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Abstract

We study the problem of causal structure learning from a combination of obser-
vational and interventional data generated by a linear non-Gaussian structural
equation model that might contain cycles. Recent results show that using mere
observational data identifies the causal graph only up to a permutation-equivalence
class. We obtain a combinatorial characterization of this class by showing that
each graph in an equivalence class corresponds to a perfect matching in a bipartite
graph. This bipartite representation allows us to analyze how interventions modify
or constrain the matchings. Specifically, we show that each atomic intervention
reveals one edge of the true matching and eliminates all incompatible causal graphs.
Consequently, we formalize the optimal experiment design task as an adaptive
stochastic optimization problem over the set of equivalence classes with a natural
reward function that quantifies how many graphs are eliminated from the equiv-
alence class by an intervention. We show that this reward function is adaptive
submodular and provide a greedy policy with a provable near-optimal performance
guarantee. A key technical challenge is to efficiently estimate the reward function
without having to explicitly enumerate all the graphs in the equivalence class. We
propose a sampling-based estimator using random matchings and analyze its bias
and concentration behavior. Our simulation results show that performing a small
number of interventions guided by our stochastic optimization framework recovers
the true underlying causal structure.

1 Introduction

Learning causal relationships among variables of interest in a complex system is a central goal
in empirical sciences, forming the foundation for prediction, intervention, and explanation [25].
These relationships are typically represented by causal graphs in which an edge from variable X to
variable Y indicates that X is a direct cause of Y . Much of the existing literature on causal structure
learning assumes that the underlying causal graph is a Directed Acyclic Graph (DAG). However,
many natural and engineered systems include feedback mechanisms that give rise to cycles in their
causal representations. Such cyclic structures emerge in equilibrium models, low-frequency temporal
sampling of dynamical systems, and various biological networks [3].

In acyclic settings, a variety of methods (such as those based on conditional independence tests)
allow us to recover the skeleton and orientations of the causal graph from observational data. These
methods often fail when applied to graphs with cycles. More specifically, observational data alone
does not even suffice for learning the skeleton, let alone orienting the edges of the graph [23].
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Interventions, i.e., actively perturbing the system and observing the resulting distributional changes
can allow us to learn the graphs even with cycles. The experiment design problem studies how to best
design interventions in order to maximize the information gained about the causal structure. Again,
unlike the case of DAGs, where a body of work on experiment design exist, the work in the cyclic
setting [23] is few and far in between. This is in part due to the fact that, unlike in DAGs, where
an intervention on a subset of the vertices orients all the edges incident to them, in cyclic directed
graphs, performing experiments in some cases, neither leads to learning the presence of edges nor
orienting them [23].

In this work, we study the problem of causal structure learning from a combination of observational
and interventional data in systems governed by linear non-Gaussian structural causal models (SCMs)
that may contain cycles. Our main contributions are as follows:

• We establish that, under linear non-Gaussian assumptions, the causal graph can be identified
from observational data only up to an equivalence class. We further provide a combinatorial
characterization of the equivalence class, where each graph corresponds to a perfect matching
in a bipartite graph (Section 4.2). Additionally, we show that the condensation graph, or
Strongly Connected Components (SCCs), of the true causal graph can also be identified
(4.1).

• The bipartite representation allows us to analyze how atomic interventions constrain the
space of causal graphs. Specifically, we show that each intervention reveals one edge of the
true matching and eliminates all incompatible graphs from the equivalence class (Section
5). Therefore, we can formulate the optimal experiment design problem as an adaptive
stochastic optimization over the space of equivalence classes, using a reward function that
quantifies the number of eliminated graphs following an intervention. We prove that this
reward function is adaptive submodular and hence a greedy policy has provably near-optimal
performance guarantees for intervention design (Section 6).

• To address the computational challenge of reward estimation, we propose a sampling-based
estimator based on random matchings and provide a theoretical analysis of its bias and
concentration properties (Section 7).

• Experiments show that our adaptive strategy outperforms other heuristic methods and closely
matches the feedback vertex set (FVS) lower bound (see more details in Section ??).

