

000 CULTURE IN ACTION: EVALUATING TEXT-TO-IMAGE 001 MODELS THROUGH SOCIAL ACTIVITIES

002 **Anonymous authors**

003 Paper under double-blind review

004 ABSTRACT

005 Text-to-image (T2I) diffusion models achieve impressive photorealism by train-
006 ing on large-scale web data, but models inherit cultural biases and fail to depict
007 underrepresented regions faithfully. Existing cultural benchmarks focus mainly
008 on object-centric categories (e.g., food, attire, and architecture), overlooking the
009 social and daily activities that more clearly reflect cultural norms. Few metrics
010 exist for measuring cultural faithfulness. We introduce CULTIVate, a bench-
011 mark for evaluating T2I models on cross-cultural activities (e.g., greetings, dining,
012 games, traditional dances, and cultural celebrations). CULTIVate spans 16 coun-
013 tries with 576 prompts and more than 19,000 images, and provides an explainable
014 descriptor-based evaluation framework across multiple cultural dimensions, in-
015 cluding background, attire, objects, and interactions. We propose four metrics
016 to measure cultural alignment, hallucination, exaggerated elements, and diversity.
017 Our findings reveal systematic disparities: models perform better for global north
018 countries than for the global south, with distinct failure modes across T2I systems.
019 Human studies confirm that our metrics correlate more strongly with human judg-
020 ments than existing text–image metrics.

021 1 INTRODUCTION

022 The 2007 film Ratatouille earned 41 film awards including Best Feature at the 2008 Oscars
023 (Wikipedia). Part of its appeal lies in the very realistic portrayal of the city of Paris, and of French
024 culture and cuisine (SeattleTimes). To achieve this, creators visited places in Paris to soak in the
025 culture and environment, including its highly distinctive visual aspects. Many other well-regarded
026 films (animated ones like Luca and Coco, and live action ones like Amelie, Crouching Tiger Hidden
027 Dragon, and Reservation Dogs) also devoted significant effort to ensuring they capture the true
028 atmosphere and visuals of the places they portray. Such culturally accurate visual portrayals are
029 important for many types of creative and marketing content beyond film, e.g., advertising.

030 The advancement of text-to-image generative models in theory offers the potential for automated or
031 semi-automated creation of such content. However, recent Text-to-Image (T2I) models are trained
032 on large-scale web-based data, which is WEIRD (Western, Educated, Industrialized, Rich, and
033 Democratic) (Henrich et al., 2010). The resulting bias is particularly problematic for cultural ac-
034 tivities, the social practices through which cultures express their values and meanings. Understanding
035 culture is best achieved through everyday activities and social interactions since these practices
036 embody the values and meanings of a society (Geertz, 2017; Hall, 1973). However, cross-cultural
037 studies of T2I models are heavily understudied, with the most recent benchmarks mainly focusing on
038 a few specific object-centric categories such as architectures, clothing, food, and landmarks (Rege
039 et al., 2025; Chiu et al., 2024; Basu et al., 2025).

040 We examine how well T2I models portray different cultures, focusing on *activities* whose visual
041 representation varies significantly across cultures. Unlike static cultural artifacts, **activities are**
042 **contextual and compositional**. The same activity can have multiple valid cultural variants. For
043 example, “eating at home in Iran” may involve sitting at a formal dining table or gathering on the
044 floor around a traditional *sofreh*. This contextual nature makes activity evaluation fundamentally
045 different from object recognition, where cultural artifacts have more limited shapes and attributes.

046 We address these challenges by introducing **CULTural acTIViTy (CULTIVate)**, a comprehensive
047 benchmark for evaluating T2I models on culturally-grounded social activities. CULTIVate spans 16

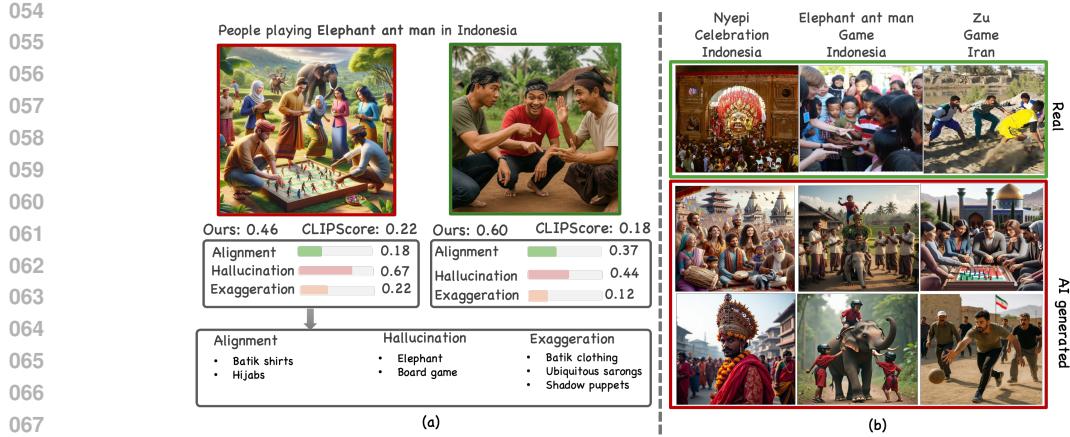


Figure 1: (a) Examples of good (aligned) and bad (hallucinated or exaggerated) aspects of images generated for three cultural activities; these aspects are automatically computed by our framework. (b) Contrasting real and generated images.

countries across 9 activity categories (eating, greetings, celebrations, religious practices, etc.), yielding 576 prompts that capture the contextual complexity missing from object-centric benchmarks. We evaluate 6 state-of-the-art T2I models, generating over 19,000 images and collecting 3,000 real reference images. As Fig 1 (a) illustrates, activity evaluation reveals complex and *new* failure patterns: models may generate wrong activities, include culturally correct but *hallucinated* elements, or produce heavily *exaggerated* scenes. This is in contrast to object/artifact-centric concepts (e.g., Eiffel tower, ceramic diyas), where the *major failure mode* is incorrect (i.e., wrong object) generation. These complex failure patterns raise critical questions: *Are current evaluation metrics effective for cultural assessment of activities? What characteristics must an effective metric have for this task?*

Our work explores *cultural faithfulness*. The most related prior evaluation work has relied predominantly on human surveys due to assessment complexity (Kannen et al., 2024; Bayramli et al.). Other recent works use image-text alignment as a proxy (Rege et al., 2025; Khanuja et al.), but these approaches **use VLMs to directly score cultural faithfulness** and **rely on VLM internal knowledge** that inherits similar cultural **biases**. For example, when models generate literal elephants for “elephant ant man game” (a rock-paper-scissors-like game in Indonesia), VLM-based metrics (e.g., CLIP-Score (Hessel et al., 2021)) may reward this literal interpretation because due to their bag-of-words behavior (Yuksekgonul et al., 2022), lack of compositional understanding, and poor performance on implicit text-image alignment. This fundamental misalignment extends beyond individual cases: our analysis reveals that **image-text alignment metrics correlate positively with cultural exaggeration**, while effective metrics should correlate **negatively according to human judgment**.

To cope with these challenges and answer the questions above, we introduce AHEaD diagnostic tools (Alignment, Hallucination, Exaggeration, and Diversity) that **use external visual descriptors rather than biased VLM knowledge**. We decompose activities into *interpretable visual descriptors* that capture cultural elements across multiple dimensions. To ensure robust **reference descriptor** generation, we employ a *proposer-refiner* approach where *proposer* LLMs generate diverse candidates, and *refiner* filters duplicates and errors. AHEaD provides **interpretable insights**: *Alignment* measures cultural coverage with respect to reference descriptors; *Hallucination* quantifies incorrect or irrelevant elements in the image; *Exaggeration* measures over-representation compared to real images; *Diversity* captures **variation in cultural elements** rather than low-level visual attributes (e.g., color, texture). Unlike naive image-text alignment, our framework provides interpretable feedback at multiple levels (e.g., image sets, individual images, or specific elements within the image). This enables researchers to identify which cultural aspects are missing, over-represented, or faithfully depicted.

In more detail, applying our framework works as follows. First, we compute our AHEaD metrics (Alignment, Hallucination, Exaggeration, and Diversity) automatically, without requiring human annotations, which makes applying them to novel scenarios (e.g., new countries) scalable. The metrics compare different aspects of quality in the images generated by different text-to-image models, and

108 can be used to quantitatively judge which T2I model to deploy when aiming to depict a particular
 109 country. Second, our framework outputs the aspects of social activities that are not represented well
 110 by T2I models. In particular, it can output the top-k and bottom-k of descriptors likely to be included
 111 mistakenly, and top-k and bottom-k of descriptors likely to be over-represented (exaggerated). This
 112 ability can be used to improve existing T2I models, e.g., by requesting models to add or remove
 113 particular concepts using the descriptors identified as problematic. Third, our framework computes
 114 correlations between the AHEaD metrics. These correlations can highlight trade-offs in adjustments
 115 to models and outputs. For example, we aim to answer the question, does boosting alignment reduce
 116 or boost hallucination and exaggeration?

117 We conduct comprehensive experiments on CULTIVate and reveal systematic limitations in current
 118 cultural evaluation. Our AHEaD metrics achieve 27% higher rank correlation with human judgments
 119 of cultural faithfulness compared to using the same MLLM backbone directly as a judge, and
 120 significantly outperform existing image-text alignment metrics. Importantly, analysis suggests
 121 that metrics are complementary; the best rank correlation with with human faithfulness is achieved
 122 when combined (Alignment, Hallucination, and Exaggeration). We also find consistent bias across
 123 all tested T2I models: they generate more culturally faithful images for Global North countries than
 124 Global South countries, with alignment score gaps of 4-8%.

125 To summarize, our contributions are: (1) CULTIVate benchmark: First cultural evaluation bench-
 126 mark focused on social activities, spanning 576 prompts across 16 countries with over 19k images;
 127 (2) AHEaD diagnostic tools: Novel metrics using external descriptors that achieve 27% better hu-
 128 man correlation strongest baseline; (3) Cultural bias analysis: Systematic demonstration of Global
 129 North bias across all tested T2I models; (4) Proposer-refiner framework: Robust descriptor genera-
 130 tion enabling scalable cultural evaluation without human annotations.

131 2 RELATED WORKS

132 **Image-Text Alignment Metrics.** General-purpose metrics rely on low-level features (e.g. FID
 133 (Heusel et al., 2017), LPIPS (Zhang et al., 2018)) or global image-text alignment (e.g. CLIPScore
 134 (Hessel et al., 2021), VQAScore (Lin et al., 2024)). Some metrics require expensive human judg-
 135 ments (e.g. ImageReward (Xu et al., 2023), PickScore (Kirstain et al., 2023)). We show these
 136 correlate poorly with human judgment.

