53.75 53.21
LION 53.98 54.33
PointNSP-m (ours) 52.04 51.03

Car

PVD 58.95 48.43
PointGPT 57.26 47.85
TIGER 57.90 48.01
LION 57.14 47.56
PointNSP-m (ours) 55.85 46.74

Category Model CD ↓ EMD ↓

Airplane

PVD 69.77 69.98
TIGER 68.48 60.24
PointGPT 69.29 61.56
LION 68.95 60.38
PointNSP-m (ours) 66.63 55.29

Chair

PVD 52.56 51.33
TIGER 51.87 51.85
PointGPT 52.43 52.09
LION 53.76 53.45
PointNSP-m (ours) 50.98 50.45

Car

PVD 54.19 46.55
PointGPT 54.97 45.20
TIGER 53.78 44.12
LION 54.98 44.67
PointNSP-m (ours) 52.40 43.05

5 CONCLUSIONS

In this study, we present PointNSP, a novel autoregressive framework for high-quality 3D point cloud
generation. Unlike prior methods, PointNSP adopts a coarse-to-fine strategy that captures the multi-
scale LoD of 3D shapes without reducing them to sequences of local predictions, thereby preserving
global structural coherence throughout generation. Our approach consistently outperforms existing
point cloud generative models in quality while delivering significant improvements in parameter
efficiency, training efficiency, and inference speed. Looking ahead, we plan to scale PointNSP toward
foundation-level models on large datasets and explore its integration with diffusion-based approaches
as a promising future direction.
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REPRODUCIBILITY STATEMENT

We include the implementation of our approach in the supplementary materials, with full hyper-
parameter specifications documented in the Appendix C and embedded within the released code.
Upon acceptance, we plan to publicly release both the source code and pretrained model checkpoints,
accompanied by a dedicated project webpage for long-term maintenance.

LARGE LANGUAGE MODEL USAGE DECLARATION

In this work, ChatGPT OpenAI (2023) was used solely for polishing the wording of certain paragraphs
and for verifying specific conceptual details.
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APPENDIX

A PERMUTATION INVARIANCE OF THE PROBABILITY DISTRIBUTION

Here we show why the distribution p(X1,X2, . . . ,XK) =
∏K

k=1 p(Xk|Xk−1, . . . ,X2,X1) in Eq 3
preserves the permutation-invariance p(π(x1, . . . ,xN )) = p(x1, . . . ,xN ), ∀ π ∈ SN in Eq 2.

By definition, the joint distribution factorizes as:

p(X1,X2, . . . ,XK) = p(X1)p(X2|X1) . . . p(XK |X1, . . .XK−1). (10)

Suppose the feature encoder and the conditional model for each scale are permutation-equivariant or
permutation-invariant. Then, for any permutation πk of points within Xk:

p(πk(Xk)|X1, . . .Xk−1) = p(Xk|X1, . . .Xk−1). (11)

This holds for each k = 1, . . . ,K.

Consider an arbitrary permutation π acting on the full set of points X =
⋃K

k=1 Xk. This permutation
can be decomposed into independent permutations within each scale:

π = (π1, π2, . . . , πK), πk ∈ Ssk . (12)

Then the joint distribution under this permutation is

p(π(X1,X2, . . . ,XK)) =

K∏
k=1

p(πk(Xk)|Xk−1, . . . ,X2,X1)

=

K∏
k=1

p(Xk|Xk−1, . . . ,X2,X1) (by permutation invariance at each scale)

= p(X1,X2, . . . ,XK)
(13)

The core operations in PointNSP —such as the feature encoder, upsampling, and FPS—are all
designed to be permutation-equivariant or permutation-invariant. As a result, the autoregressive
factorization preserves permutation invariance: permuting the points within any scale does not alter
the joint probability.

p(π(x1, . . . ,xN )) = p(x1, . . . ,xN ), ∀ π ∈ SN . (14)

B ALGORITHM DETAILS

Coordinate-based Positional Encoding. We adopt the absolute positional encoding strategy purely
based on 3D coordinates used in TIGER (Ren et al., 2024). Based on our experiments, we find the
Base λ Position Encoding (BλPE) performs better and here we present its formula:

p = λ2 ∗ zi + λ ∗ yi + xi (15)

Pk(p, 2i) = sin(
p

10000
2i
D

) (16)

Pk(p, 2i+ 1) = cos(
p

10000
2i
D

), (17)

where xi = (xi, yi, zi) ∈ R3, p is a polynomial expression with hyperparameter coefficient λ. We
set λ = 1000 following the setting in TIGER (Ren et al., 2024), which means this preserves three
decimal places of precision. Here Pk ∈ Rsk×D denotes the positional embedding of all tokens within
the scale k. In short, we apply the BλPE embedding strategy scale-by-scale at this time.