2 Related Work

Causal discovery is concerned with learning the underlying causal graph which encodes both the
existence and direction of edges among variables of interest in a system. From observational data
alone, the causal graph can be recovered only up to its Markov equivalence class (MEC). [29]
provided necessary and sufficient conditions for Markov equivalence of directed graphs (DGs) and
proposed an algorithm for structure learning up to the MEC [28]. [24] extended the applicability of a
classic algorithms for constraint-based causal discovery (i.e., FCI [32]) to cyclic DGs and showed
that it can recover the structure up to the MEC in this more general setting.

To address latent confounding and nonlinear mechanisms, [6] introduced σ-connection graphs (σ-
CGs)—a flexible class of mixed graphs—and developed a discovery algorithm that handles both
latent variables and interventional data. [10] focused on distributional equivalence for linear Gaussian
models, providing necessary and sufficient conditions and proposing a score-based learning method.
In the context of linear non-Gaussian models, [21] extended the Independent Component Analysis
(ICA)-based approach of [31] to cyclic graphs to learn the equivalence class from the observational
data.

The research on experiment design in acyclic models has focused on various aspects, including cost
minimization and efficient learning under budget constraints. [5] provided worst-case bounds on
the number of experiments to identify the graph. [14] introduced adaptive and exact non-adaptive
algorithms for singleton interventions. [13] proposed optimal one-shot and adaptive heuristics to
minimize undirected edges. [30] offered lower bounds for experiment design using separating
systems, and [20] introduced a stage-wise approach in the presence of latent variables. In cost-aware
settings, [19] developed an optimal algorithm for variable-cost interventions without size constraints.
[12] and [33] designed approximation algorithms for trees and general graphs, respectively.
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Fixed-budget design was initiated by [8] with a greedy Monte Carlo-based approach. [9] improved
MEC sampling efficiency, and [7] developed an exact experiment design algorithm for tree structures.
[2] proposed an exact method to enumerate DAGs post-intervention. [36, 37] showed that MEC
counting and sampling can be done in polynomial time. Bayesian methods include the adaptive
submodular algorithm [1] and its extension [34] to optimize both intervention targets and their
assigned values.

To the best of our knowledge, only a handful of work on experiment design in cyclic graphs exists.
For general SCMs, [23] proposed an experiment design approach that can learn both cyclic and
acyclic graphs. They provided a lower bound on the number of experiments required to guarantee the
unique identification of the causal graph in the worst case, showing that the proposed approach is
order-optimal in terms of the number of experiments up to an additive logarithmic term. Our approach
differs from [23] in three key aspects. First, their framework is non-adaptive, that is, all interventions
are selected in advance based solely on observational data. In contrast, our method is adaptive as each
experiment is selected based on the outcomes of prior interventions. Second, [23] allow intervening
on multiple variables in a single experiment. Although they also considered the setup where the
number of interventions per experiment is bounded, this bound should be greater than the size of the
largest strongly connected component in the graph minus one. By contrast, our framework limits each
experiment to a single-variable intervention, making it more practical in settings where fine-grained
or limited interventions are preferred. Third, the approach in [23] is designed for general SCMs and
relies on conditional independence testing to recover the causal structure. In our work, we focus
specifically on linear non-Gaussian models, which enables us to use results from ICA to infer the
underlying graph.

3 Preliminaries and Problem Formulation

Consider a Structural Causal Model (SCM) C := (S, Pe), where S consists of n structural equations
and Pe is the joint distribution over exogenous noise terms [26]. In a linear SCM (LSCM), the
structural equations take the following form:

x =Wx+ e, (1)

where x ∈ X ⊆ Rn denotes the vector of observable variables, e ∈ E ⊆ Rn represents the vector
of independent exogenous noises, and W ∈ Rn×n is the matrix of linear coefficients. The directed
graph G = (V,E) induced by the SCM captures the causal structure: node i corresponds to the
variable xi, and for any nonzero coefficient Wij ̸= 0, a directed edge (j, i) ∈ E is drawn. The binary
adjacency matrix BG ∈ {0, 1}n×n is defined as [BG]ij = 1{Wij ̸=0}, and the “free parameters” are
the nonzero entries supp(W ) = {(i, j) :Wij ̸= 0}. We impose the following assumptions:
Assumption 3.1. The model has no self-loops: Wii = 0 for all i ∈ [n].
Remark. This assumption can be made without loss of generality, as any self-loop can be algebraically
removed by reparametrizing the structural equations. For a detailed explanation, see [22].
Assumption 3.2. The matrix I −W is invertible.
Assumption 3.3. The components of e are jointly independent, and at most one component is
Gaussian. That is,

Pe ∈ P(E) :=
{
Pe : Pe =

n∏
i=1

Pei , with at most one Pei Gaussian

}
.