137 **Cultural Evaluation.** Cultural evaluations typically measure *realism*, *diversity*, and *cultural faith-
 138 fulness* (Liu et al., 2024; Nayak et al., 2025; Jha et al., 2024; Liu et al., 2023). Most automated
 139 approaches focus on *diversity* using vision encoders for image-image similarity (Zhang et al., 2018;
 140 Khanuja et al.; Jha et al., 2024) or Vendi-score (Kannen et al., 2024; Friedman & Dieng). Vision
 141 encoders can exhibit geographical bias and focus on low-level variations (e.g., color/texture) rather
 142 than cultural content. Alternatively, (Basu et al., 2025) use VQA models with LLM-generated
 143 questions for geographical diversity. Importantly, **diversity metric do not provide insights on cul-
 144 tural faithfulness**, the focus of this work. For cultural *faithfulness*, recent approaches explore VLM
 145 image-text alignment; (Khanuja et al.; Basu et al., 2023) measure alignment with simple coun-
 146 try prompts, while (Rege et al., 2025) measures alignment between hierarchical prompts. These
 147 approaches **rely on VLM internal knowledge** but VLMs inherit Western-centric biases and com-
 148 positional scenes (Yuksekgonul et al., 2022). Since faithfulness remains challenging for automated
 149 methods, many works rely on human surveys which are expensive to obtain (Nayak et al., 2025;
 150 Liu et al., 2024; Jeong et al., 2025; Jha et al., 2024). We introduce the suite of automatic AHEaD
 151 metrics, which uses *external visual descriptors* to measure cultural alignment while penalizing for
 152 hallucination and over-representation.

153 **Cultural Benchmarks.** Cultural understanding has been extensively studied for image understand-
 154 ing tasks (Kalluri et al., 2023; Ramaswamy et al., 2023; Nayak et al., 2024; Astruc et al., 2024;
 155 Vayani et al., 2025; Liu et al., 2025; Yin et al., 2023). For T2I generation, existing benchmarks are
 156 primarily object-centric. (Kannen et al., 2024) covers 8 countries across 3 artifact categories, (Jha
 157 et al., 2024) includes 10 countries on food and architecture, and (Basu et al., 2023) covers 27 coun-
 158 tries using parsed noun phrases. Our CULTIVate differs by focusing on social activities rather than
 159 artifacts. Activity scenes are contextual and compositional with multiple valid variants. This creates
 160 evaluation challenges: correctly generating objects is insufficient since cultural accuracy depends on
 161 appropriate interactions, context, and spatial arrangements. Models exhibit multiple failure modes,

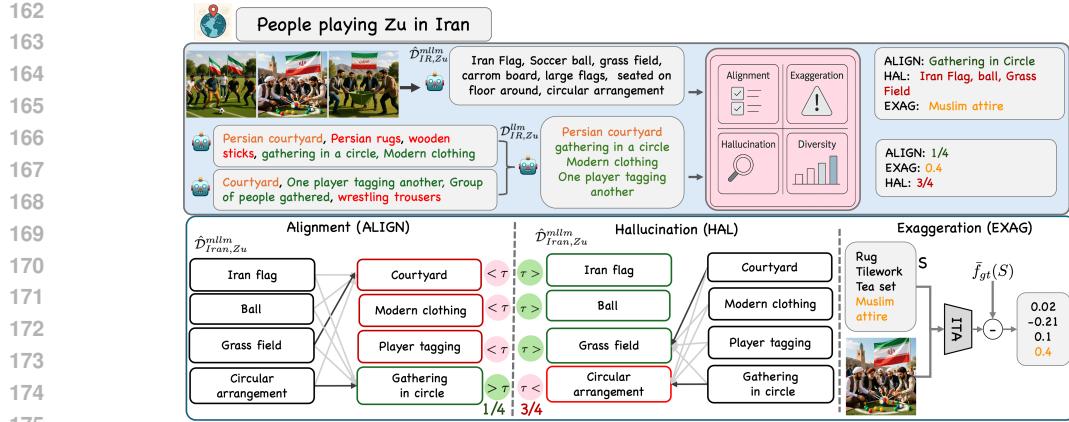


Figure 2: **(Top) Overview.** We extracted image descriptors \hat{D}^{mlmlm} with InternVL3, while reference descriptors D^{llm} are obtained via a proposer–refiner pipeline in data annotation stage (i.e. offline) without using images. Proposers generate diverse candidates, and the Refiner removes **duplicates** and filters **incorrect** ones. AHEAD measures cultural competence through alignment, hallucination, exaggeration, and diversity, providing not only quantitative scores but also interpretable feedback (i.e., what is aligned, missing, or exaggerated). **(Bottom) Cultural Faithfulness metrics.** Alignment measures whether expected descriptors are present (similarity above threshold τ), hallucination flags elements unsupported by references (e.g., **circular arrangement**), and exaggeration detects exaggerated cues overemphasized with respect to real-images (e.g., **muslim attire**)

including incorrect activity, correct activity but exaggerated scenes, or hallucinated cross-cultural elements. Concurrent work (Nayak et al., 2025) focuses on explicit vs implicit cultural expectations via *human evaluation*. CULTIVate complements this by specializing in social activities and proposing the first automated metrics for cultural alignment, hallucination, and exaggeration.

Knowledge probed from large language models. While LLM-based visual descriptors have been explored for fine-grained and cross-geography object recognition (Pratt et al., 2023; Menon & Vondrick, 2023; Saha et al., 2024; Buettner et al., 2024), this is the first work to use descriptors for evaluating cultural competence in T2I models.

3 METHODOLOGY

We argue that effective cultural evaluation requires more than simple alignment detection. Good metrics should correlate positively with cultural faithfulness while penalizing exaggeration and hallucination. Fig. 5a shows that VLM-based metrics fail this test—images with excessive cultural stereotypes score highly with VLMs but poorly with humans. We address these limitations through visual descriptors that provide transparent cultural criteria. Section 3.1 describes descriptor generation using cultural sources. Section 3.2 introduces AHEAD metrics that evaluate images against descriptors to measure cultural alignment and hallucination (Fig. 2).

3.1 REFERENCE DESCRIPTOR GENERATION

Initially, during data annotation stage, we use LLMs to generate reference descriptors for each activity-country pair that capture cultural elements across five dimensions: *background* (e.g., Eiffel tower, geometric patterns), *attire* (e.g., traditional vs. modern clothing), *objects*, *actions/interactions* (e.g., greeting with a bow), and *spatial layout* (e.g., dancers in a circle).

We propose a two-stage approach inspired by self-consistency prompting (Wang et al., 2022). **(1) Proposer:** The proposer stage uses multiple LLMs (Gemini 2.5 Flash (Comanici et al., 2025) and GPT-4o (Hurst et al., 2024)) to generate diverse descriptor candidates, increasing coverage different of cultural elements. We specifically instruct each LLM to generate up to 10 elements per dimension, where descriptors can be mutually exclusive. **(2) Refiner:** The refiner stage filters candidates to remove duplicates and incorrect descriptors, improving precision and the proposer-refiner process

improves AHEaD metric performance compared to single-model generation (Table 4). We emphasize that this stage is image agnostic and is performed once offline to obtain reference descriptors. In Sec. 3.2, we describe how AHEaD metrics are computed.

3.2 AHEAD EVALUATION METRICS

Our goal is to evaluate the cultural faithfulness of T2I systems. A good image should capture the expected elements for an activity in a given culture, avoid introducing elements from other cultures, not exaggerate cultural elements, and display variety across plausible scenarios. We capture these aspects with four descriptor-based metrics.

Consider activity a , region r (in our setting, we experiment with countries as the regions), its corresponding prompt $T_{a,r}$, and LLM-generated reference descriptors $\mathcal{D}_{r,a}^{\text{llm}}$. For each (r, a) we generate N images $\{I_1, \dots, I_N\}$ and extract predicted descriptors for each image I_j using a Multimodal LLM (i.e., InternVL3 (Zhu et al.)) denoted $\hat{\mathcal{D}}^{\text{mlm}}(I_j)$, $j = 1, \dots, N$.

Alignment. This metric measures cultural alignment: whether generated images reflect culturally expected elements in the GT descriptors. A GT descriptor $d \in \mathcal{D}_{r,a}^{\text{llm}}$ is considered aligned if its similarity with any $\hat{d} \in \hat{\mathcal{D}}_{r,a}^{\text{mlm}} = \bigcup_{j=1}^N \hat{\mathcal{D}}_{r,a}^{\text{mlm}}(I_j)$ exceeds a threshold τ .

$$\text{ALIGN}_{r,a} = \frac{1}{|\mathcal{D}_{r,a}^{\text{llm}}|} \left| \left\{ d \in \mathcal{D}_{r,a}^{\text{llm}} : \max_{\hat{d} \in \hat{\mathcal{D}}_{r,a}^{\text{mlm}}} \text{sim}(d, \hat{d}) > \tau \right\} \right| \quad (1)$$

where $\text{sim}(\cdot, \cdot)$ denotes sentence embedding similarity. τ is calibrated according to real images in CULTIVateBench (see appendix).

Hallucination. High alignment exhibits high recall (coverage of expected elements); however, it does not take into account the existence of irrelevant elements in the image. For example, an image of “eating at home in Iran” may align with descriptors like *sofreh* or *table*, yet also include an incorrect item such as *chopsticks*. Hallucinated \hat{d} as a hallucination if $\max_{d \in \mathcal{D}_{r,a}^{\text{llm}}} \text{sim}(\hat{d}, d) \leq \tau$.

$$\text{HAL}_{r,a} = \frac{1}{|\hat{\mathcal{D}}_{r,a}^{\text{mlm}}|} |\{\hat{d} \in \hat{\mathcal{D}}_{r,a}^{\text{mlm}} \mid \max_{d \in \mathcal{D}_{r,a}^{\text{llm}}} \text{sim}(\hat{d}, d) \leq \tau\}|. \quad (2)$$

Exaggeration. Exaggeration quantifies whether models over-emphasize stereotypical descriptors. For each region r , an LLM produces a set S_r of exaggeration candidates. Given $d_j \in S_r$, let $f(I, d_j)$ be its image-text alignment score with generated image I , and let

$$\bar{f}_{gt}(d_j) = \frac{1}{n_{gt}} \sum_{i=1}^{n_{gt}} f(I_{gt}^i, d_j) \quad (3)$$

be the average score over real images. The exaggeration score for I is

$$\text{EXAG}(I) = \max_{s_j \in S_r} [f(I, s_j) - \bar{f}_{gt}(s_j)]. \quad (4)$$

Faithfulness. We define cultural faithfulness as a composite score that aggregates alignment, hallucination, and exaggeration. Intuitively, a faithful image should (i) cover expected cultural elements, (ii) avoid introducing incorrect ones, and (iii) not overemphasize cultural descriptors.

