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ABSTRACT

Text-to-image (T2I) diffusion models achieve impressive photorealism by train-
ing on large-scale web data, but models inherit cultural biases and fail to depict
underrepresented regions faithfully. Existing cultural benchmarks focus mainly
on object-centric categories (e.g., food, attire, and architecture), overlooking the
social and daily activities that more clearly reflect cultural norms. Few metrics
exist for measuring cultural faithfulness. We introduce CULTIVate, a bench-
mark for evaluating T2I models on cross-cultural activities (e.g., greetings, dining,
games, traditional dances, and cultural celebrations). CULTIVate spans 16 coun-
tries with 576 prompts and more than 19,000 images, and provides an explainable
descriptor-based evaluation framework across multiple cultural dimensions, in-
cluding background, attire, objects, and interactions. We propose four metrics
to measure cultural alignment, hallucination, exaggerated elements, and diversity.
Our findings reveal systematic disparities: models perform better for global north
countries than for the global south, with distinct failure modes across T2I systems.
Human studies confirm that our metrics correlate more strongly with human judg-
ments than existing text–image metrics.

1 INTRODUCTION

The 2007 film Ratatouille earned 41 film awards including Best Feature at the 2008 Oscars
(Wikipedia). Part of its appeal lies in the very realistic portrayal of the city of Paris, and of French
culture and cuisine (SeattleTimes). To achieve this, creators visited places in Paris to soak in the
culture and environment, including its highly distinctive visual aspects. Many other well-regarded
films (animated ones like Luca and Coco, and live action ones like Amelie, Crouching Tiger Hid-
den Dragon, and Reservation Dogs) also devoted significant effort to ensuring they capture the true
atmosphere and visuals of the places they portray. Such culturally accurate visual portrayals are
important for many types of creative and marketing content beyond film, e.g., advertising.

The advancement of text-to-image generative models in theory offers the potential for automated or
semi-automated creation of such content. However, recent Text-to-Image (T2I) models are trained
on large-scale web-based data, which is WEIRD (Western, Educated, Industrialized, Rich, and
Democratic) (Henrich et al., 2010). The resulting bias is particularly problematic for cultural ac-
tivities, the social practices through which cultures express their values and meanings. Understand-
ing culture is best achieved through everyday activities and social interactions since these practices
embody the values and meanings of a society (Geertz, 2017; Hall, 1973). However, cross-cultural
studies of T2I models are heavily understudied, with the most recent benchmarks mainly focusing on
a few specific object-centric categories such as architectures, clothing, food, and landmarks (Rege
et al., 2025; Chiu et al., 2024; Basu et al., 2025).

We examine how well T2I models portray different cultures, focusing on activities whose visual
representation varies significantly across cultures. Unlike static cultural artifacts, activities are
contextual and compositional. The same activity can have multiple valid cultural variants. For
example, “eating at home in Iran” may involve sitting at a formal dining table or gathering on the
floor around a traditional sofreh. This contextual nature makes activity evaluation fundamentally
different from object recognition, where cultural artifacts have more limited shapes and attributes.

We address these challenges by introducing CULTural acTIViTy (CULTIVate), a comprehensive
benchmark for evaluating T2I models on culturally-grounded social activities. CULTIVate spans 16
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Figure 1: (a) Examples of good (aligned) and bad (hallucinated or exaggerated) aspects of images
generated for three cultural activities; these aspects are automatically computed by our framework.
(b) Contrasting real and generated images.

countries across 9 activity categories (eating, greetings, celebrations, religious practices, etc.), yield-
ing 576 prompts that capture the contextual complexity missing from object-centric benchmarks. We
evaluate 6 state-of-the-art T2I models, generating over 19,000 images and collecting 3,000 real ref-
erence images. As Fig 1 (a) illustrates, activity evaluation reveals complex and new failure patterns:
models may generate wrong activities, include culturally correct but hallucinated elements, or pro-
duce heavily exaggerated scenes. This is in contrast to object/artifact-centric concepts (e.g., Eiffel
tower, ceramic diyas), where the major failure mode is incorrect (i.e., wrong object) generation.
These complex failure patterns raise critical questions: Are current evaluation metrics effective for
cultural assessment of activities? What characteristics must an effective metric have for this task?

Our work explores cultural faithfulness. The most related prior evaluation work has relied predomi-
nantly on human surveys due to assessment complexity (Kannen et al., 2024; Bayramli et al.). Other
recent works use image-text alignment as a proxy (Rege et al., 2025; Khanuja et al.), but these ap-
proaches use VLMs to directly score cultural faithfulness and rely on VLM internal knowledge that
inherits similar cultural biases. For example, when models generate literal elephants for “elephant
ant man game” (a rock-paper-scissors-like game in Indonesia), VLM-based metrics (e.g., CLIP-
Score (Hessel et al., 2021)) may reward this literal interpretation because due to their bag-of-words
behavior (Yuksekgonul et al., 2022), lack of compositional understanding, and poor performance
on implicit text-image alignment. This fundamental misalignment extends beyond individual cases:
our analysis reveals that image-text alignment metrics correlate positively with cultural exag-
geration, while effective metrics should correlate negatively according to human judgment.

To cope with these challenges and answer the questions above, we introduce AHEaD diagnostic
tools (Alignment, Hallucination, Exaggeration, and Diversity) that use external visual descriptors
rather than biased VLM knowledge. We decompose activities into interpretable visual descrip-
tors that capture cultural elements across multiple dimensions. To ensure robust reference descriptor
generation, we employ a proposer-refiner approach where proposer LLMs generate diverse candi-
dates, and refiner filters duplicates and errors. AHEaD provides interpretable insights: Alignment
measures cultural coverage with respect to reference descriptors; Hallucination quantifies incorrect
or irrelevant elements in the image; Exaggeration measures over-representation compared to real im-
ages; Diversity captures variation in cultural elements rather than low-level visual attributes (e.g.,
color, texture). Unlike naive image-text alignment, our framework provides interpretable feedback
at multiple levels (e.g., image sets, individual images, or specific elements within the image). This
enables researchers to identify which cultural aspects are missing, over-represented, or faithfully
depicted.