Under these assumptions, the model admits a unique solution: x = (I − W )−1e = Ae. The
observational distribution Px is thus given by the push-forward measure Px = (I − TW )−1

# (Pe),
where TW denotes the linear map associated with W .

We consider perfect interventions, in which the causal mechanism for a variable xi is replaced with
an exogenous noise ẽi, removing all incoming edges to xi. The interventional SCM is given by:

x =W (i)x+ e(i), (2)

where the i-th row of W (i) is zeroed out and the noise in the i-th row of e is replaced with the new
independent noise ẽi. We denote the new noise vector by e(i). While (I −W (i)) might not always
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be invertible, we assume that the probability it becomes singular is zero under mild randomness
conditions on the rows of W . Thus, we treat (I −W (i)) as invertible so that the interventional
distribution P (x|do(xi)) = (I − TW (i))−1

# (Pe(i)) is well defined.

In interventional structure learning, we perform K distinct experiments to reduce uncertainty over
the underlying causal graph. Each experiment involves a perfect intervention on a single variable.
We denote the set of intervention targets by I = {i1, i2, . . . , iK} ⊆ [n], where ij ∈ [n] indicates
that the j-th experiment intervenes on variable xij . In the single-intervention setting we consider,
each experiment replaces the structural assignment of the target variable with a new exogenous noise
term (cf. Equation 2). As a result, data from the j-th experiment is drawn from the interventional
distribution P (x|do(xij )).
Each such experiment provides partial information about the true structural matrix W by revealing
the causal parents of the intervened variable. The overall objective is to combine observational data
with strategically designed interventions to eliminate incorrect graph candidates and recover the true
causal structure with minimal experimentation.

Before formulating an optimization strategy for experiment design, we first investigate the extent
to which the observational distribution constrains the underlying causal graph and matrix W . This
characterizes the observational equivalence class of graphs, that is, the set of causal structures that
cannot be distinguished based on observational data alone.

4 Distribution Equivalent Graphs

We aim to characterize the class of linear structural causal models (LSCMs) and their associated
graphs that generate the same distribution over observable variables. There are two related but distinct
notions in the literature:

• Distribution-entailment equivalence, which considers whether two parameterized LSCMs
yield the same observational distribution.

• Distribution equivalence, which concerns whether two graph structures admit the same set
of observable distributions across all compatible LSCMs.

These concepts are formally defined and compared in Appendix A. In our setting—linear SCMs
with non-Gaussian noise—the two notions coincide due to identifiability guarantees from ICA. For a
detailed discussion, see also Lacerda et al. [22].

In the remainder of this section, we focus on a graph operation that connects distribution-equivalent
graphs.

Definition 4.1 (Cycle Reversion). Let C be a cycle in the graph G. The cycle reversion (CR)
operation involves swapping the rows of each member of C in I +BG with the row corresponding
to its subsequent node in the cycle. This operation reverses the direction of the cycle C. Moreover,
any edge from a node outside C that was originally a parent of some X ∈ C will now point to the
predecessor of X in the original cycle C (see Figure 1a).

Propositions A.3 and A.4 (see Appendix A) shows that distribution-equivalent graphs can be trans-
formed into one another through a sequence of cycle reversions.

4.1 Strongly Connected Components

In this section, we examine an important property that remains invariant under cycle reversion. To
establish this, we first define strongly connected components (SCCs) in directed graphs.