$$\text{FAITH}_{r,a} = g(\text{ALIGN}_{r,a}, \text{HAL}_{r,a}, \text{EXAG}_{r,a}), \quad (5)$$

where $g(\cdot)$ is an aggregation function. We simply use their arithmetic mean after adapting HAL and EXAG so that higher values indicate better performance (i.e., 1-HAL and 1-EXAG)

Descriptor Diversity. Diversity measures how evenly descriptors are distributed across multiple generations. For n images of (r, a) , let $q(d)$ be the relative frequency of a descriptor $d \in \mathcal{D}_{r,a}^{\text{llm}}$ being covered, with $\sum_d q(d) = 1$. Diversity is defined as normalized entropy:

$$\text{DDIV}_{r,a} = \frac{-1}{\log |\mathcal{D}_{r,a}^{\text{llm}}|} \sum_{d \in \mathcal{D}_{r,a}^{\text{llm}}} q(d) \log q(d). \quad (6)$$

270 **Semantic Diversity.** We define semantic diversity as the additional descriptor coverage obtained
 271 when generating multiple images instead of a single image. Specifically, let $ALIGN_k(r, a)$ denote
 272 the alignment score computed over k generated images for region–activity pair (r, a) . Semantic
 273 diversity is defined as
 274

$$275 \quad \text{SDIV}_{r,a} = ALIGN_n(r, a) - \mathbb{E}[ALIGN_1(r, a)], \quad (7)$$

277 where $ALIGN_n(r, a)$ is the alignment across n generations and $\mathbb{E}[ALIGN_1(r, a)]$ is the expected
 278 alignment when considering only one image. Higher values indicate that additional generations
 279 introduce new descriptors, reflecting greater semantic variety.
 280
 281

282 4 EXPERIMENTAL SETUP

284 4.1 CULTIVATE BENCHMARK

286 We introduce CULTIVate, a benchmark for evaluating cultural competence of T2I systems through
 287 social and daily activities. CULTIVate contains **576 prompts** across **16 countries** and **9 activity**
 288 **supercategories**, generating **19,000+ images** from **6 T2I models** with comprehensive ground truth
 289 annotations. Constructing high-quality cross-cultural benchmarks with local/specific activities is
 290 nontrivial and requires expert knowledge across regions. In this work, we use a **scalable systematic**
 291 approach to create the benchmark by utilizing existing knowledge bases. We leverage two
 292 knowledge sources: (1) *CulturalAtlas*¹, which provides cultural practices across regions (countries),
 293 including greetings, religious customs, etiquette and communication. (2) *Wikipedia*, which offers
 294 fine-grained lists of activities (e.g., games and celebrations). Using GPT-4o, we parse both sources
 295 and extract non-overlapping sub-activities.
 296

297 **Activities and Coverage.** We consider nine broad activity categories: *games, dances, greetings,*
 298 *celebrations, concerts, eating, religious, wedding, and funeral*. Activities are split into three groups:
 299 (1) *multi-variant categories* (dances, games, religious, greetings, celebrations) where we enumerate
 300 sub-activities (e.g., different types of dances relevant to a country), (2) *setting-based categories*
 301 (eating at home/restaurant, concerts indoor/outdoor), and (3) *single-activity categories* (wedding,
 302 funeral). We analyze cultural disparities by dividing countries into Global North (GN): USA, Spain,
 303 Italy, Germany, France, and (2) Global South (GS): Iran, Turkey, China, India, Indonesia, Philip-
 304 pines, Nepal, Nigeria, South Africa, Brazil, Mexico, following UN classification².
 305

306 **Image Generation.** For each prompt, we generate 10 images (1 image for proprietary models due to
 307 the cost) using the template: “*A photorealistic photo of {sub-activity} in {country}*.” We include six
 308 recent T2I models: three public (Stable Diffusion 3.5 (Esser et al., 2024), FLUX (BlackForestLabs,
 309 2024), Qwen-Image (Wu et al., 2025)³) and three proprietary (DALL·E 3 (Betker et al., 2023), GPT-
 310 Image-1 (OpenAI, 2025), Nano-Banana (Google, 2025)). We set the random seeds $42 + i$ (for k -th
 311 image) in public models, generating more than 19,000 images.
 312

313 **Reference data.** We adopt two complementary strategies for identifying what images of activities in
 314 a region (country) should portray: (1) Visual Descriptors. Inspired by prior use of LLMs for object
 315 descriptors (Menon & Vondrick, 2023), we extend the idea to activities. For each prompt, we gen-
 316 erate up to 10 descriptors per cultural dimension—background, objects, attire, actions/interactions,
 317 and spatial relations. This produces diverse descriptors spanning both traditional and modern activ-
 318 ity variants (details in Sec. 3.1); (2) Real Images. We collect 20 candidate images per prompt via
 319 Google search (10 using the English prompt, 10 using its translation into the language of the respec-
 320 tive country), totaling $\sim 12k$ images. We then apply CLIPScore (Hessel et al., 2021) filtering and
 321 retain the top five (total of $\sim 3k$) as representative real references which we use in our exaggeration
 322 metric. We also use real images for calibration and finding hyperparameters such as τ in Eq. 1.
 323

324 ¹<https://culturalatlas.sbs.com.au/>

325 ²https://unctadstat.unctad.org/EN/Classifications/DimCountries_All_Hierarchy.pdf

326 ³We used distilled model: <https://github.com/ModelTC/Qwen-Image-Lightning>

Model	Region	N=1				N=10	
		ALIGN \uparrow	HAL \downarrow	EXAG \downarrow	FAITH \uparrow	DDIV \uparrow	SDIV \uparrow
SD-3.5-medium	GN	0.31 ± 0.01	0.55 ± 0.02	0.05 ± 0.02	0.57 \pm	0.68 ± 0.03	0.33 \pm
	GS	0.26 ± 0.03	0.61 ± 0.03	0.08 ± 0.04	0.52 \pm	0.62 ± 0.04	0.32 \pm
FLUX.1-dev	GN	0.30 ± 0.02	0.56 ± 0.03	0.04 ± 0.01	0.57 \pm	0.66 ± 0.03	0.32 \pm
	GS	0.25 ± 0.03	0.63 ± 0.04	0.06 ± 0.02	0.52 \pm	0.60 ± 0.04	0.30 \pm
Qwen-Image	GN	0.36 ± 0.02	0.51 ± 0.02	0.06 ± 0.01	0.60 \pm	0.68 ± 0.02	0.28 \pm
	GS	0.30 ± 0.03	0.56 ± 0.04	0.10 ± 0.03	0.55 \pm	0.63 ± 0.04	0.29 \pm
DALL-E 3 [†]	GN	0.36 ± 0.01	0.50 ± 0.01	0.10 ± 0.03	0.59 \pm	-	-
	GS	0.32 ± 0.03	0.54 ± 0.032	0.12 ± 0.04	0.55 \pm	-	-
GPT-Image-1 [†]	GN	0.36 ± 0.01	0.49 ± 0.01	0.06 ± 0.01	0.61 \pm	-	-
	GS	0.30 ± 0.03	0.55 ± 0.03	0.07 ± 0.02	0.56 \pm	-	-
Nano Banana [†]	GN	0.40 ± 0.01	0.46 ± 0.01	0.10 ± 0.03	0.61 \pm	-	-
	GS	0.35 ± 0.03	0.50 ± 0.03	0.12 ± 0.3	0.57 \pm	-	-

Table 1: **T2I models consistently generate more faithful images on GN countries.** N is number of images per prompt. Best values per model (GS/GN) is **bolded**. [†] $N=1$ only due to cost. EXAG values are small because the metric measures relative alignment of synthetic image to real images

4.2 HUMAN EVALUATION SETUP

We conduct a controlled human study to assess cultural understanding across alignment, hallucination, exaggeration, and realism using Prolific⁴ as our platform. Our evaluation covers 11 representative countries spanning all social regions, and both GN and GS, includes 1/2 prompt per each activity and 3 T2I models (Stable Diffusion 3.5, FLUX1, and Qwen-Image), totaling 381 forms and 2 annotators per each forms (762 total annotations). We also conduct human evaluation on real images for 3 countries (27 additional forms), bringing the total to 398 forms.

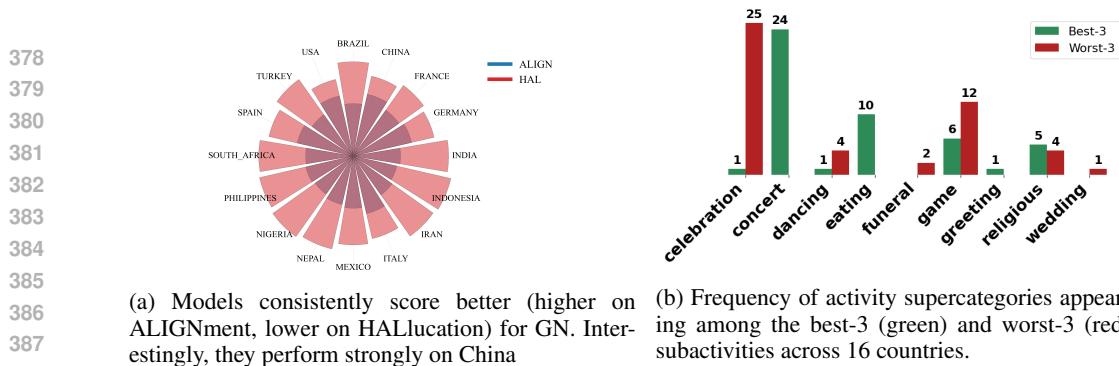
Annotations Collected. We collect the following data from our annotators, which we use as ground-truth (GT) labels: **GT-FAITH** = *How well does this image show {activity} in your country?* is the **main gold standard** that measures the overall faithfulness of an image according to the culture and activity. We further compare against **GT-EXAG** = *How exaggerated is the image?* and **GT-HAL** = *How incorrect is the image? (incorrect activity or incorrect element according to the activity and/or country)* Responses are collected on a 5-point Likert scale.

We also evaluate the quality of reference descriptors $\mathcal{D}_{r,a}^{\text{llm}}$ through human evaluation. We measure **precision** via binary (correct/incorrect) annotations for each descriptor, achieving 90% accuracy (Table 10). For **recall**, explicit evaluation is infeasible as no ground-truth descriptor set exists. We estimate recall through two complementary measures: (1) annotators rated overall descriptor coverage and quality on a 1-5 Likert scale, achieving an average of 4.5/5, and (2) only 26 out of 378 annotators indicated any missing descriptors. Together, these results demonstrate high precision and comprehensive coverage of our reference descriptors.

Quality Control. We ensure domain expertise by constraining recruitment via nationality and residence requirements (verified by Prolific). Compensation is set to \$8/hour. To ensure reliability, we implement multiple quality control measures. We include attention checks, such as selecting a pre-mentioned number. We use repeated questions to test consistency across responses. We require free-text rationales where annotators must describe what is incorrect in the image. We conduct direct discussions with annotators when facing inconsistent scoring and explanations.