In more detail, applying our framework works as follows. First, we compute our AHEaD metrics
(Alignment, Hallucination, Exaggeration, and Diversity) automatically, without requiring human an-
notations, which makes applying them to novel scenarios (e.g., new countries) scalable. The metrics
compare different aspects of quality in the images generated by different text-to-image models, and
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can be used to quantitatively judge which T2I model to deploy when aiming to depict a particular
country. Second, our framework outputs the aspects of social activities that are not represented well
by T2I models. In particular, it can output the top-k and bottom-k of descriptors likely to be included
mistakenly , and top-k and bottom-k of descriptors likely to be over-represented (exaggerated). This
ability can be used to improve existing T2I models, e.g., by requesting models to add or remove
particular concepts using the descriptors identified as problematic. Third, our framework computes
correlations between the AHEaD metrics. These correlations can highlight trade-offs in adjustments
to models and outputs. For example, we aim to answer the question, does boosting alignment reduce
or boost hallucination and exaggeration?

We conduct comprehensive experiments on CULTIVate and reveal systematic limitations in current
cultural evaluation. Our AHEaD metrics achieve 27% higher rank correlation with human judg-
ments of cultural faithfulness compared to using the same MLLM backbone directly as a judge,
and significantly outperform existing image-text alignment metrics. Importantly, analysis suggests
that metrics are complementary; the best rank correlation with with human faithfulness is achieved
when combined (Alignment, Hallucination, and Exaggeration). We also find consistent bias across
all tested T2I models: they generate more culturally faithful images for Global North countries than
Global South countries, with alignment score gaps of 4-8%.

To summarize, our contributions are: (1) CULTIVate benchmark: First cultural evaluation bench-
mark focused on social activities, spanning 576 prompts across 16 countries with over 19k images;
(2) AHEaD diagnostic tools: Novel metrics using external descriptors that achieve 27% better hu-
man correlation strongest baseline; (3) Cultural bias analysis: Systematic demonstration of Global
North bias across all tested T2I models; (4) Proposer-refiner framework: Robust descriptor genera-
tion enabling scalable cultural evaluation without human annotations.

2 RELATED WORKS

Image-Text Alignment Metrics. General-purpose metrics rely on low-level features (e.g. FID
(Heusel et al., 2017), LPIPS (Zhang et al., 2018)) or global image-text alignment (e.g. CLIPScore
(Hessel et al., 2021), VQAScore (Lin et al., 2024)). Some metrics require expensive human judg-
ments (e.g. ImageReward (Xu et al., 2023), PickScore (Kirstain et al., 2023)). We show these
correlate poorly with human judgment.

Cultural Evaluation. Cultural evaluations typically measure realism, diversity, and cultural faith-
fulness (Liu et al., 2024; Nayak et al., 2025; Jha et al., 2024; Liu et al., 2023). Most automated
approaches focus on diversity using vision encoders for image-image similarity (Zhang et al., 2018;
Khanuja et al.; Jha et al., 2024) or Vendi-score (Kannen et al., 2024; Friedman & Dieng). Vision
encoders can exhibit geographical bias and focus on low-level variations (e.g., color/texture) rather
than cultural content. Alternatively, (Basu et al., 2025) use VQA models with LLM-generated
questions for geographical diversity. Importantly, diversity metric do not provide insights on cul-
tural faithfulness, the focus of this work. For cultural faithfulness, recent approaches explore VLM
image-text alignment; (Khanuja et al.; Basu et al., 2023) measure alignment with simple coun-
try prompts, while (Rege et al., 2025) measures alignment between hierarchical prompts. These
approaches rely on VLM internal knowledge but VLMs inherit Western-centric biases and com-
positional scenes (Yuksekgonul et al., 2022). Since faithfulness remains challenging for automated
methods, many works rely on human surveys which are expensive to obtain (Nayak et al., 2025;
Liu et al., 2024; Jeong et al., 2025; Jha et al., 2024). We introduce the suite of automatic AHEaD
metrics, which uses external visual descriptors to measure cultural alignment while penalizing for
hallucination and over-representation.

Cultural Benchmarks. Cultural understanding has been extensively studied for image understand-
ing tasks (Kalluri et al., 2023; Ramaswamy et al., 2023; Nayak et al., 2024; Astruc et al., 2024;
Vayani et al., 2025; Liu et al., 2025; Yin et al., 2023). For T2I generation, existing benchmarks are
primarily object-centric. (Kannen et al., 2024) covers 8 countries across 3 artifact categories, (Jha
et al., 2024) includes 10 countries on food and architecture, and (Basu et al., 2023) covers 27 coun-
tries using parsed noun phrases. Our CULTIVate differs by focusing on social activities rather than
artifacts. Activity scenes are contextual and compositional with multiple valid variants. This creates
evaluation challenges: correctly generating objects is insufficient since cultural accuracy depends on
appropriate interactions, context, and spatial arrangements. Models exhibit multiple failure modes,
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Figure 2: (Top) Overview. We extracted image descriptors D̂mllm with InternVL3, while reference
descriptors Dllm are obtained via a proposer–refiner pipeline in data annotation stage (i.e. offline)
without using images. Proposers generate diverse candidates, and the Refiner removes duplicates
and filters incorrect ones. AHEaD measures cultural competence through alignment, hallucination,
exaggeration, and diversity, providing not only quantitative scores but also interpretable feedback
(i.e., what is aligned, missing, or exaggerated). (Bottom) Cultural Faithfulness metrics. Align-
ment measures whether expected descriptors are present (similarity above threshold τ ), hallucination
flags elements unsupported by references (e.g., circular arrangement), and exaggeration detects ex-
aggerated cues overemphasized with respect to real-images (e.g., muslim attire)

including incorrect activity, correct activity but exaggerated scenes, or hallucinated cross-cultural
elements. Concurrent work (Nayak et al., 2025) focuses on explicit vs implicit cultural expecta-
tions via human evaluation. CULTIVate complements this by specializing in social activities and
proposing the first automated metrics for cultural alignment, hallucination, and exaggeration.