Definition 4.2 (Strongly Connected Component (SCC)). Two vertices u and v in a directed graph
G are said to be strongly connected if there are directed paths from u to v and from v to u. This
defines an equivalence relation on the vertex set, whose equivalence classes are called strongly
connected components (SCCs). Each SCC is a maximal subgraph in which every pair of vertices is
strongly connected, and no additional vertex from G can be added without violating this property.
The collection of SCCs forms a partition of the vertex set of G. See [4, Section 22.5]
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(a) Cycle reversion operation

u v

u v

(b) SCCs are preserved after CR

Figure 1: (a) Graph representation of cycle reversion. (b) The figure highlights representative nodes
from an SCC to show that their reachability is maintained, although the full SCC is not depicted.

Definition 4.3 (Condensation Graph). The condensation graph of a directed graph G is obtained by
contracting each SCC into a single vertex and mapping all edges between SCCs to a single edge. The
resulting graph is a directed acyclic graph (DAG).

Theorem 4.4. 1 Strongly connected components remain unchanged in distribution-equivalent graphs.

Figure 1b illustrates the core idea behind the proof by showing how cycle reversion operations
preserve strongly connected components. The following corollary is a direct consequence of the
above theorem and the definition of the condensation graph in 4.3.

Corollary 4.5. The condensation graphs of all distribution-equivalent graphs are identical.

Additionally, note that for a subset of vertices in the condensation graph that correspond to single
vertices in the original graph, their corresponding row in the recovered matrix via ICA can be
identified. This is because cycles only occur within an SCC, and if an SCC consists of a single
vertex, no cycle passes through it, eliminating any CR ambiguity. Therefore, the corresponding
row can be determined. Furthermore, if the original graph is acyclic, all its SCCs contain only
one vertex, meaning that row permutation ambiguity is entirely resolved. As a result, the original
data-generating graph can be inferred purely from observational data, a result previously established
in Linear Non-Gaussian Acyclic Models (LiNGAM) in [31].

4.2 Matching in Bipartite Graphs

Graphs in a distribution-entailment equivalence class correspond to perfect matchings in a bipartite
graph. Given I −WICA, recovered via ICA from observational data, any equivalent graph can be
written as PπD(I −WICA), where Pπ is a row permutation matrix such that its diagonal entries
remain nonzero.

Define a bipartite graph Gb = ({r1, . . . , rn}, [n], E), where each node ri represents the i-th row
of the matrix I − WICA, and an edge (ri, j) ∈ E exists if and only if WICA[i, j] ̸= 0. Each
valid permutation π defines a perfect matching ri 7→ π(i), and vice versa. Thus, distribution-
equivalent graphs correspond to row permutations consistent with matchings in Gb (see an example
in Appendix A.4).

This bipartite view provides a combinatorial handle on equivalence classes and forms the foundation
for analyzing how interventions restrict the matching space.

5 Interventional Distribution

We now investigate how interventional data, when combined with observational data, provides
additional knowledge about the causal structure. In particular, we show that an intervention on a
single variable enables the identification of its causal parents.

1All proofs are provided in the appendix.
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Proposition 5.1. Given the observational distribution generated by the model in (1) and the inter-
ventional distribution from model (2), the i-th row of the matrix W can be recovered. Consequently,
the parents of xi and their causal effects are identifiable.

5.1 Recovering an Edge of the True Matching in the Bipartite Graph

Proposition 5.1 has a natural interpretation in the bipartite graph of 4.2. Recall that each perfect
matching in the bipartite graph Gb = ({r1, . . . , rn}, [n], E), with edges (ri, j) ∈ E iff WICA[i, j] ̸=
0, corresponds to a valid permutation matrix Pπ defining a distribution-equivalent graph.

Intervening on variable xi, identifies the row corresponding to xi. In the bipartite graph, this identifies
the matching edge (rπ−1(i), i) corresponding to the true permutation. This eliminates ambiguity for
row rπ−1(i) and restricts the possible options for matching the remaining vertices in the bipartite
graph (see an example in Appendix B.2).

6 Adaptive Experiment Design

In previous sections, we showed that observational data alone allows us to recover the causal structure
only up to an equivalence class of graphs, denoted by Geq. Each member of this class corresponds to
a different row permutation of the matrix I −WICA, which is itself associated with a valid matching
in the bipartite graph introduced in Section 4.2.