Correlation Metric & inter-rater Agreement. use Spearman’s rank correlation to measure how well our proposed metrics align with human judgments. Spearman’s ρ evaluates the strength of monotonic relationships between ranked variables, where values near 1/-1 indicates a strong positive/negative correlation. Following Kannen et al. (2024) we use Krippendorff’s Alpha (Krippendorff, 2018), appropriate for ordinal Likert scores to measure inter-rater agreement in A.4 Per-country. We observe comparable agreement compared to related works (Nayak et al., 2025; Kannen et al., 2024), exceeding their maximum per-country agreement.

⁴<https://www.prolific.com/>



(a) Models consistently score better (higher on ALIGNment, lower on HALlucination) for GN. Interestingly, they perform strongly on China
(b) Frequency of activity supercategories appearing among the best-3 (green) and worst-3 (red) subactivities across 16 countries.

Figure 3: Analysis of performance by country (left) and activity (right).

Backbone	Method	GT-FAITH		
		GS (n=231)	GN (n=150)	Overall (n=381)
PickScore Kirstain et al. (2023) ImageReward Xu et al. (2023) CLIPScore Hessel et al. (2021) VQAScore Lin et al. (2024) CuRe Rege et al. (2025)	I-T Alignment	0.20	-0.02	0.15
		-0.03	-0.13	-0.08
		0.08	-0.01	0.04
		0.15	0.16	0.14
		0.13	0.08	0.10
Qwen2.5-VL	MLLM FAITH (Ours)	0.13 0.42 (+0.29)	0.08 0.38 (+0.30)	0.10 0.42 (+0.32)
InternVL3	MLLM FAITH (Ours)	0.19 0.46 (+0.27)	0.18 0.47 (+0.29)	0.20 0.47 (+0.27)
-	MLLM (GPT-4o)	0.49	0.46	0.48
	VIEScore(GPT-4o) (Ku et al., 2024)	0.37	0.27	0.35
	Human	0.59	0.57	0.58

Table 2: **Comparison with baselines on Cultural Faithfulness on expanded human evaluation (11 countries).** ITA metrics do not capture cultural nuances effectively. Our Faithfulness metric achieves substantially higher Spearman correlation with human cultural-faithfulness judgement. The best metric for each section is **bolded**. Values in parenthesis show improvement with respect to MLLM baseline. We include human–human correlation for reference. InternVL3 is ‘InternVL3-14B’ and QwenVL2.5 is ‘Qwen2.5-VL-7B-Instruct’.

5 RESULTS

We benchmark 6 pre-trained text-to-image (T2I) models using CULTIVate, and evaluate the proposed metrics against prior works using three main human ground truth labels (see Sec. 4.2).

5.1 HOW DO DIFFERENT T2I MODELS PERFORM FOR DIFFERENT COUNTRIES?

T2I models consistently generate more faithful content for Global North (GN) countries. Table 1 shows a consistent bias against GS, with all models performing consistently better on GN than on GS, e.g., Qwen-Image achieves 0.36/0.51 on GN (ALIGN) vs. 0.30/0.57 on GS (HAL). Lower ALIGN, along with higher HAL and EXAG and lower DDIV/SDIV scores on GS, suggest that models not only make more mistakes (e.g., depicting the wrong activity or showing a scene from the wrong country) but also generate exaggerated contents with less cultural concepts included. The trend is illustrated in Fig. 3a.

T2I systems perform worst on more culturally-grounded activities. Fig. 3b show often each activity category appeared among the best-3 and worst-3 performing sub-activities across the 16 countries. Models perform best on the least culturally-grounded categories (e.g., concerts, eating) while they make more mistakes on more culturally-grounded activities (e.g., celebrations).

5.2 WHAT METRICS ARE EFFECTIVE FOR CULTURAL FAITHFULLNESS?

Image-Text Alignment methods are ineffective for cultural understanding. Table 2 shows all ITA methods achieve near-zero or negative correlation with human scores (e.g., ImageReward: -

Backbone	Method	GT-FAITH		
		GS (n=231)	GN (n=150)	Overall (n=381)
Qwen2.5-VL	MLLM baseline	0.13	0.08	0.10
	ALIGN	0.41	0.32	0.39
	ALIGN + HAL	0.37	0.37	0.39
	FAITH (ALIGN+HAL+EXAG)	0.42	0.38	0.42
InternVL3	MLLM baseline	0.19	0.18	0.20
	ALIGN	0.40	0.40	0.41
	ALIGN + HAL	0.42	0.46	0.44
	FAITH (ALIGN+HAL+EXAG)	0.46	0.47	0.47
Human	—	0.59	0.57	0.58

Table 3: **Cultural Faithfulness ablation.** Cultural Faithfulness captures best through combination of ALIGNment, EXAGgeration, and HALlucination

Ref. Desc. Generator	LLM (Proposer/ Refiner)	Spearman	Kendall	τ	Spearman	Kendall
Proposer	GPT-4o / –	0.28	0.20	0.29	0.21	0.15
Proposer	Gemini 2.5-Flash / –	0.30	0.22	0.39	0.27	0.20
Proposer-Refiner	GPT-4o + Gemini 2.5-Flash / GPT-4o	0.33	0.24	0.52	0.33	0.24

Table 4: **Proposer–Refiner improves descriptor quality.**

Table 5: **Threshold (τ) ablation.**

0.03/-0.13/-0.08 for GS/GN/overall). Results are improved when using MLLMs as a judge, asking the same question as we ask our human annotators to obtain the GT-FAITH. However, MLLM still significantly under-perform our FAITH metric (e.g., Qwen2.5-VL: 0.10 vs FAITH: 0.42; InternVL3: 0.20 vs FAITH: 0.47).

Capturing exaggeration and hallucination are complementary to alignment. Table 3 shows the best correlation with human faithfulness is achieved when all three metrics are combined. This confirms our key finding: effective cultural faithfulness metrics must penalize exaggeration and hallucination, not just measure alignment.

Note that inter-rater agreement (A.4) is moderate and varies by country, consistent with related work (Nayak et al., 2025; Kannen et al., 2024), reflecting the subjectivity of cultural evaluation. We do not evaluate diversity metrics, as diversity is not part of faithfulness and requires collection-level assessment while our annotations are image-level.

Ablations. In Table 10 (appendix), we show descriptor accuracy using the relevant/irrelevant selections by annotators for a subset of countries; the average is 90.27%. We seek to boost results with the refiner (see Sec. 3.1). In Tab. 4, we see improved results on alignment with human scores, when using the two-stage proposer-refiner, over proposer alone. Further, in Table 5, we show the effect of the threshold parameter τ we use in Sec. 3.2 to compute descriptor matches. We use values corresponding to 25-th, 50-th, and 75-th percentile, and find that the latter performs best.

5.3 WHAT ASPECTS OF THE ACTIVITIES ARE DEPICTED BEST/WORST BY T2I MODELS?

Fig. 4 shows performance by region (country), for each of five dimensions (groupings) of descriptors. The best-performing country by dimension varies, but USA, China and Germany are consistently among the best. South Africa, Nigeria and India are consistently in the bottom half, except for Interaction (South Africa and Nigeria, both African countries) and Spatial (India). In appendix, we show further results using top descriptors for individual countries, activities, and metrics.

5.4 HOW DO THE METRICS RELATE TO EACH OTHER?

To improve the performance of T2I models, a user might want to know how improving upon one metric will affect others. We aim to answer this question by computing correlations between the metrics, shown in Fig. 5b. We see that alignment is negatively correlated with both exaggeration and hallucination. The same trend is observed using human scores; see Fig. 5a which also demonstrates visually the much stronger alignment of our metrics with human scores.

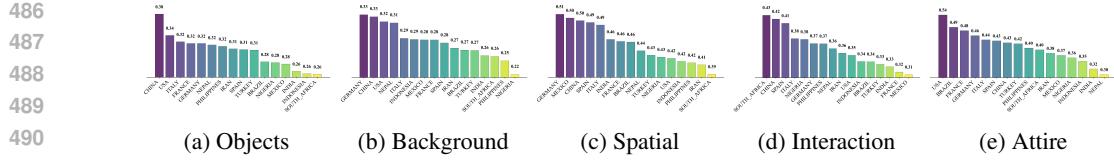


Figure 4: Country alignment ranked using each of the five descriptor dimensions. (Zoom to 250%).

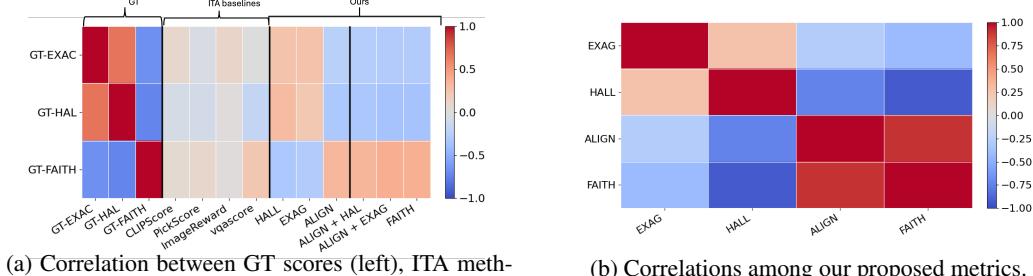


Figure 5: An effective cultural faithfulness metric should negatively correlate with exaggeration and hallucination.

6 CONCLUSION

We developed a framework for evaluating generation of images of social activities in different countries. We propose a suite of metrics that can be computed without human involvement, yet show much higher agreement with human assessment than prior metrics. Using our framework, we conduct analysis on sixteen countries and six text-to-image models. We show performance on Global North countries exceeds that of Global South, and demonstrate specific failure modes using our descriptor dimensions. We hope our work equips future researchers with the tools to scalably improve and test performance on this task which has broad applicability, e.g., in the entertainment industry.

REFERENCES

Guillaume Astruc, Nicolas Dufour, Ioannis Siglidis, Constantin Aronssohn, Nacim Bouia, Stephanie Fu, Romain Loiseau, Van Nguyen Nguyen, Charles Raude, Elliot Vincent, Lintao XU, Hongyu Zhou, and Loic Landrieu. OpenStreetView-5m: The many roads to global visual geolocation, 2024.

Abhipsa Basu, R. Venkatesh Babu, and Danish Pruthi. Inspecting the geographical representativeness of images from text-to-image models. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 5113–5124. IEEE, 2023. ISBN 9798350307184. doi: 10.1109/ICCV51070.2023.00474.

Abhipsa Basu, Mohana Singh, and Venkatesh Babu Radhakrishnan. Geodiv: Measuring concept diversity of images across geographical regions. In *CVPR 2025 Workshop Vision Language Models For All*, 2025.