Knowledge probed from large language models. While LLM-based visual descriptors have been
explored for fine-grained and cross-geography object recognition (Pratt et al., 2023; Menon & Von-
drick, 2023; Saha et al., 2024; Buettner et al., 2024), this is the first work to use descriptors for
evaluating cultural competence in T2I models.

3 METHODOLOGY

We argue that effective cultural evaluation requires more than simple alignment detection. Good
metrics should correlate positively with cultural faithfulness while penalizing exaggeration and hal-
lucination. Fig. 5a shows that VLM-based metrics fail this test– images with excessive cultural
stereotypes score highly with VLMs but poorly with humans. We address these limitations through
visual descriptors that provide transparent cultural criteria. Section 3.1 describes descriptor gener-
ation using cultural sources. Section 3.2 introduces AHEaD metrics that evaluate images against
descriptors to measure cultural alignment and hallucination (Fig. 2).

3.1 REFERENCE DESCRIPTOR GENERATION

Initially, during data annotation stage, we use LLMs to generate reference descriptors for each
activity-country pair that capture cultural elements across five dimensions: background (e.g., Eiffel
tower, geometric patterns), attire (e.g., traditional vs. modern clothing), objects, actions/interactions
(e.g., greeting with a bow), and spatial layout (e.g., dancers in a circle).

We propose a two-stage approach inspired by self-consistency prompting (Wang et al., 2022). (1)
Proposer: The proposer stage uses multiple LLMs (Gemini 2.5 Flash (Comanici et al., 2025) and
GPT-4o (Hurst et al., 2024)) to generate diverse descriptor candidates, increasing coverage different
of cultural elements. We specifically instruct each LLM to generate up to 10 elements per dimen-
sion, where descriptors can be mutually exclusive. (2) Refiner: The refiner stage filters candidates
to remove duplicates and incorrect descriptors, improving precision and the proposer-refiner process
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improves AHEaD metric performance compared to single-model generation (Table 4). We empha-
size that this stage is image agnostic and is performed once offline to obtain reference descriptors.
In Sec. 3.2, we describe how AHEaD metrics are computed.

3.2 AHEAD EVALUATION METRICS

Our goal is to evaluate the cultural faithfulness of T2I systems. A good image should capture the
expected elements for an activity in a given culture, avoid introducing elements from other cultures,
not exaggerate cultural elements, and display variety across plausible scenarios. We capture these
aspects with four descriptor-based metrics.

Consider activity a, region r (in our setting, we experiment with countries as the regions), its corre-
sponding prompt Ta,r, and LLM-generated reference descriptors Dllm

r,a. For each (r, a) we generate
N images {I1, . . . , IN} and extract predicted descriptors for each image Ij using an Multimodal
LLM (i.e., InternVL3 (Zhu et al.)) denoted D̂mllm(Ij), j = 1, . . . , N .

Alignment. This metric measures cultural alignment: whether generated images reflect culturally
expected elements in the GT descriptors. A GT descriptor d ∈ Dllm

r,a is considered aligned if its
similarity with any d̂ ∈ D̂mllm

r,a =
⋃N

j=1 D̂mllm
r,a (Ij) exceeds a threshold τ .

ALIGNr,a =
1

|Dllm
r,a|

∣∣∣∣∣
{
d ∈ Dllm

r,a : max
d̂∈D̂mllm

r,a

sim(d, d̂) > τ

}∣∣∣∣∣ (1)

where sim(·, ·) denotes sentence embedding similarity. τ is calibrated according to real images in
CULTIVateBench (see appendix).

Hallucination. High alignment exhibits high recall (coverage of expected elements); however, it
does not take into account the existence of irrelevant elements in the image. For example, an image
of “eating at home in Iran” may align with descriptors like sofreh or table, yet also include an
incorrect item such as chopsticks. hallucinated d̂− as a hallucination if maxd∈Dllm

r,a
sim(d̂, d) ≤ τ .

HALr,a =
1

|D̂mllm
r,a |

|{d̂ ∈ D̂mllm
r,a | max

d∈Dllm
r,a

sim(d̂, d) ≤ τ}. (2)

Exaggeration. Exaggeration quantifies whether models over-emphasize stereotypical descriptors.
For each region r, an LLM produces a set Sr of exaggeration candidates. Given dj ∈ Sr, let f(I, dj)
be its image–text alignment score with generated image I , and let

f̄gt(dj) =
1

ngt

ngt∑
i=1

f(Iigt, dj) (3)

be the average score over real images. The exaggeration score for I is

EXAG(I) = max
sj∈Sr

[
f(I, sj)− f̄gt(sj)

]
. (4)

Faithfulness. We define cultural faithfulness as a composite score that aggregates alignment, hal-
lucination, and exaggeration. Intuitively, a faithful image should (i) cover expected cultural ele-
ments, (ii) avoid introducing incorrect ones, and (iii) not overemphasize cultural descriptors.