To uniquely identify the causal structure, we need to perform interventions. As demonstrated in
Proposition 5.1, an intervention on variable xi reveals the row corresponding to xi, thereby identifies
the correct matching edge (rπ−1(i), i) in the bipartite graph. Each such intervention removes all
graphs from Geq that are incompatible with the identified edge, shrinking the equivalence class.

We now define an adaptive experiment design framework tailored to this setting. Our objective is to
strategically select a sequence of intervention targets to maximally reduce the size of the equivalence
class Geq, with the goal of identifying the true causal graph G∗ using as few interventions as possible.

Let I = {i1, i2, . . . , iK} ⊆ [n] be the set of selected variables for intervention. For each ij ∈ I,
we collect the interventional data from the distribution x(ij) ∼ P (x|do(xij )), and perform ICA to
estimate the corresponding interventional matrix I −W (ij). By comparing this estimate with the
observational estimate I −WICA, we recover the row of xij and hence the corresponding matching
edge. We then eliminate all graphs in Geq that are incompatible with this edge.

Let Ω := Geq denote the initial equivalence class. For a given intervention set I ⊆ [n] and a true
graph ϕ ∈ Ω, let Ω(I,ϕ) ⊆ Ω denote the set of all graphs that are compatible with the result of
interventions on variables in I. The objective is to find the set I that minimizes the size of the
reduced equivalence class |Ω(I,ϕ)|. In the absence of a prior on the true graph ϕ ∈ Ω, we consider a
uniform prior over Ω. This leads to an expected-size criterion for selecting the next intervention.

6.1 Adaptive Stochastic Optimization

Our aim is to eliminate as many candidate graphs as possible adaptively, by choosing each intervention
based on the outcomes observed so far. Let the unknown true graph be a random variable drawn
uniformly from the set of observationally equivalent graphs, i.e., Φ ∼ Unif(Ω).

Following the Adaptive Stochastic Optimization framework [11], we define:

• A policy π is an adaptive strategy that, at each step t, selects an intervention It =
π
(
(i1, O1), . . . , (it−1, Ot−1)

)
, based on the history of past interventions i1, . . . , it−1 and

their observed outcomes O1, . . . , Ot−1. Here, each outcome Os corresponds to the infor-
mation gained from intervening on variable is—for example, the index π−1(is) of the true
row recovered via ICA, or equivalently, the bipartite matching edge (rπ−1(is), is) that was
identified.

• For a given realization ϕ ∈ Ω and policy π, let I(π, ϕ) =
{
i1, i2, . . . , iK

}
be the (ran-

dom) set of variables on which π intervenes before terminating (subject to a budget of K
interventions).
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• Define the reward function as

f(I, ϕ) := |Ω| − |Ω(I,ϕ)|, (3)

where I ⊆ [n] denotes the set of intervened variables, and Ω(I,ϕ) ⊆ Ω is the set of graphs
that agree with ϕ on the outcomes of all interventions in I.

The utility of a policy π is the expected reward:

F (π) = EΦ∼Unif(Ω)

[
f
(
I(π,Φ),Φ

)]
. (4)

Our goal is to find an adaptive policy π, subject to a budget of K interventions, that maximizes F (π).

6.2 Adaptive Monotonicity and Submodularity

We now review some relavent definitions from the adaptive submodularity framework [11], and show
that our reward function satisfies these properties.
Definition 6.1 (Universe and Random Realization). Let Ω be the finite set of all possible true graphs
(realizations) consistent with the observational data. We treat the true graph as a random variable
Φ ∼ Unif(Ω).
Definition 6.2 (Partial Realization). Let E = {1, 2, . . . , n} denote the set of variables eligible for
intervention, which, in most cases, coincides with the full set of observed variables, and let O denote
the set of possible outcomes from each intervention. A partial realization ψ is a function

ψ : dom(ψ)→ O, dom(ψ) ⊆ E ,
where ψ(i) ∈ O records the observed outcome (e.g., recovered matching edge) for intervention i. We
write Φ ∼ ψ to denote the posterior distribution over realizations conditioned on consistency with all
observations in ψ, i.e.,

Pr[Φ = ϕ|Φ ∼ ψ] ∝
{
1 if ϕ agrees with ψ,
0 otherwise.