Zahra Bayramli, Ayhan Suleymanzade, Na Min An, Huzama Ahmad, Eunsu Kim, Junyeong Park, James Thorne, and Alice Oh. Diffusion models through a global lens: Are they culturally inclusive? URL <http://arxiv.org/abs/2502.08914>.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

BlackForestLabs. Flux: A powerful tool for text generation. <https://blackforestlabs.ai/>, 2024.

540 Kyle Buettner, Sina Malakouti, Xiang Lorraine Li, and Adriana Kovashka. Incorporating geo-
 541 diverse knowledge into prompting for increased geographical robustness in object recognition. In
 542 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 543 pp. 13515–13524, June 2024.

544 Yu Ying Chiu, Liwei Jiang, Bill Yuchen Lin, Chan Young Park, Shuyue Stella Li, Sahithya Ravi,
 545 Mehar Bhatia, Maria Antoniak, Yulia Tsvetkov, Vered Shwartz, et al. Culturalbench: A ro-
 546 bust, diverse, and challenging cultural benchmark by human-ai culturalteaming. *arXiv preprint*
 547 *arXiv:2410.02677*, 2024.

548 Yu Ying Chiu, Liwei Jiang, Bill Yuchen Lin, Chan Young Park, Shuyue Stella Li, Sahithya Ravi,
 549 Mehar Bhatia, Maria Antoniak, Yulia Tsvetkov, Vered Shwartz, and Yejin Choi. Culturalbench:
 550 a robust, diverse and challenging benchmark on measuring (the lack of) cultural knowledge of
 551 LLMs, 2025. URL <https://openreview.net/forum?id=n1X2n7MJ8L>.

552 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 553 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 554 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 555 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

556 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 557 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 558 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 559 2024.

560 Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
 561 learning. URL <http://arxiv.org/abs/2210.02410>.

562 Clifford Geertz. *The interpretation of cultures*. Basic books, 2017.

563 Google DeepMind / Google. Nano banana (gemini 2.5 flash image), 2025. URL <https://ai.google.dev/gemini-api/docs/image-generation>. Image editing / genera-
 564 tion model.

565 Edward T Hall. *The silent language*. Anchor, 1973.

566 Joseph Henrich, Steven J Heine, and Ara Norenzayan. The weirdest people in the world? *Behavioral*
 567 *and brain sciences*, 33(2-3):61–83, 2010.

568 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 569 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

570 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 571 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 572 *neural information processing systems*, 30, 2017.

573 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 574 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 575 *arXiv:2410.21276*, 2024.

576 Suchae Jeong, Inseong Choi, Youngsik Yun, and Jihie Kim. Culture-TRIP: Culturally-aware text-
 577 to-image generation with iterative prompt refinement, 2025. URL [http://arxiv.org/abs/](http://arxiv.org/abs/2502.16902)
 578 2502.16902.

579 Akshita Jha, Vinodkumar Prabhakaran, Remi Denton, Sarah Laszlo, Shachi Dave, Rida Qadri,
 580 Chandan Reddy, and Sunipa Dev. ViSAGE: A global-scale analysis of visual stereotypes in
 581 text-to-image generation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Pro-
 582 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
 583 ume 1: Long Papers)*, pp. 12333–12347. Association for Computational Linguistics, 2024. doi:
 584 10.18653/v1/2024.acl-long.667.

585 Tarun Kalluri, Wangdong Xu, and Manmohan Chandraker. Geonet: Benchmarking unsupervised
 586 adaptation across geographies. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 587 *and Pattern Recognition*, pp. 15368–15379, 2023.

594 Nithish Kannen, Arif Ahmad, Marco Andreetto, Vinodkumar Prabhakaran, Utsav Prabhu,
 595 Adji Bousso Dieng, Pushpak Bhattacharyya, and Shachi Dave. Beyond aesthetics: Cultural com-
 596 petence in text-to-image models. 2024.

597

598 Simran Khanuja, Sathyanarayanan Ramamoorthy, Yueqi Song, and Graham Neubig. An image
 599 speaks a thousand words, but can everyone listen? on image transcreation for cultural relevance.
 600 URL <http://arxiv.org/abs/2404.01247>.

601 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 602 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural*
 603 *information processing systems*, 36:36652–36663, 2023.

604

605 Klaus Krippendorff. *Content analysis: An introduction to its methodology*. Sage publications, 2018.

606

607 Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhui Chen. Viescore: Towards explainable
 608 metrics for conditional image synthesis evaluation. In *Proceedings of the 62nd Annual Meeting of*
 609 *the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12268–12290, 2024.

610

611 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 612 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *European*
 613 *Conference on Computer Vision*, pp. 366–384. Springer, 2024.

614

615 Bingshuai Liu, Longyue Wang, Chenyang Lyu, Yong Zhang, Jinsong Su, Shuming Shi, and
 616 Zhaopeng Tu. On the cultural gap in text-to-image generation, 2023. URL <http://arxiv.org/abs/2307.02971>.

617

618 Shudong Liu, Yiqiao Jin, Cheng Li, Derek F Wong, Qingsong Wen, Lichao Sun, Haipeng Chen,
 619 Xing Xie, and Jindong Wang. Culturevlm: Characterizing and improving cultural understanding
 620 of vision-language models for over 100 countries. *arXiv preprint arXiv:2501.01282*, 2025.

621

622 Zhixuan Liu, Peter Schaldenbrand, Beverley-Claire Okogwu, Wenxuan Peng, Youngsik Yun, An-
 623 drew Hundt, Jihie Kim, and Jean Oh. Scott: Self-contrastive fine-tuning for equitable image
 624 generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 625 *nition*, pp. 10822–10832, 2024.

626

627 Mary L McHugh. Interrater reliability: the kappa statistic. *Biochemia medica*, 22(3):276–282, 2012.

628

629 Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
 630 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=j1AjNL8z5cs>.

631

632 Shravan Nayak, Kanishk Jain, Rabiul Awal, Siva Reddy, Sjoerd Van Steenkiste, Lisa Anne Hen-
 633 dricks, Aishwarya Agrawal, et al. Benchmarking vision language models for cultural under-
 634 standing. *arXiv preprint arXiv:2407.10920*, 2024.

635

636 Shravan Nayak, Mehar Bhatia, Xiaofeng Zhang, Verena Rieser, Lisa Anne Hendricks, Sjoerd van
 637 Steenkiste, Yash Goyal, Karolina Stańczak, and Aishwarya Agrawal. CulturalFrames: Assessing
 638 cultural expectation alignment in text-to-image models and evaluation metrics, 2025.

639

640 OpenAI. Gpt image 1, 2025. URL <https://platform.openai.com/docs/models/gpt-image-1>. Model documentation.

641

642 Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
 643 ating customized prompts for zero-shot image classification. In *Proceedings of the IEEE/CVF*
 644 *International Conference on Computer Vision (ICCV)*, pp. 15691–15701, October 2023.

645

646 Vikram V Ramaswamy, Sing Yu Lin, Dora Zhao, Aaron Adcock, Laurens van der Maaten, Deepa
 647 Ghadiyaram, and Olga Russakovsky. Geode: a geographically diverse evaluation dataset for
 648 object recognition. *Advances in Neural Information Processing Systems*, 36:66127–66137, 2023.

649

650 Aniket Rege, Zinnia Nie, Mahesh Ramesh, Unmesh Raskar, Zhuoran Yu, Aditya Kusupati, Yong Jae
 651 Lee, and Ramya Korlakai Vinayak. CuRe: Cultural gaps in the long tail of text-to-image systems,
 652 2025. URL <http://arxiv.org/abs/2506.08071>.

648 Oindrila Saha, Grant Van Horn, and Subhransu Maji. Improved zero-shot classification by adapting
 649 vlms with text descriptions. In *Proceedings of the IEEE/CVF conference on computer vision and*
 650 *pattern recognition*, pp. 17542–17552, 2024.

651

652 SeattleTimes. French find “ratatouille” ever so palatable. <https://www.seattletimes.com/nation-world/french-find-ratatouille-ever-so-palatable/>.

653

654 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 655 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 656 Multilingual vision-language encoders with improved semantic understanding, localization, and
 657 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

658

659 Ashmal Vayani, Dinura Dissanayake, Hasindri Watawana, Noor Ahsan, Nevasini Sasikumar, Omkar
 660 Thawakar, Henok Biadgign Ademtew, Yahya Hmaiti, Amandeep Kumar, Kartik Kukreja, et al.
 661 All languages matter: Evaluating Imms on culturally diverse 100 languages. In *Proceedings of*
 662 *the Computer Vision and Pattern Recognition Conference*, pp. 19565–19575, 2025.

663

664 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 665 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 666 *arXiv preprint arXiv:2203.11171*, 2022.

667

668 Wikipedia. List of accolades received by ratatouille. [https://en.wikipedia.org/wiki/
 List_of_accolades_received_by_Ratatouille](https://en.wikipedia.org/wiki/List_of_accolades_received_by_Ratatouille).

669

670 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 671 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 2025.

672

673 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 674 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 675 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

676

677 Da Yin, Feng Gao, Govind Thattai, Michael Johnston, and Kai-Wei Chang. Givl: Improving geo-
 678 graphical inclusivity of vision-language models with pre-training methods. In *Proceedings of the*
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10951–10961, 2023.

679

680 Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
 681 why vision-language models behave like bags-of-words, and what to do about it? *arXiv preprint*
arXiv:2210.01936, 2022.

682

683 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 684 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
computer vision and pattern recognition, pp. 586–595, 2018.

685

686 Jinguo Zhu, W Wang, Z Chen, Z Liu, S Ye, L Gu, H Tian, Y Duan, W Su, J Shao, et al. Internvl3:
 687 Exploring advanced training and test-time recipes for open-source multimodal models, 2025. *URL*
<https://arxiv.org/abs/2504.10479>, 9.