FAITHr,a = g
(
ALIGNr,a,HALr,a,EXAGr,a

)
, (5)

where g(·) is an aggregation function. We simply use their arithmetic mean after adapting HAL and
EXAG so that higher values indicate better performance (i.e,. 1-HAL and 1-EXAG)

Descriptor Diversity. Diversity measures how evenly descriptors are distributed across multiple
generations. For n images of (r, a), let q(d) be the relative frequency of a descriptor d ∈ Dllm

r,a being
covered, with

∑
d q(d) = 1. Diversity is defined as normalized entropy:

DDIVr,a =
−1

log |Dllm
r,a |

∑
d∈Dllm

r,a

q(d) log q(d). (6)
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Semantic Diversity. We define semantic diversity as the additional descriptor coverage obtained
when generating multiple images instead of a single image. Specifically, let ALIGNk(r, a) denote
the alignment score computed over k generated images for region–activity pair (r, a). Semantic
diversity is defined as

SDIVr,a = ALIGNn(r, a)− E[ALIGN1(r, a)], (7)

where ALIGNn(r, a) is the alignment across n generations and E[ALIGN1(r, a)] is the expected
alignment when considering only one image. Higher values indicate that additional generations
introduce new descriptors, reflecting greater semantic variety.

4 EXPERIMENTAL SETUP

4.1 CULTIVATE BENCHMARK

We introduce CULTIVate, a benchmark for evaluating cultural competence of T2I systems through
social and daily activities. CULTIVate contains 576 prompts across 16 countries and 9 activity
supercategories, generating 19,000+ images from 6 T2I models with comprehensive ground truth
annotations. Constructing high-quality cross-cultural benchmarks with local/specific activities is
nontrivial and requires expert knowledge across regions. In this work, we use a scalable system-
atic approach to create the benchmark by utilizing existing knowledge bases. We leverage two
knowledge sources: (1) CulturalAtlas1, which provides cultural practices across regions (countries),
including greetings, religious customs, etiquette and communication. (2) Wikipedia, which offers
fine-grained lists of activities (e.g., games and celebrations). Using GPT-4o, we parse both sources
and extract non-overlapping sub-activities.

Activities and Coverage. We consider nine broad activity categories: games, dances, greetings,
celebrations, concerts, eating, religious, wedding, and funeral. Activities are split into three groups:
(1) multi-variant categories (dances, games, religious, greetings, celebrations) where we enumer-
ate sub-activities (e.g., different types of dances relevant to a country), (2) setting-based categories
(eating at home/restaurant, concerts indoor/outdoor), and (3) single-activity categories (wedding,
funeral). We analyze cultural disparities by dividing countries into Global North (GN): USA, Spain,
Italy, Germany, France, and (2) Global South (GS): Iran, Turkey, China, India, Indonesia, Philip-
pines, Nepal, Nigeria, South Africa, Brazil, Mexico, following UN classification 2.

Image Generation. For each prompt, we generate 10 images (1 image for proprietary models due to
the cost) using the template: “A photorealistic photo of {sub-activity} in {country}.” We include six
recent T2I models: three public (Stable Diffusion 3.5 (Esser et al., 2024), FLUX (BlackForestLabs,
2024), Qwen-Image (Wu et al., 2025)3) and three proprietary (DALL·E 3 (Betker et al., 2023), GPT-
Image-1 (OpenAI, 2025), Nano-Banana (Google, 2025)). We set the random seeds 42 + i (for k-th
image) in public models, generating more than 19,000 images.

Reference data. We adopt two complementary strategies for identifying what images of activities in
a region (country) should portray: (1) Visual Descriptors. Inspired by prior use of LLMs for object
descriptors (Menon & Vondrick, 2023), we extend the idea to activities. For each prompt, we gen-
erate up to 10 descriptors per cultural dimension—background, objects, attire, actions/interactions,
and spatial relations. This produces diverse descriptors spanning both traditional and modern activ-
ity variants (details in Sec. 3.1); (2) Real Images. We collect 20 candidate images per prompt via
Google search (10 using the English prompt, 10 using its translation into the language of the respec-
tive country), totaling ∼12k images. We then apply CLIPScore (Hessel et al., 2021) filtering and
retain the top five (total of ∼3k) as representative real references which we use in our exaggeration
metric. We also use real images for calibration and finding hyperparameters such as τ in Eq. 1.

1https://culturalatlas.sbs.com.au/
2https://unctadstat.unctad.org/EN/Classifications/DimCountries_All_

Hierarchy.pdf
3We used distilled model: https://github.com/ModelTC/Qwen-Image-Lightning
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Model Region N=1 N=10
ALIGN ↑ HAL ↓ EXAG ↓ FAITH ↑ DDIV ↑ SDIV ↑

SD-3.5-medium
GN 0.31 ±0.01 0.55 ±0.02 0.05 ±0.02 0.57 ±- 0.68 ±0.03 0.33 ±-
GS 0.26 ±0.03 0.61 ±0.03 0.08 ±0.04 0.52 ±- 0.62 ±0.04 0.32 ±-

FLUX.1-dev
GN 0.30 ±0.02 0.56 ±0.03 0.04 ±0.01 0.57 ±- 0.66 ±0.03 0.32 ±-
GS 0.25 ±0.03 0.63 ±0.04 0.06 ±0.02 0.52 ±- 0.60 ±0.04 0.30 ±-