Definition 6.3 (Conditional Expected Marginal Benefit). Let f : 2E×Ω→ R≥0 be a reward function
and let ψ be a partial realization. For any v /∈ dom(ψ), define the conditional expected marginal
benefit as

∆(v|ψ) := E
[
f
(
dom(ψ) ∪ {v},Φ

)
− f

(
dom(ψ),Φ

)
|Φ ∼ ψ

]
. (5)

Definition 6.4 (Adaptive Monotonicity). A reward function f is adaptive monotone if

∆(v|ψ) ≥ 0 (6)

for every partial realization ψ and item v /∈ dom(ψ).
Definition 6.5 (Adaptive Submodularity). A reward function f is adaptive submodular if, for all
partial realizations ψ ⊆ ψ′ and all v /∈ dom(ψ′),

∆(v|ψ) ≥ ∆(v|ψ′). (7)

Theorem 6.6. Let f(I, ϕ) be the number of graphs eliminated after performing interventions I under
realization ϕ, as defined in Equation (3). Then f is adaptive monotone and adaptive submodular
with respect to the uniform prior distribution over realizations.

Let F (π) = EΦ∼Unif(Ω)

[
f
(
I(π,Φ),Φ

)]
denote the expected number of eliminated graphs under

an adaptive policy π, as defined in Equation (4). Then the adaptive greedy policy achieves a
(1− 1/e)-approximation to the optimal value of F .

7 Estimating the Reward Function by Sampling

Based on Theorem 6.6, at each step (after observing the results of previous interventions), we greedily
intervene on the variable that maximally reduces the size of the remaining equivalence class. Thus, it
is sufficient to compute the conditional expected marginal benefit ∆(v|ψ) for each candidate variable
v /∈ dom(ψ).
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Let ϕ be any realization consistent with ψ, and define N = |Ω(dom(ψ),ϕ)|. In the bipartite-matching
representation of the problem, the column vertex v in the bipartite graph may be matched to different
rows across the candidate graphs in Ω(dom(ψ),ϕ). Concretely, recall that each graph in this equivalence
class corresponds to a perfect matching in the bipartite graphGb, whose left nodes are rows r1, . . . , rn,
and whose right nodes are column indices 1, . . . , n. Before intervening on variable v, the right-hand
node v may be matched to different row nodes rz1 , . . . , rzk across theN graphs. Denote these distinct
row indices by z1, z2, . . . , zk. Therefore, the set of candidate edges for node v is

{ (rzi , v) : i = 1, . . . , k }.
Each graph g ∈ Ω(dom(ψ),ϕ) selects exactly one of these edges in its matching. Let

ni =
∣∣{ g ∈ Ω(dom(ψ),ϕ) : g matches v to rzi}

∣∣, k∑
i=1

ni = N.

Therefore, prior to an intervention, the probability that v is matched to row rzi is pi := ni/N . Once
we intervene on v and recover its true row, we identify the correct edge (rzi , v) and eliminate all
graphs that do not contain this edge. If edge (rzi , v) is observed, exactly ni graphs survive, and the
number of eliminated graphs is N − ni. Hence, the conditional expected marginal benefit under ψ is:

∆(v|ψ) =
k∑
i=1

pi(N − ni) = N

k∑
i=1

pi(1− pi). (8)

To compute ∆(v|ψ) via Equation (8), we need to know the full equivalence class Ω(dom(ψ),ϕ) (This
is necessary for evaluating ni and N ). Since explicitly enumerating all graphs in this class is
computationally infeasible due to the exponential number of perfect matchings, we estimate ∆(v|ψ)
by sampling from Ω(dom(ψ),ϕ).

Let p = [p1, . . . , pk]
T and define the normalized marginal benefit as L(p) :=

∑k
i=1 pi(1 − pi).

Although p is not directly accessible, we assume a sampling oracle S that returns i.i.d. samples
from p. This corresponds to sampling a perfect matching uniformly at random and observing the
edge incident to v. A single batch of such samples allows us to estimate L(p) for all intervention
candidates.