688

689

690

691

692

693

694

695

696

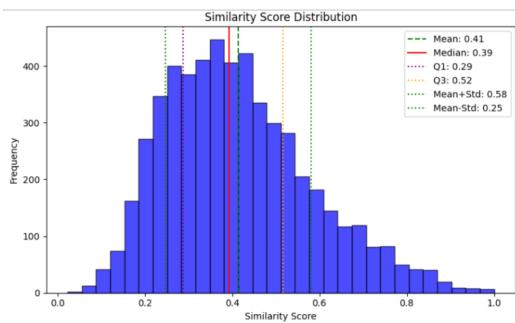
697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 USAGE OF AI**
705706 In this section we elaborate on LLM usage in this study. LLMs were used throughout this research
707 as writing assistants, for text polishing, and for literature review through LLM agents and available
708 tools. AI coding assistants⁵ were used to assist with programming. However, LLMs were not used
709 blindly and served only as assistants to improve accuracy and efficiency. This paper introduces a
710 benchmark on social activities. As described in the main paper, LLMs (GPT-4o) were utilized to
711 parse online knowledge bases (CulturalAtlas and Wikipedia) to identify activities across countries.
712 Furthermore, the descriptor-based metrics rely on LLM-generated descriptors. However, a proposer-
713 refiner approach was incorporated to improve quality, and descriptors were evaluated through human
714 evaluation (see Table 10).
715716 **A.2 LIMITATIONS**
717718 **Cultural Bias in LLMs.** AHEaD uses LLM-generated descriptors as reference points for measuring
719 the cultural competence of T2I models. Since LLMs are trained on web text, we acknowledge that they may encode biases toward Western societies. To mitigate this, we adopt a Propo-
720 poser-Refiner strategy, which improves descriptor quality and increases agreement with human
721 ground-truth scores. Human evaluation showed 90%. Compared to common alternatives, such
722 as human surveys or real images, our approach is scalable and less costly. Real images collected
723 from the web are themselves biased, while surveys are subjective and expensive. Unlike VLM-based
724 image-text alignment methods or raw image references, our **descriptors are explainable and allow**
725 **direct inspection of model errors**, rather than being opaque scores.
726727 **A.3 CALIBRATION OF THRESHOLD**
728729 We propose ALIGN and HAL to measure *how well images cover expected activity/cultural cues* and
730 *which visual elements are incorrect*. Since these metrics are ratio-based, we must set a similarity
731 threshold τ to decide whether a descriptor counts as a *hit* (aligned) or *miss* (hallucinated).
732733 We calibrate τ using real reference images rather than synthetic generations to avoid leakage, since
734 synthetic data may reflect biases of the very T2I models under evaluation. Real images, while noisy,
735 contain culturally faithful content without “wrong” or “exaggerated” elements, making them suitable
736 for calibration. Concretely, we compute descriptor–descriptor similarities between LLM-provided
737 ground-truth descriptors and MLLM-extracted descriptors from real images, then consider candidate
738 thresholds at the lower quartile (Q1), median, and upper quartile (Q3). As shown in Fig.6, Q3 offers
739 the best trade-off by reducing false positives while maintaining recall. Table5 further confirms that
740 Q3 yields the most robust alignment scores across regions.
741752 **Figure 6: Threshold τ calibration for ALIGN**
753
754
755

5⁵<https://cursor.com/>

756 A.4 IMPLEMENTATION DETAILS AND BASELINES
757
758

759 **Evaluation baselines.** The goal of this paper is to evaluate the cultural faithfulness competence
760 (GT-ALIGN) of T2I models, where automated evaluation methods remain extremely limited. Ex-
761 isting works rely heavily on human annotations Kannen et al. (2024); Nayak et al. (2025); Basu
762 et al. (2023), while a few recent approaches Khanuja et al.; Rege et al. (2025) approximate cul-
763 tural faithfulness using image–text similarity. Accordingly, we compare against commonly used
764 and state-of-the-art ITA metrics, including CLIPScore (Hessel et al., 2021), VQAScore (Lin et al.,
765 2024) with “CLIP-FlanT5-xxl” (the strongest publicly available ITA setup), PickScore (Kirstain
766 et al., 2023), and ImageReward (Xu et al., 2023). Following prior ITA practice, we use each model’s
767 generation prompt—“A photorealistic image of activity in country”—as the reference for evaluation.
768 We also benchmark against CuRe (Rege et al., 2025), the only metric explicitly designed for cul-
769 tural faithfulness. For fair comparison, we adopt CuRe’s recommended SigLIP2 (Tschannen et al.,
770 2025) configuration and compute mean image–text similarity using the prompts “An image of activ-
771 ity” and “An image from country,” omitting their parent-category prompt since this information is
772 already embedded in our activity descriptions (e.g., “people playing tag game”).

773 Across all settings, we find that ITA methods and CuRe exhibit weak correlation with human cultural
774 judgments, whereas our proposed metrics achieve substantially higher and more stable agreement
775 across different MLLM backbones (InternVL3 and QwenVL2.5). We attribute the limitations of
776 existing VLM-based ITA methods to: (1) bag-of-words behavior that misses compositional cul-
777 tural nuance (Yuksekgonul et al., 2022), (2) reliance on Western-centric training data that introduces
778 cultural biases, and (3) inability to distinguish authentic cultural representation from stereotypical
779 exaggeration. For instance, CLIPScore rewards images containing literal elephants for the “elephant
780 ant man” game—an Indonesian rock–paper–scissors variant—due to keyword matching rather than
781 cultural understanding. To address these issues, AHEAD uses externally generated cultural descrip-
782 tors instead of VLM embeddings, enabling interpretable evaluation of ALIGN, HAL, and EXAG that
783 aligns more faithfully with human cultural judgment. This is the first work to evaluate cultural HAL
784 and EXAG, and we study both descriptor–descriptor methods (Sec. 3.2) and MLLM-as-Judge base-
785 lines using InternVL3 and QwenVL2.5, which answer the same cultural assessment questions posed
786 to human annotators (full prompts in Appendix A.7).

787 **Implementation Details** We first use GPT4-o and Gemini 2.5 Flash (best LLMs in cultural un-
788 derstanding (Chiu et al., 2025)) offline once to in the data annotation phase to produce “reference
789 LLM descriptors”, these are used as noisy reference to evaluate cultural faithfulness. To minimize
790 the LLM-bias we developed proposer-refiner to combine descriptors of different LLMs which is
791 refined by removing duplicate and incorrect descriptors (results in Table 4). We set the tempera-
792 ture to 0.2 for proposers and 0.1 for the refiner. AHEaD uses an MLLM to extract descriptors, we
793 mainly use InternVL3 (“InternVL3-14B”) as MLLM in our pipeline and also test our pipeline with
794 QwenVL2.5 (“QwenVL2.5-7B”). We set temperature 0 for MLLMs to ensure high precision and
795 reproducibility, and use all-MiniLM-L6-v2 as the sentence embedding model for similarity
796 computation.

797 **Inter-Rater Agreement** We consider “GT-ALIGN” for interrater agreement as the main goal of this
798 work is to measure cultural faithfulness and GT-EXAG/GT-HAL are even more subjective. To assess
799 the reliability of our human annotations, we compute country-level agreement scores for the cultural
800 relevance ratings. Each image is annotated by two independent raters who are originally from the
801 corresponding country. Across the eleven countries in our study, Krippendorff’s Alpha Krippendorff
802 (2018) ranges from 0.15 to 0.62. We also compute Cohen’s Kappa McHugh (2012) between the two
803 annotator groups and observe a mean value of 0.50. These agreement levels are consistent with
804 previously reported values for cross-cultural image evaluation. CulturalFrames Nayak et al. (2025)
805 reports country-level Alpha values between 0.24 and 0.42, and CUBE Kannen et al. (2024) reports
806 values between 0.09 and 0.58. Our scores are therefore comparable to prior work and also achieve
807 a higher maximum value, which indicates that our annotation protocol yields reliable judgments.

808 We observe variation across countries, with a standard deviation of 0.13 for Krippendorff’s Al-
809 pha. Such variation is expected because cultural faithfulness assessments are subjective and depend
810 strongly on cultural and geographic context. Interestingly, the average agreement among Global
811 North countries is 0.28, which is lower than the Global South average of 0.35, even though text-to-
812 image models tend to perform better on Global North regions. We hypothesize that higher-quality

810 outputs may cause annotators to focus more on aspects unrelated to cultural content, such as image
 811 quality or visual artifacts, or to rely more heavily on subjective interpretations.
 812

813 A.5 ADDITIONAL RESULTS ON AHEAD 814

815 **HAL can effectively detect hallucinations.** Table 6 demonstrates HAL’s correlation with human
 816 scores. shows our proposed HAL metric achieves the best correlation with humans on both GT-
 817 HAL and GT-FAITH, demonstrating the effectiveness of our method compared to strong LLMs,
 818 specifically InternVL. Although InternVL is used in our pipeline to extract image descriptors, our
 819 method outperforms InternVL by 11%. Further, we observe that our HAL metric achieves the
 820 most negative correlation with GT-FAITH. This **confirms our hypothesis that hallucination has**
 821 **a strongly negative correlation with faithfulness and can be used to design strong metrics.** In
 822 particular, we use InternVL to extract image descriptors.
 823

Method	Backbone	GT-HAL↑			GT-FAITH↓		
		GS	GN	overall	GS	GN	overall
MLLM	InternVL3	0.22	0.24	0.23	-0.20	-0.24	-0.21
	QwenVL2.5	0.29	0.30	0.29	-0.31	-0.36	-0.33
HAL	InternVL3	0.31	0.39	0.35	-0.39	-0.44	-0.41
	QwenVL2.5	0.30	0.42	0.36	-0.33	-0.35	-0.36
Human	-	0.40	0.38	0.39	-	-	-

832 Table 6: **Correlation with humans on Hallucination.** Our Hallucination metric achieves the high-
 833 est correlation with human ground truth scores compared to existing MLLM-based approaches,
 834 including InternVL which serves as the backbone for MLLM descriptor extraction. Best scores per
 835 column are **bolded**.
 836

837 **EXAG can effectively detect hallucinations.** We are the first to measure exaggeration. metric
 838 achieves the highest correlation with human ground truth scores compared to existing MLLM-based
 839 approaches overall, while it achieves **balanced** scores across GN/GS. We further test three different
 840 3 of measuring HAL in Table 11: (1) using LLM GT descriptors, stereotype candidates (ours), and
 841 MLLM descriptors. We observe that using LLM/MLLM descriptors is ineffective. This shows that
 842 “over-representation” any element (e.g., people or regular objects) is not considered as exaggeration.
 843 Over exaggeration is only related to certain culturally specific visual elements.
 844

845 A.6 RAW HUMAN SCORES

846 Table 13 illustrates the raw human scores. We observe that overall
 847

848 A.7 PROMPTS

849 In this section, we include prompts used in this project.
 850
 851
 852
 853
 854

Method	Backbone	GT-HAL↑				GT-FAITH↓			
		Flux1	Qwen	SD3.5	Avg.	Flux1	Qwen	SD3.5	Avg.
MLLM	InternVL3	0.32	0.07	0.20	0.20	-0.30	-0.10	-0.18	-0.18
	QwenVL2.5	0.38	0.11	0.37	0.26	-0.39	-0.19	-0.31	-0.30
HAL	InternVL3	0.36	0.37	0.24	0.32	-0.51	-0.33	-0.30	-0.38
	QwenVL2.5	0.35	0.31	0.32	0.33	-0.38	-0.21	-0.37	-0.32
Human	-	0.38	0.34	0.40	0.37	-	-	-	-

863 Table 7: **Hallucination Per T2I on expanded human evaluation.** Spearman Correlation.
 864

Method	Backbone	GT-EXAG↑			GT-FAITH↓		
		GS	GN	Overall	GS	GN	Overall
	InternVL3	0.24	0.26	0.25	-0.24	-0.21	-0.25
EXAG (MLLM)	QwenVL2.5	0.34	0.33	0.34	-0.31	-0.25	-0.30
EXAG (ITA)	VQAScore	0.36	0.16	0.29	-0.27	-0.14	-0.22
Human	-	0.31	0.39	0.34	-	-	-