Intra-Scale Token Embedding Layer. In this way, we derive the absolution positional encoding
pi
k for each token qik with predicted X̂k. Additionally, the model needs to know which scale that each

token belongs to. Therefore, sk is a simple one-hot encoding sk = one-hot(k) out of total K scales.
Tokens (qik, qjk) from the same scale k share the same scale embedding sk (sik = sjk). Following the
implementation of Llama 3 (Dubey et al., 2024), we add both the positional embedding pi

k and the
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scale embedding sik to the query ui
k and key vectors vi

k derived in the attention mechanism. Then the
token embedding operation for each token qik is as follows:

ui
k = WUzik + pi

k + sik,v
i
k = WVzik + pi

k + sik, (18)

where WU and WV are projection matrices for queries and keys respectively. Then the queries and
keys will be upsampled to Uk,Vk = upsampling(Uk,Vk) ∈ Rsk+1×d following the Eq. 6, which
will be fed to the transformer for next-scale token prediction.

C HYPERPARAMETERS AND REPRODUCIBILITY SETTINGS

Hyper-parameters and Reproducibility Settings. We mainly follow the setting in (Zeng et al.,
2022). Specifically, we set the learning rate 3e−4 and the batch-size 32. We perform all the
experiments on a workstation with Intel Xeon Gold 6154 CPU (3.00GHz) and 8 NVIDIA Tesla V100
(32GB) GPUs.

We use an AdamW optimizer with an initial learning rate of 10−4 for VQVAE training and 10−3 for
autoregressive transformer training respectively. For up-sampling and completion experiments, we
follow the experimental settings of PVD (Zhou et al., 2021).

Hyperparameter Value
# PVCNN layers 4

# PVCNN hidden dimension 1024
# PVCNN voxel grid size 32

# MLP layers 6
# Attention dimension 1024

# Attention head 32
Optimizer AdamW

Weight Decay 0.01
LR Schedule Cosine

The effect of # scales K. Figure S1 illustrates the impact of the total number of scales on the overall
performance of PointNSP. As the number of scales increases, PointNSP’s performance improves
accordingly. However, beyond K = 11 scales, no further performance gains are observed. We
hypothesize that additional scales may require higher point cloud densities to be effective. Moreover,
increasing the number of scales naturally leads to longer sampling times.
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Figure S1: The effect of number of scales on the overall performance of PointNSP.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D MORE RESULTS ON DENSE POINT CLOUD GENERATION WITH 8192
POINTS

We show sampling time and training hours of different methods in Table S1. We could clearly see
that PointNSP significantly outperforms other strong methods in terms of learning efficiency and
inference efficiency, which shows its strong scalability potential.
Table S1: Training time (in GPU hours), sampling time (in seconds) on 8192 points. The reported
training time is averaged across three categories: airplane, chair, and car. The sampling time is
averaged over 10 random generations.

Quality Rank Model Training Time
(GPU hours) ↓

Sampling Time
(s) ↓

8 PointGrow 240 9.90
7 CanonicalVAE 205 8.95
6 PointGPT 296 10.56
5 PVD 201 58.1
4 LION 610 59.5
3 TIGER 320 42.1
2 PointNSP-s (ours) 175 4.54
1 PointNSP-m (ours) 190 5.48

E MORE VISUALIZATION RESULTS

3D Point Clouds Generated by PointNSP. We showcase diverse 3D point clouds generated by
PointNSP, covering a wide range of shapes (Figures S2 and S3). Additional results for single-class
generation across five categories are presented in Figures S4–S8. We further illustrate the multi-scale
sequential generation process in Figures S9–S11, and provide visualizations of point cloud completion
and upsampling in Figure S12.

Figure S2: Generated shapes from the PointNSP model trained on ShapeNet’s other categories.