The existence of a polynomial-time approximate uniform sampler is ensured by the FPRAS of Jerrum,
Sinclair, and Vigoda [16]. While their method offers theoretical guarantees, we also consider faster
heuristic alternatives in practice. For the sake of analysis, it suffices to assume access to such a
sampler.

Given samples X1, . . . , XM ∼ p, where each Xj ∈ [k] indicates the row matched to v, we construct
an empirical estimate p̂ and use it to approximate ∆(v|ψ).

7.1 Statistical Accuracy of Sampling-Based Estimation

We now quantify the accuracy of estimating the marginal benefit ∆(v|ψ) = NL(p) =

N
∑k
i=1 pi(1− pi) via empirical sampling.

Let p = (p1, . . . , pk) be the unknown categorical distribution over candidate rows (i.e., the edges
connected to v in the bipartite graph). Let X1, . . . , XM

iid∼ p, and define the empirical distribution:

p̂ = (p̂1, . . . , p̂k), p̂i :=
1

M

M∑
j=1

1{Xj = i}. (9)

We use the estimator L(p̂) =
∑k
i=1 p̂i(1− p̂i). The following theorem provides an estimation error

bound on |L(p)− L(p̂)|.
Theorem 7.1. Given M i.i.d samples X1, . . . , XM

iid∼ p, for the estimsator L(p̂), we have:

P

[
|L(p̂)− L(p)| ≥ 1

M
+

√
2

M
log

(
2

ϵ

)]
≤ ϵ. (10)

8



(a) Sample mode: approximate matching sampler. (b) Exact mode: full enumeration of matchings.

Figure 2: Comparison of intervention strategies assuming an ideal ICA oracle. Our method (Adaptive)
consistently performs close to the feedback vertex set (FVS) lower bound.

In particular, picking ϵ = 1
M implies that with probability at least 1− 1

M , the error satisfies

|L(p̂)− L(p)| ≤ 1

M
+

√
2 log(2M)

M
= O

(√
logM

M

)
= Õ

(√
1

M

)
.

8 Experimental Results

We evaluate the performance of our adaptive experiment design method for identifying causal graphs
under the linear non-Gaussian structural causal model assumption. Experiments are conducted on
synthetic data generated from Erdős–Rényi random directed graphs, where each possible directed edge
(excluding self-loops) is included independently with a fixed probability. To ensure identifiability, we
enforce that the resulting matrix I−W is invertible. We measure the average number of interventions
required for full causal identification.

8.1 Performance with an Ideal ICA Oracle

To evaluate the intervention strategy on its own, isolating it from statistical estimation errors, we
assume access to an ideal ICA procedure that returns a row-permuted and scaled version of the true
matrix I −W . The adaptive method uses a bipartite representation of the graph and samples perfect
matchings using two modes: exact, where all matchings are enumerated, and sample, where a fast
greedy heuristic is used (E.2). We compare our adaptive strategy against two baselines: Random,
which selects a target uniformly at random, and Max Degree, which chooses the node with the highest
degree in the bipartite graph.

As a theoretical baseline, we compute the feedback vertex set (FVS) of each true graph. The FVS size
represents a fundamental lower bound on the number of interventions required to break all cycles.
Although computing the FVS is NP-hard, we solve it exactly to obtain the best possible benchmark.

Figures 2a and 2b show that our adaptive method consistently outperforms the baselines and operates
remarkably close to the intractable FVS lower bound, despite having no knowledge of the true graph
structure. This demonstrates the near-optimality of our greedy approach in an ideal setting. For more
details, please refer to E.

8.2 Robustness in a Practical Setting with Finite-Sample ICA

To assess the practical viability of our method, we evaluate its performance in a more realistic setting
without an ideal ICA oracle. Instead, we apply the FastICA algorithm [15] to finite samples generated
from both observational and interventional distributions. This introduces estimation noise, which
can corrupt the recovered matrices. To handle these challenges, we introduce two key algorithmic
modifications for robustness: adaptive thresholding of matrix entries and a safe matching procedure
to prevent incorrect row assignments. A detailed description of these modifications is provided in
Appendix E.3.
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In this setting, our adaptive strategy continues to exhibit a performance trend similar to the ideal
case, consistently outperforming the Random and Max Degree baselines and remaining remarkably
close to the FVS lower bound (see Figure 6 in Appendix E.3), confirming its effectiveness even under
estimation noise of ICA.