Qwen-Image
GN 0.36 ±0.02 0.51 ±0.02 0.06 ±0.01 0.60 ±- 0.68 ±0.02 0.28 ±-

GS 0.30 ±0.03 0.56 ±0.04 0.10 ±0.03 0.55 ±- 0.63 ±0.04 0.29 ±-

DALL·E 3†
GN 0.36 ±0.01 0.50 ±0.01 0.10 ±0.03 0.59 ±- - -
GS 0.32 ±0.03 0.54 ±0.032 0.12 ±0.04 0.55 ±- - -

GPT-Image-1†
GN 0.36 ±0.01 0.49 ±0.01 0.06 ±0.01 0.61 ±- - -
GS 0.30 ±0.03 0.55 ±0.03 0.07 ±0.02 0.56 ±- - -

Nano Banana†
GN 0.40 ±0.01 0.46 ±0.01 0.10 ±0.03 0.61 ±- - -
GS 0.35 ±0.03 0.50 ±0.03 0.12 ±0.3 0.57 ±- - -

Table 1: T2I models consistently generate more faithful images on GN countries. N is number
of images per prompt. Best values per model (GS/GN) is bolded. † N=1 only due to cost. EXAG
values are small because the metric measures relative alignment of synthetic image to real images

4.2 HUMAN EVALUATION SETUP

We conduct a controlled human study to assess cultural understanding across alignment, halluci-
nation, exaggeration, and realism using Prolific4 as our platform. Our evaluation covers 11 repre-
sentative countries spanning all sociol regions, and both GN and GS, includes 1/2 prompt per each
activity and 3 T2I models (Stable Diffusion 3.5, FLUX1, and Qwen-Image), totaling 381 forms and
2 annotators per each forms (762 total annotations). We also conduct human evaluation on real
images for 3 countries (27 additional forms), bringing the total to 398 forms.

Annotations Collected. We collect the following data from our annotators, which we use as ground-
truth (GT) labels: GT-FAITH = How well does this image show {activity} in your country? is the
main gold standard that measures the overall faithfulness of an image according to the culture and
activity. We further compare against GT-EXAG = How exaggerated is the image? and GT-HAL =
How incorrect is the image? (incorrect activity or incorrect element according to the activity and/or
country) Responses are collected on a 5-point Likert scale.

We also evaluate the quality of reference descriptors Dllm
r,a through human evaluation. We measure

precision via binary (correct/incorrect) annotations for each descriptor, achieving 90% accuracy
(Table 10). For recall, explicit evaluation is infeasible as no ground-truth descriptor set exists.
We estimate recall through two complementary measures: (1) annotators rated overall descriptor
coverage and quality on a 1-5 Likert scale, achieving an average of 4.5/5, and (2) only 26 out of 378
annotators indicated any missing descriptors. Together, these results demonstrate high precision and
comprehensive coverage of our reference descriptors.

Quality Control. We ensure domain expertise by constraining recruitment via nationality and res-
idence requirements (verified by Prolific). Compensation is set to $8/hour. To ensure reliability,
we implement multiple quality control measures. We include attention checks, such as selecting a
pre-mentioned number. We use repeated questions to test consistency across responses. We require
free-text rationales where annotators must describe what is incorrect in the image. We conduct direct
discussions with annotators when facing inconsistent scoring and explanations.

Correlation Metric & inter-rater Agreement. use Spearman’s rank correlation to measure how
well our proposed metrics align with human judgments. Spearman’s ρ evaluates the strength of
monotonic relationships between ranked variables, where values near 1/-1 indicates a strong pos-
itive/negative correlation. Following Kannen et al. (2024) we use Krippendorff’s Alpha (Krip-
pendorff, 2018), appropriate for ordinal Likert scores to measure inter-rater agreement in A.4 Per-
country. We observe comparable agreement compared to related works (Nayak et al., 2025; Kannen
et al., 2024), exceeding their maximum per-country agreement.

4https://www.prolific.com/
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(a) Models consistently score better (higher on
ALIGNment, lower on HALlucation) for GN. Inter-
estingly, they perform strongly on China

(b) Frequency of activity supercategories appear-
ing among the best-3 (green) and worst-3 (red)
subactivities across 16 countries.

Figure 3: Analysis of performance by country (left) and activity (right).

Backbone Method GT-FAITH
GS (n=231) GN (n=150) Overall (n=381)

PickScore Kirstain et al. (2023) 0.20 -0.02 0.15
ImageReward Xu et al. (2023) -0.03 -0.13 -0.08
CLIPScore Hessel et al. (2021) I–T Alignment 0.08 -0.01 0.04

VQAScore Lin et al. (2024) 0.15 0.16 0.14
CuRe Rege et al. (2025) 0.13 0.08 0.10

Qwen2.5–VL
MLLM 0.13 0.08 0.10

FAITH (Ours) 0.42 (+0.29) 0.38 (+0.30) 0.42 (+0.32)

InternVL3
MLLM 0.19 0.18 0.20

FAITH (Ours) 0.46 (+0.27) 0.47 (+0.29) 0.47 (+0.27)

–
MLLM (GPT-4o) 0.49 0.46 0.48

VIEScore(GPT-4o) (Ku et al., 2024) 0.37 0.27 0.35
Human 0.59 0.57 0.58

Table 2: Comparison with baselines on Cultural Faithfullness on expanded human evaluation
(11 countries). ITA metrics do not capture cultural nuances effectively. Our Faithfulness metric
achieves substantially higher Spearman correlation with human cultural-faithfulness judgement. The
best metric for each section is bolded. Values in parenthesis show improvement with respect to
MLLM baseline. We include human–human correlation for reference. InternVL3 is ‘InternVL3-
14B’ and QwenVL2.5 is ‘Qwen2.5-VL-7B-Instruct’.

5 RESULTS

We benchmark 6 pre-trained text-to-image (T2I) models using CULTIVate, and evaluate the pro-
posed metrics against prior works using three main human ground truth labels (see Sec. 4.2).