Table 8: **Correlation with humans on Exaggeration on expanded human evaluation.** Best scores per-column are bolded. We explore two approaches: EXAG(MLLM) use MLLM for predicting exaggeration, while EXAG(ITA) uses VQAScore and exaggerated candidates from Sec. 3.2. Human evaluation includes 11 countries with 381 samples (231/150 for GS/GN)

Method	Model	Flux1	Qwen	SD3.5	Avg.
Image-Text Alignment	VQAScore	0.14	-0.02	0.143	0.09
	PickScore	0.06	-0.05	0.03	0.01
	ImageReward	-0.09	-0.24	-0.19	-0.17
	CLIPScore	0.04	-0.28	0.02	-0.05
	CuRe	0.17	0.10	-0.01	0.09
MLLM	GPT-4o	0.53	0.27	0.48	0.43
	InternVL3	0.38	-0.14	0.14	0.13
	QwenVL2.5	0.12	0.02	0.11	0.09
ALIGN (InternVL3)		0.51	0.30	0.31	0.38
Human	-	0.65	0.40	0.55	0.55

Table 9: **Detailed results per T2I model, using Spearman correlation with GT-FAITH human scores**

China	France	Iran	Nigeria	USA	India	Brazil	Avg.
89.80	90.54	85.21	91.62	91.44	91.61	91.68	90.27

Table 10: **LLM generated descriptors validation by humans.**

Method	Model	Flux1	Qwen	SD3.5	Avg.
LLM GT Descriptors	EXAG (VQAScore)	-0.276	-0.256	-0.220	-0.251
Stereotype Cand.	EXAG (VQAScore)	0.349	0.184	0.230	0.183
MLLM-Desc.	EXAG (VQAScore)	-0.221	-0.092	0.063	-0.083
Human	-	0.231	0.097	0.482	0.270

Table 11: **Exaggeration per T2I (Spearman).** Correlation across different text-to-image generators.

Activity	Example Subactivities (across countries)
Eating	Home, Restaurant
Greeting	Namaste (India), Prostrating (Nigeria), Three-kiss (Iran), Cheek kiss (France)
Dancing	Samba (Brazil), Flamenco (Spain), Bharatanatyam (India), Dragon Dance (China)
Game	Kabaddi (India), Ayoayo (Nigeria), Pétanque (France), Baseball (USA), Mahjong (China)
Celebration	Nowruz (Iran), Carnival (Brazil), Bastille Day (France), Thanksgiving (USA), Chinese New Year (China)
Religious	Tazieh (Iran), Candomblé ceremony (Brazil), Catholic mass (Mexico), Temple aarti (India)

Table 12: **A subset of examples of subactivities in CULTIVate.** Highlights distinctive cultural practices across countries.

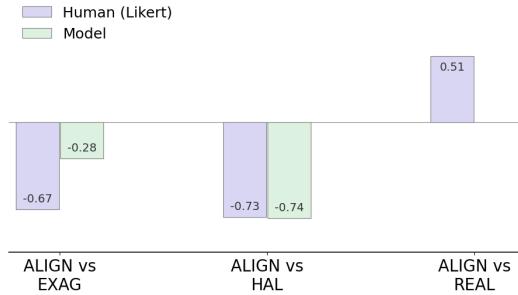


Figure 7: **Detailed results using different correlations with GT-FAITH.** ALIGN and HAL show consistent negative correlation in both humans and models (-0.74), validating the accuracy of our descriptor-based metrics. ALIGN and EXAG are also negatively correlated, though values differ: humans penalize exaggeration as misalignment, whereas ALIGN counts it as aligned if it matches a ground-truth descriptor. This highlights the need for EXAG to capture exaggeration effects not reflected in alignment alone, especially since its computation depends on noisy ground-truth images.

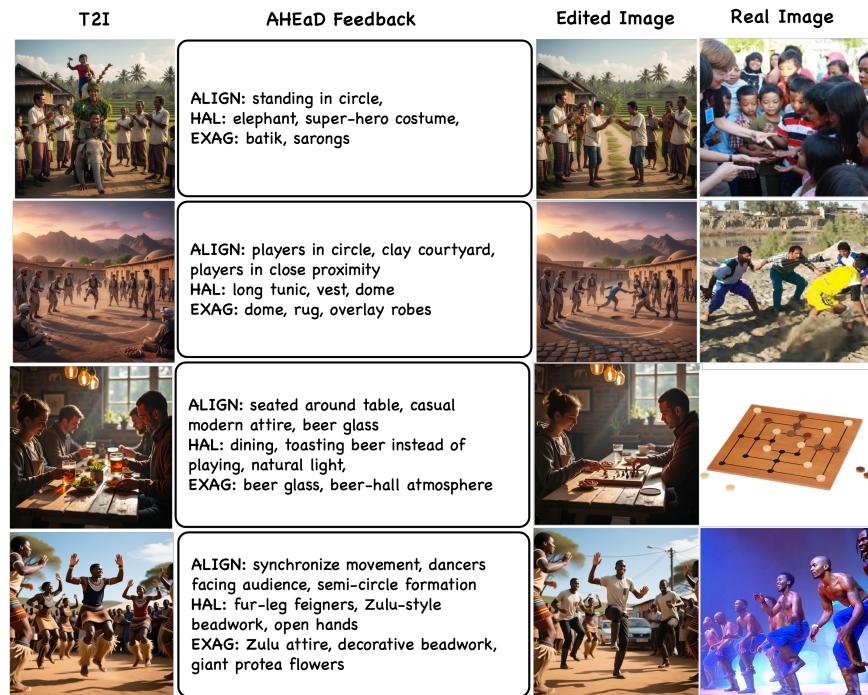


Figure 8: **Illustration of descriptor effectiveness in guiding image editing for improved generation.** (a) **Initial T2I-generated images** (top to bottom: Nano-Banana, Nano-Banana, FLUX, Qwen-Image). (b) **Generated feedback by AHEaD:** We use AHEaD feedback along with reference descriptors \mathcal{D}^{llm} to create clear instruction prompts (prompt in Table.31) (c) **Edited images:** Nano-Banana is utilized to edit images according to instruction prompts generated in (b). (d) **Real images.**

Region	GT-FAITH	GT-EXAG	GT-HAL	GT-IMAGE-REALISM
FRANCE	3.09 (0.73)	2.63 (0.70)	2.29 (0.74)	3.25 (0.39)
BRAZIL	3.61 (0.65)	2.27 (0.47)	1.79 (0.61)	3.46 (0.20)
CHINA	2.95 (0.84)	2.66 (0.52)	2.19 (0.52)	3.17 (0.44)
INDIA	3.27 (0.94)	2.38 (0.73)	1.97 (0.56)	3.56 (0.65)
MEXICO	2.91 (1.00)	2.41 (0.86)	2.38 (0.88)	2.98 (0.65)
GERMANY	3.25 (0.79)	2.25 (0.59)	2.04 (0.84)	3.10 (0.52)
NIGERIA	3.53 (0.73)	1.97 (0.57)	1.92 (0.52)	3.75 (0.57)
TURKEY	2.79 (1.22)	2.40 (0.79)	2.58 (1.18)	3.33 (0.55)
USA	3.96 (0.45)	2.19 (0.47)	1.59 (0.42)	3.48 (0.52)
IRAN	2.52 (0.76)	3.03 (0.78)	2.78 (0.53)	3.15 (0.61)
SPAIN	3.03 (1.10)	2.25 (0.74)	2.43 (0.68)	2.95 (0.45)
GS	3.04 (0.97)	2.44 (0.74)	2.28 (0.83)	3.31 (0.59)
GN	3.28 (0.89)	2.31 (0.65)	2.13 (0.75)	3.15 (0.50)

Table 13: **Human evaluation absolute scores.** Scores shows mean (standard deviation) Likert scores. GT-FAITH, GT-HAL, GT-EXAG, and GT-IMG-REALISM evaluate cultural faithfulness, hallucination, exaggeration and realism of generated images. Results are on 11 countries, 9 activities (1 or 2 sub-activity), 3 T2I images, and 2 annotator per each image/form.

LLM Descriptor Generator — System Prompt

System: You are an expert in cross-cultural visual representation. Your task is to generate precise visual descriptors capturing how a typical scene of a given activity appears in a specific country. Descriptors must cover both traditional and modern variations and represent common culturally accurate scenes.

Rules: 1. The output must strictly follow this JSON structure:

```
"descriptors": [{"token": "...", "style": "traditional|modern|neutral"}]
```

2. Use culturally-aware terminology (e.g., samovar, sari) when appropriate; use broader cultural phrases when high specificity is unnecessary.

3. Focus only on the core activity scene (not before/after events).

4. Capture multiple common variations where they exist.

5. If the dimension has no representative descriptors, return an empty list.

Table 14: LLM descriptor generator — System Prompt

LLM Descriptor Generator — Setting & Background

Goal: Describe the environment — the physical location, architecture, and design elements that define the atmosphere of the scene.

Guidelines: INCLUDE:

- Location and architectural style (indoors/outdoors; temple interior, city street)
- Art and design (calligraphy, geometric tiles, minimalist décor)
- Major furnishings (communal tables, floor cushions, rugs)

EXCLUDE: people, clothing, handheld objects, specific actions.