Furthermore, to analyze the quality of the recovered structure, we measured the relative error

(εrel =
∥Ŵ−W∗∥

F

∥W∗∥F
) between the estimated matrix Ŵ and the ground-truth W ∗. Our result, presented

in Appendix E.3, shows that the algorithm achieves a high-fidelity recovery of the true causal structure
in the vast majority of runs.

9 Extensions

Our core framework focuses on adaptive, single-variable, perfect interventions in linear non-Gaussian
models. Here, we briefly discuss how the proposed method can be extended to more general settings.
We defer detailed derivations and proofs to Appendix F.

9.1 Multi-Node Interventions

The proposed method can be generalized to handle simultaneous interventions on a set of variables
E = {i1, . . . , it}. Such an intervention is always informative, as it localizes the row-permutation
ambiguity to the intervened set E and effectively disambiguates it from the rest of the graph.
Furthermore, if the subgraph induced by the variables in E is acyclic, the internal cycle reversion
ambiguity within E is fully resolved. This allows for the unique recovery of the true row for each
variable in E, enabling the safe parallelization of experiments to accelerate the causal discovery
process. We provide a detailed analysis in Appendix F.1.

9.2 Imperfect Interventions

Our approach is also robust to imperfect interventions. The core requirement for identifying a
variable’s corresponding row is that the intervention sufficiently perturbs its causal mechanism. As
long as the post-intervention row is distinguishable from the set of observational rows after ICA
estimation, the intervention is informative. This condition holds for some realistic noisy or incomplete
intervention types, enhancing the practical applicability of our method. Further details are discussed
in Appendix F.2.

9.3 Generalization to Non-linear Models

While we focused on the linear case, our experimental design strategy could be extended to non-linear
structural causal models. Recent advances in non-linear ICA can recover the Jacobian of the model’s
inverse function, whose sparsity pattern reveals the underlying causal graph structure up to the same
permutation ambiguity found in the linear setting [27]. Our bipartite matching formulation and reward
function could then be applied to resolve this ambiguity. We outline this potential generalization in
Appendix F.3.

10 Conclusion

We introduced a framework for causal structure learning in linear non-Gaussian models with cycles,
leveraging a combinatorial characterization of equivalence classes via bipartite matchings. By
formalizing experiment design as an adaptive submodular optimization problem, we developed a near-
optimal greedy policy that incrementally resolves causal ambiguity through targeted interventions.
Our sampling-based estimator enables practical implementation without exhaustive enumeration.
Empirical results confirm that our method recovers the true graph with few interventions, often
matching the feedback vertex set lower bound, despite having no access to the true structure.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of the paper is to introduce near-optimal experiment
design in linear non-Gaussian cyclic model, as mentioned in the the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The assumptions of the work are clearly mentioned in Assumption 3.1-3.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We present proofs of all theorems in the appendix, for improved readability
and space limitations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The codes are available as a supplementary material and experimental setups
are explained in the appendix.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes are available as a supplementary material to faithfully reproduce the
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detail of experiments are discussed in Section 8 and in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The confidence intervals are reported in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources are reported in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: -

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of machine
learning. There are general potential societal consequences as a result of improvement in
alignment techniques, none of which we feel must be specifically highlighted.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code-bases used in the experiments are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Distribution Equivalent Graphs
	Strongly Connected Components
	Matching in Bipartite Graphs

	Interventional Distribution
	Recovering an Edge of the True Matching in the Bipartite Graph

	Adaptive Experiment Design
	Adaptive Stochastic Optimization
	Adaptive Monotonicity and Submodularity

	Estimating the Reward Function by Sampling
	Statistical Accuracy of Sampling-Based Estimation

	Experimental Results
	Performance with an Ideal ICA Oracle
	Robustness in a Practical Setting with Finite-Sample ICA

	Extensions
	Multi-Node Interventions
	Imperfect Interventions
	Generalization to Non-linear Models

	Conclusion