F OTHER RELATED WORKS

Point Cloud Upsampling. Point cloud upsampling is a crucial process in 3D modeling, aimed
at increasing the resolution of low-resolution 3D point clouds. PU-Net (Yu et al., 2018) pioneered
the use of deep neural networks for this task, laying the foundation for subsequent advancements.
Models such as PU-GCN (Qian et al., 2021a) and PU-Transformer (Qiu et al., 2022) have further
refined point cloud feature extraction by leveraging graph convolutional networks and transformer
networks, respectively. Additionally, approaches like Dis-PU (Li et al., 2021), PU-EVA (Luo et al.,
2021), and MPU (Du et al., 2022) have enhanced the PU-Net pipeline by incorporating cascading
refinement architectures. Other methods, such as PUGeo-Net (Qian et al., 2020), NePs (Feng et al.,
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Figure S3: Generated shapes from the PointNSP model trained on ShapeNet’s other categories.

2022), and MAFU (Qian et al., 2021b), employ local geometry projections into 2D space to model
the underlying 3D surface. More recent approaches have reframed up-sampling as a generation
task. For instance, PU-GAN (Li et al., 2019) and PUFA-GAN (Liu et al., 2022) leverage generative
adversarial networks (GANs) to produce high-resolution point clouds. Grad-PU (He et al., 2023)
first generates coarse dense point clouds through nearest-point interpolation and then refines them
iteratively using diffusion models. In contrast, PUDM (Qu et al., 2024) directly utilizes conditional
diffusion models, treating sparse point clouds as input conditions for generating denser outputs. In
this work, our generative model, PointNSP, incorporates upsampling networks in both training stages,
making it well-suited for enhancing downstream point cloud up-sampling tasks.

Autoregressive Generative Models. Autoregressive modeling has demonstrated exceptional suc-
cess in natural language processing, leading to the development of powerful large language models
(LLMs) such as (Sutskever et al., 2014; OpenAI, 2024; 2023; Patel et al., 2023). Building on the
success of LLMs, researchers have explored autoregressive approaches across a wide range of do-
mains, including image generation (van den Oord et al., 2017; Esser et al., 2021; Li et al., 2024;
Tian et al., 2024; Lee et al., 2022; Chang et al., 2022), graph generation (You et al., 2018), video
synthesis (Weissenborn et al., 2020), molecule generation (Shi et al., 2020; Schwaller et al., 2019),
and protein sequence modeling (Madani et al., 2023; Lin et al., 2022). At its core, autoregressive mod-
eling involves sequentially predicting future elements based on past outputs, making it particularly
effective for audio generation tasks, where such temporal dependencies are naturally present.

G LIMITATIONS & BROADER IMPACT

PointNSP does not present major limitations, though the main challenge lies in learning high-
quality multi-scale codebook embeddings for 3D point cloud representations—a process that remains
resource-intensive. Several promising directions emerge for future work. One is scaling generation to
produce ultra-dense point clouds (e.g., 10k–100k points), which could then be converted into high-
quality meshes. Another is enabling fine-grained control over local geometric details, an essential
step toward practical applications. While this work does not pose immediate societal risks, potential
misuse for generating harmful 3D content warrants vigilance from the broader community. From a
research perspective, PointNSP makes a meaningful contribution to both generative modeling and 3D
point cloud research.
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Figure S4: Generated single-class shapes from the PointNSP model trained on ShapeNet’s other
categories.

Figure S5: Generated single-class shapes from the PointNSP model trained on ShapeNet’s other
categories.
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Figure S6: Generated single-class shapes from the PointNSP model trained on ShapeNet’s other
categories.

Figure S7: Generated single-class shapes from the PointNSP model trained on ShapeNet’s other
categories.
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Figure S8: Generated single-class shapes from the PointNSP model trained on ShapeNet’s other
categories.

Figure S9: Illustration of multi-scale point cloud generation from the PointNSP model.
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Figure S10: Illustration of multi-scale point cloud generation from the PointNSP model.

Figure S11: Illustration of multi-scale point cloud generation from the PointNSP model.

Ground-truth Partial PointGPT PVD PointNSP (Ours) Ground-truth Partial PointGPT PVD PointNSP (Ours)

Figure S12: (Left) Visualizations of point cloud completion results. (Right) Visualizations of point
cloud upsampling results.
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