Generate up to {max_items} descriptors for:
{concept}

Table 15: LLM descriptor generator — Setting & Background

1026

1027 **LLM Descriptor Generator — Objects**1028 **Goal:** Identify the core objects central to the activity.1029 **Guidelines:**1030 - Ensure descriptors accurately represent objects common in the activity scene
1031 within the given country.1032 - **INCLUDE:** essential tools, vessels, foods (samovar, board game, hot pot).
1033 - Use visually descriptive categories (e.g., “bowls of noodle soup”) instead of
1034 abstract labels (“Chinese food”).1035 **EXCLUDE:** people, animals, clothing, architecture, actions, background décor.1036 **Generate up to {max_items} descriptors for:**1037 **{concept}**

1038 Table 16: LLM descriptor generator — Objects

1039

1040

1041

1042 **LLM Descriptor Generator — Attire**1043 **Goal:** Describe typical clothing, accessories, and appearance features.1044 **Guidelines:** - Use specific garment names only when culturally essential (e.g.,
1045 sari).1046 - Otherwise, use broader cultural categories (e.g., traditional West African attire).
1047 - Include both traditional and modern clothing variations unless the concept is
1048 strictly historical.1049 **INCLUDE:** garments, headwear, accessories, ceremonial markings, uniforms.1050 **EXCLUDE:** tools, furniture, actions, gestures.1051 **Generate up to {max_items} descriptors for:** {concept}

1052 Table 17: LLM descriptor generator — Attire

1053

1054

1055

1056 **LLM Descriptor Generator — Interaction & Gesture**1057 **Goal:** Capture actions, gestures, and social dynamics central to the activity.1058 **Guidelines: INCLUDE:**1059 - Key person-object actions (pouring tea from samovar)
1060 - Social gestures (sharing food, group dancing)
1061 - Culturally typical postures and formations (kneeling rows)1062 **EXCLUDE:** static object descriptions, clothing, setting details. Focus on actions
1063 and interactions.1064 **Generate up to {max_items} descriptors for:** {concept}

1066 Table 18: LLM descriptor generator — Interaction & Gesture

1067

1068

1069

1070 **LLM Descriptor Generator — Spatial Arrangement**1071 **Goal:** Describe layout and spatial organization of people and objects.1072 **Guidelines: INCLUDE:**1073 - Positioning of people relative to key objects or surfaces
1074 - Culturally meaningful configurations (eating at a table vs. around a sofreh)
1075 - Ensure descriptors cover common variations in the activity across the country.1076 **EXCLUDE:** clothing details, object descriptions, actions.1077 **Generate up to {max_items} descriptors for:** {concept}

1078 Table 19: LLM descriptor generator — Spatial Arrangement

1079

1080
1081 **LLM Refiner Prompt**
1082 **System:** You refine candidate visual descriptors for evaluating the cultural align-
1083 ment of AI-generated images representing a specific concept or activity in a given
1084 country. Your job is to select, clean, and filter descriptors based on cultural accu-
1085 racy and relevance.
1086 **Task:** Select and refine descriptors according to the concept, country, and de-
1087 scriptor dimension.
1088 **Dimensions:**
1089 - Setting — venues, architecture, décor
1090 - Objects — central objects in the activity
1091 - Attire — clothing, accessories, headwear
1092 - Interaction — gestures, postures, social relations
1093 - Spatial Layout — positioning patterns
1094
1095 **Rules:** 1. Keep only culturally accurate descriptors.
1096 2. Create a diverse set covering typical variations.
1097 3. Do not invent new descriptors.
1098 4. Merge duplicates or overly specific items.
1099 5. Remove unrelated descriptors.
1100 6. Keep phrases concise (1–4 words).
1101 7. Descriptors must match the assigned dimension.
1102 8. Output up to {max_items} descriptors.
1103 9. If none are valid, return an empty list.
1104
1105 **Output Format:** ["token": "item", "style": "traditional|modern|neutral"]
1106 **Input:** Concept: {prompt} in {country} Dimension: {dimension} Can-
1107 didate Descriptors: {candidate_descriptors}

Table 20: LLM Refiner Prompt

1109
1110 **MLLM Descriptor Extractor (System Prompt)**
1111 As an expert on cross-cultural visual representation, your task is to generate precise visual
1112 descriptors to evaluate the cultural alignment and accuracy of AI-generated images.
1113 **Goal:** Capture visual elements of a typical scene of an activity in a specific country, covering
1114 both traditional and modern variations.
1115 **Rules:** 1. Output strictly in JSON: "descriptors": ["token": "...",
1116 "style": "traditional|modern|neutral"]
1117 2. Use culturally-aware terms (e.g., samovar, sari) when precise, or broader cultural terms
1118 when sufficient.
1119 3. Focus on the core activity scene—not before or after actions.
1120 4. Capture common variations (e.g., eating at a table vs. sitting on the floor).
1121 5. If nothing distinctive exists, return an empty list.

Table 21: System Prompt for descriptor generation.

1122
1123 **MLLM Descriptor Extractor (Setting & Background Prompt)**
1124 **Goal:** Describe the environment (location, architecture, design, furnishings).
1125 **INCLUDE:**
1126 - Indoors/outdoors (temple interior, busy street, simple home)
1127 - Art & design (calligraphy, tiles, minimalist decor)
1128 - Major furnishings (floor cushions, rugs, communal tables)
1129
1130 **EXCLUDE:** clothing, handheld objects, actions.

Table 22: MLLM descriptor detector (Setting & Background).

1134

1135

1136

Objects Prompt

1137

Goal: Identify key objects, tools, foods, vessels central to the activity.

1138

1139

INCLUDE: essential items (samovar, board game, noodle bowls, shared hot pot).

1140

1141

EXCLUDE: animals, clothing, architecture, actions, background décor.

1142

1143

Table 23: Prompt: Objects.

1144

1145

1146

1147

Attire Prompt

1148

Goal: Describe typical clothing, accessories, and appearance.

1149

Rules:

1150

- Use specific garment names only when culturally essential (e.g., sari).

1151

- Otherwise, use broader cultural categories.

1152

- Always include both traditional and modern possibilities.

1153

1154

INCLUDE: garments, headwear, accessories, ceremonial markings, uniforms.

1155

EXCLUDE: tools, furniture, actions, gestures.

1156

Table 24: MLLM descriptor detector (Attire).

1157

1158

1159

1160

1161

1162

Interaction & Gesture Prompt

1163

Goal: Capture actions, gestures, and social dynamics.

1164

INCLUDE:

1165

- Person and/or object actions (pouring tea from a samovar)

1166

- Social gestures (sharing food, group dancing)

1167

- Group formations (kneeling rows, circle formations)

1168

1169

EXCLUDE: static objects, clothing, setting.

1170

1171

Table 25: Prompt: Interaction & Gesture.

1172

1173

1174

1175

1176

MLLM Descriptor Detector (Spatial Arrangement)

1177

Goal: Describe the physical layout and positioning of key objects.

1178

INCLUDE:

1179

- Relative positions (sitting around sofreh, standing in line)

1180

- Culturally significant layouts (table seating vs. floor seating)

1181

1182

EXCLUDE: clothing, object details, gestures.

1183

1184

1185

1186

1187

Table 26: MLLM descriptor extractor (Spatial Arrangement).

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Prompt

System: You are a helpful assistant that identifies culture-specific visual elements that a text-to-image model may exaggerate when depicting a given activity in a given country. These elements should represent unrealistic overuse, oversized forms, or out-of-place insertions of cultural cues. Return only concise visual stereotypes based on observable features.

Task: Generate up to $\{\{\text{num_elements}\}\}$ candidate exaggerated elements for the activity and country below. Elements must be concise noun phrases describing culture-specific items (e.g., “Persian rugs”, “giant flags”). Focus on attire, objects, symbols, decorations, architecture, and interaction styles. Avoid generic or non-culture-specific items (e.g., “trees”, “crowds”). Do not describe scenarios or contexts—only list the exaggerated element itself.

ACTIVITY: $\{\{\text{concept}\}\}$
COUNTRY: $\{\{\text{country}\}\}$

User: Provide the final list as a single line of noun phrases separated by the “—” character. Do not include numbering, explanations, or extra text.

Example format:

Persian rugs | oversize lanterns | giant religious symbols
| people in traditional robes

Table 27: EXAG Candidate Generation Prompt

ALIGN Likert Scoring Prompt

System: You are a helpful assistant scoring how well an image depicts an activity as it would typically appear in the specified country. Provide a rating from 1 to 5 using the guidelines below. Only output the score in the required format.

Scoring Scale:

1 = Not well at all (completely wrong or unrelated)

2 = Slightly relevant

3 = Somewhat accurate

4 = Mostly accurate

5 = Exactly as expected for this country

Task:

PROMPT: $\{\{\text{prompt}\}\}$

COUNTRY: $\{\{\text{country}\}\}$

User: Respond with ONLY the score in the exact format below:

score is $\langle \text{num} \rangle$

Do not include any other text, explanation, or formatting.

Table 28: ALIGN MLLM-as-a-Judge Prompt

1242

1243

1244

HAL MLLM-as-a-Judge Prompt

1245

1246

1247

System: You are a helpful assistant scoring whether an image contains incorrect elements with respect to the mentioned activity and country. Rate on a scale from 1 to 5 using the rules below. Only output the score in the required format.

1248

1249

Scoring Scale:

1250

1 = Not at all. All elements seem appropriate.

1251

2 = Slightly. One minor element seems foreign.

1252

3 = Somewhat. A few elements feel unusual.

1253

4 = Mostly. Many elements appear incorrect or from another culture.

1254

5 = Strongly. The image is completely wrong, most elements are wrong, the activity is wrong, or the scene belongs to another country.

1255

1256

Task:

1257

PROMPT: {{prompt}}

1258

COUNTRY: {{country}}

1259

1260

User: Respond with ONLY the score in the exact format below:

1261

score is < num >

1262

1263

Do not include any other text, explanation, or formatting.

1264

1265

Table 29: HAL MLLM-as-a-Judge prompt

1266

1267

1268

1269

1270

1271

EXAG MLLM-as-a-Judge Prompt

1272

1273

1274

1275

System: You are a helpful assistant scoring how exaggerated an image is in terms of cultural elements (e.g., attire, objects, background, art/design). Rate on a scale from 1 to 5 using the rules below. Only output the score in the required format.

1276

1277

Scoring Scale:

1278

1 = Appropriate and balanced.

1279

2 = Slightly decorative but within cultural norms.

1280

3 = Several features feel idealized or overly emphasized.

1281

4 = Many elements feel exaggerated and unrealistic.

1282

5 = Strongly stereotypical, misleading, or culturally irrelevant.

1283

1284

Task:

1285

PROMPT: {{prompt}}

1286

COUNTRY: {{country}}

1287

1288

User: Respond with ONLY the score in the exact format below:

1289

score is < num >

1290

1291

Do not include any other text, explanation, or formatting.

1292

1293

1294

1295

Table 30: EXAG MLLM-as-a-Judge Prompt

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310

Image Editing Instruction Prompt

1311 **Task:** Edit the image to correctly show {{activity}} in {{country}} by following the in-
 1312 structions below.

1313

1314

Remove:

1315 - All hallucinated elements from the HAL list
 1316 - All exaggerated elements from the EXAG list
 1317 - Any objects, clothing, poses, or background features that belong to the wrong culture, historical
 1318 period, or activity

1319

1320

Add/Preserve:

1321 - ALIGN list that must remain present
 1322 - Add correct interaction from REF DESCRIPTOR list if mentioned in HAL/EXAG
 1323 - ADD 1-3 different types of attire from REF DESCRIPTOR if mentioned in HAL/EXAG
 1324 - ADD 1 correct background from REF DESCRIPTOR if mentioned in HAL/EXAG

1325

Input:

1326 ACTIVITY: {{activity}}
 1327 COUNTRY: {{country}}
 1328 HAL DESCRIPTORS: {{HAL}}
 1329 EXAG DESCRIPTORS: {{EXAG}}
 1330 ALIGN DESCRIPTORS: {{ALIGN}}
 1331 REFERENCE DESCRIPTORS: {{REF DESCRIPTOR}}

1332

1333 Table 31: Image editing instruction prompt template. AHEaD feedback (HAL, EXAG, ALIGN)
 1334 combined with reference descriptors \mathcal{D}^{lim} guides image editing to improve cultural accuracy.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349