5.1 HOW DO DIFFERENT T2I MODELS PERFORM FOR DIFFERENT COUNTRIES?

T2I models consistently generate more faithful content for Global North (GN) countries. Ta-
ble 1 shows a consistent bias against GS, with all models performing consistently better on GN than
on GS, e.g., Qwen-Image achieves 0.36/0.51 on GN (ALIGN) vs. 0.30/0.57 on GS (HAL). Lower
ALIGN, along with higher HAL and EXAG and lower DDIV/SDIV scores on GS, suggest that
models not only make more mistakes (e.g., depicting the wrong activity or showing a scene from
the wrong country) but also generate exaggerated contents with less cultural concepts included. The
trend is illustrated in Fig. 3a.

T2I systems perform worst on more culturally-grounded activities. Fig. 3b show often each
activity category appeared among the best-3 and worst-3 performing sub-activities across the 16
countries.Models perform best on the least culturally-grounded categories (e.g., concerts, eating)
while they make more mistakes on more culturally-grounded activities (e.g., celebrations).

5.2 WHAT METRICS ARE EFFECTIVE FOR CULTURAL FAITHFULLNESS?

Image-Text Alignment methods are ineffective for cultural understanding. Table 2 shows all
ITA methods achieve near-zero or negative correlation with human scores (e.g., ImageReward: -
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Backbone Method GT-FAITH
GS (n=231) GN (n=150) Overall (n=381)

Qwen2.5-VL

MLLM baseline 0.13 0.08 0.10
ALIGN 0.41 0.32 0.39

ALIGN + HAL 0.37 0.37 0.39
FAITH (ALIGN+HAL+EXAG) 0.42 0.38 0.42

InternVL3

MLLM baseline 0.19 0.18 0.20
ALIGN 0.40 0.40 0.41

ALIGN + HAL 0.42 0.46 0.44
FAITH (ALIGN+HAL+EXAG) 0.46 0.47 0.47

Human – 0.59 0.57 0.58

Table 3: Cultural Faithfullness ablation. Cultural Faithfullness captures best through combination
of ALIGNment, EXAGgeration, and HALlucination

Ref. Desc. Generator LLM (Proposer/ Refiner) Spearman Kendall

Proposer GPT-4o / – 0.28 0.20
Proposer Gemini 2.5-Flash / – 0.30 0.22
Proposer-Refiner GPT-4o + Gemini 2.5-Flash / GPT-4o 0.33 0.24

Table 4: Proposer–Refiner improves descriptor quality.

τ Spearman Kendall

0.29 0.21 0.15
0.39 0.27 0.20
0.52 0.33 0.24

Table 5: Threshold (τ ) ablation.

0.03/-0.13/-0.08 for GS/GN/overall). Results are improved when using MLLMs as a judge, asking
the same question as we ask our human annotators to obtain the GT-FAITH. However, MLLM still
significantly under-perform our FAITH metric (e.g., Qwen2.5-VL: 0.10 vs FAITH: 0.42; InternVL3:
0.20 vs FAITH: 0.47).

Capturing exaggeration and hallucination are complementary to alignment. Table 3 shows
the best correlation with human faithfulness is achieved when all three metrics are combined. This
confirms our key finding: effective cultural faithfulness metrics must penalize exaggeration and
hallucination, not just measure alignment.

Note that inter-rater agreement ( A.4) is moderate and varies by country, consistent with related
work (Nayak et al., 2025; Kannen et al., 2024), reflecting the subjectivity of cultural evaluation. We
do not evaluate diversity metrics, as diversity is not part of faithfulness and requires collection-level
assessment while our annotations are image-level.
Ablations. In Table 10 (appendix), we show descriptor accuracy using the relevant/irrelevant se-
lections by annotators for a subset of countries; the average is 90.27%. We seek to boost results
with the refiner (see Sec. 3.1). In Tab. 4, we see improved results on alignment with human scores,
when using the two-stage proposer-refiner, over proposer alone. Further, in Table 5, we show the
effect of the threshold parameter τ we use in Sec. 3.2 to compute descriptor matches. We use values
corresponding to 25-th, 50-th, and 75-th percentile, and find that the latter performs best.

5.3 WHAT ASPECTS OF THE ACTIVITIES ARE DEPICTED BEST/WORST BY T2I MODELS?

Fig. 4 shows performance by region (country), for each of five dimensions (groupings) of descrip-
tors. The best-performing country by dimension varies, but USA, China and Germany are consis-
tently among the best. South Africa, Nigeria and India are consistently in the bottom half, except
for Interaction (South Africa and Nigeria, both African countries) and Spatial (India). In appendix,
we show further results using top descriptors for individual countries, activities, and metrics.

5.4 HOW DO THE METRICS RELATE TO EACH OTHER?

To improve the performance of T2I models, a user might want to know how improving upon one
metric will affect others. We aim to answer this question by computing correlations between the
metrics, shown in Fig. 5b. We see that alignment is negatively correlated with both exaggeration and
hallucination. The same trend is observed using human scores; see Fig. 5a which also demonstrates
visually the much stronger alignment of our metrics with human scores.
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(a) Objects (b) Background (c) Spatial (d) Interaction (e) Attire

Figure 4: Country alignment ranked using each of the five descriptor dimensions. (Zoom to 250%.)

(a) Correlation between GT scores (left), ITA meth-
ods (middle), and our scores (right).

(b) Correlations among our proposed metrics.

Figure 5: An effective cultural faithfulness metric should negatively correlate with exaggeration and
hallucination.

6 CONCLUSION

We developed a framework for evaluating generation of images of social activities in different coun-
tries. We propose a suite of metrics that can be computed without human involvement, yet show
much higher agreement with human assessment than prior metrics. Using our framework, we con-
duct analysis on sixteen countries and six text-to-image models. We show performance on Global
North countries exceeds that of Global South. and demonstrate specific failure modes using our de-
scriptor dimensions. We hope our work equips future researchers with the tools to scalably improve
and test performance on this task which has broad applicability, e.g., in the entertainment industry.
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A APPENDIX

A.1 USAGE OF AI

In this section we elaborate on LLM usage in this study. LLMs were used throughout this research
as writing assistants, for text polishing, and for literature review through LLM agents and available
tools. AI coding assistants5 were used to assist with programming. However, LLMs were not used
blindly and served only as assistants to improve accuracy and efficiency. This paper introduces a
benchmark on social activities. As described in the main paper, LLMs (GPT-4o) were utilized to
parse online knowledge bases (CulturalAtlas and Wikipedia) to identify activities across countries.
Furthermore, the descriptor-based metrics rely on LLM-generated descriptors. However, a proposer-
refiner approach was incorporated to improve quality, and descriptors were evaluated through human
evaluation (see Table 10).

A.2 LIMITATIONS

Cultural Bias in LLMs. AHEaD uses LLM-generated descriptors as reference points for measur-
ing the cultural competence of T2I models. Since LLMs are trained on web text, we acknowl-
edge that they may encode biases toward Western societies. To mitigate this, we adopt a Pro-
poser–Refiner strategy, which improves descriptor quality and increases agreement with human
ground-truth scores. Human evaluation showed 90%. Compared to common alternatives, such
as human surveys or real images, our approach is scalable and less costly. Real images collected
from the web are themselves biased, while surveys are subjective and expensive. Unlike VLM-based
image–text alignment methods or raw image references, our descriptors are explainable and allow
direct inspection of model errors, rather than being opaque scores.

A.3 CALIBRATION OF THRESHOLD

We propose ALIGN and HAL to measure how well images cover expected activity/cultural cues and
which visual elements are incorrect. Since these metrics are ratio-based, we must set a similarity
threshold τ to decide whether a descriptor counts as a hit (aligned) or miss (hallucinated).

We calibrate τ using real reference images rather than synthetic generations to avoid leakage, since
synthetic data may reflect biases of the very T2I models under evaluation. Real images, while noisy,
contain culturally faithful content without “wrong” or “exaggerated” elements, making them suitable
for calibration. Concretely, we compute descriptor–descriptor similarities between LLM-provided
ground-truth descriptors and MLLM-extracted descriptors from real images, then consider candidate
thresholds at the lower quartile (Q1), median, and upper quartile (Q3). As shown in Fig.6, Q3 offers
the best trade-off by reducing false positives while maintaining recall. Table5 further confirms that
Q3 yields the most robust alignment scores across regions.

Figure 6: Threshold τ calibration for ALIGN

5https://cursor.com/
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A.4 IMPLEMENTATION DETAILS AND BASELINES

Evaluation baselines. The goal of this paper is to evaluate the cultural faithfulness competence
(GT-ALIGN) of T2I models, where automated evaluation methods remain extremely limited. Ex-
isting works rely heavily on human annotations Kannen et al. (2024); Nayak et al. (2025); Basu
et al. (2023), while a few recent approaches Khanuja et al.; Rege et al. (2025) approximate cul-
tural faithfulness using image–text similarity. Accordingly, we compare against commonly used
and state-of-the-art ITA metrics, including CLIPScore (Hessel et al., 2021), VQAScore (Lin et al.,
2024) with “CLIP-FlanT5-xxl” (the strongest publicly available ITA setup), PickScore (Kirstain
et al., 2023), and ImageReward (Xu et al., 2023). Following prior ITA practice, we use each model’s
generation prompt—“A photorealistic image of activity in country”—as the reference for evaluation.
We also benchmark against CuRe (Rege et al., 2025), the only metric explicitly designed for cul-
tural faithfulness. For fair comparison, we adopt CuRe’s recommended SigLIP2 (Tschannen et al.,
2025) configuration and compute mean image–text similarity using the prompts “An image of activ-
ity” and “An image from country,” omitting their parent-category prompt since this information is
already embedded in our activity descriptions (e.g., “people playing tag game”).

Across all settings, we find that ITA methods and CuRe exhibit weak correlation with human cultural
judgments, whereas our proposed metrics achieve substantially higher and more stable agreement
across different MLLM backbones (InternVL3 and QwenVL2.5). We attribute the limitations of
existing VLM-based ITA methods to: (1) bag-of-words behavior that misses compositional cul-
tural nuance (Yuksekgonul et al., 2022), (2) reliance on Western-centric training data that introduces
cultural biases, and (3) inability to distinguish authentic cultural representation from stereotypical
exaggeration. For instance, CLIPScore rewards images containing literal elephants for the “elephant
ant man” game—an Indonesian rock–paper–scissors variant—due to keyword matching rather than
cultural understanding. To address these issues, AHEAD uses externally generated cultural descrip-
tors instead of VLM embeddings, enabling interpretable evaluation of ALIGN, HAL, and EXAG that
aligns more faithfully with human cultural judgment. This is the first work to evaluate cultural HAL
and EXAG, and we study both descriptor–descriptor methods (Sec. 3.2) and MLLM-as-Judge base-
lines using InternVL3 and QwenVL2.5, which answer the same cultural assessment questions posed
to human annotators (full prompts in Appendix A.7).

Implementation Details We first use GPT4-o and Gemini 2.5 Flash (best LLMs in cultural un-
derstanding (Chiu et al., 2025)) offline once to in the data annotation phase to produce “reference
LLM descriptors”, these are used as noisy reference to evaluate cultural faithfulness. To minimize
the LLM-bias we developed proposer-refiner to combine descriptors of different LLMs which is
refined by removing duplicate and incorrect descriptors (results in Table 4). We set the tempera-
ture to 0.2 for proposers and 0.1 for the refiner. AHEaD uses an MLLM to extract descriptors, we
mainly use InternVL3 (“InternVL3-14B”) as MLLM in our pipeline and also test our pipeline with
QwenVL2.5(“QwenVL2.5-7B”). We set temperature 0 for MLLMs to ensure high precision and
reproducibility, and use all-MiniLM-L6-v2 as the sentence embedding model for similarity
computation.

Inter-Rater Agreement We consider “GT-ALIGN” for interrater agreement as the main goal of this
work is to measure cultural faithfulness and GT-EXAG/GT-HAL are even more subjective. To assess
the reliability of our human annotations, we compute country-level agreement scores for the cultural
relevance ratings. Each image is annotated by two independent raters who are originally from the
corresponding country. Across the eleven countries in our study, Krippendorff’s Alpha Krippendorff
(2018) ranges from 0.15 to 0.62. We also compute Cohen’s Kappa McHugh (2012) between the two
annotator groups and observe a mean value of 0.50. These agreement levels are consistent with
previously reported values for cross-cultural image evaluation. CulturalFrames Nayak et al. (2025)
reports country-level Alpha values between 0.24 and 0.42, and CUBE Kannen et al. (2024) reports
values between 0.09 and 0.58. Our scores are therefore comparable to prior work and also achieve
a higher maximum value, which indicates that our annotation protocol yields reliable judgments.

We observe variation across countries, with a standard deviation of 0.13 for Krippendorff’s Al-
pha. Such variation is expected because cultural faithfulness assessments are subjective and depend
strongly on cultural and geographic context. Interestingly, the average agreement among Global
North countries is 0.28, which is lower than the Global South average of 0.35, even though text-to-
image models tend to perform better on Global North regions. We hypothesize that higher-quality
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outputs may cause annotators to focus more on aspects unrelated to cultural content, such as image
quality or visual artifacts, or to rely more heavily on subjective interpretations.

A.5 ADDITIONAL RESULTS ON AHEAD

HAL can effectively detect hallucinations. Table 6 demonstrates HAL’s correlation with human
scores. shows our proposed HAL metric achieves the best correlation with humans on both GT-
HAL and GT-FAITH, demonstrating the effectiveness of our method compared to strong LLMs,
specifically InternVL. Although InternVL is used in our pipeline to extract image descriptors, our
method outperforms InternVL by 11%. Further, we observe that our HAL metric achieves the
most negative correlation with GT-FAITH. This confirms our hypothesis that hallucination has
a strongly negative correlation with faithfulness and can be used to design strong metrics. In
particular, we use InternVL to extract image descriptors.

Method Backbone GT-HAL↑ GT-FAITH↓
GS GN overall GS GN overall

MLLM
InternVL3 0.22 0.24 0.23 -0.20 -0.24 -0.21
QwenVL2.5 0.29 0.30 0.29 -0.31 -0.36 -0.33

HAL InternVL3 0.31 0.39 0.35 -0.39 -0.44 -0.41
QwenVL2.5 0.30 0.42 0.36 -0.33 -0.35 -0.36

Human – 0.40 0.38 0.39 - - -

Table 6: Correlation with humans on Hallucination. Our Hallucination metric achieves the high-
est correlation with human ground truth scores compared to existing MLLM-based approaches,
including InternVL which serves as the backbone for MLLM descriptor extraction. Best scores per
column are bolded.

EXAG can effectively detect hallucinations. We are the first to measure exaggeration. metric
achieves the highest correlation with human ground truth scores compared to existing MLLM-based
approaches overall, while it achieves balanced scores across GN/GS. We further test three different
3 of measuring HAL in Table 11: (1) using LLM GT descriptors, stereotype candidates (ours), and
MLLM descriptors. We observe that using LLM/MLLM descriptors is ineffective. This shows that
“over-representation” any element (e.g., people or regular objects) is not considered as exaggeration.
Over exaggeration is only related to certain culturally specific visual elements.

A.6 RAW HUMAN SCORES

Table 13illustrates the raw human scores. We observe that overall

A.7 PROMPTS

In this section, we include prompts used in this project.

Method Backbone GT-HAL ↑ GT-FAITH ↓
Flux1 Qwen SD3.5 Avg. Flux1 Qwen SD3.5 Avg.

MLLM
InternVL3 0.32 0.07 0.20 0.20 -0.30 -0.10 -0.18 -0.18
QwenVL2.5 0.38 0.11 0.37 0.26 -0.39 -0.19 -0.31 -0.30

HAL InternVL3 0.36 0.37 0.24 0.32 -0.51 -0.33 -0.30 -0.38
QwenVL2.5 0.35 0.31 0.32 0.33 -0.38 -0.21 -0.37 -0.32

Human – 0.38 0.34 0.40 0.37 - - - -

Table 7: Hallucination Per T2I on expanded human evaluation. Spearman Correlation.
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Method Backbone GT-EXAG↑ GT-FAITH↓
GS GN Overall GS GN Overall

EXAG (MLLM)
InternVL3 0.24 0.26 0.25 -0.24 -0.21 -0.25
QwenVL2.5 0.34 0.33 0.34 -0.31 -0.25 -0.30

EXAG (ITA) VQAScore 0.36 0.16 0.29 -0.27 -0.14 -0.22

Human – 0.31 0.39 0.34 - - -

Table 8: Correlation with humans on Exaggeration on expanded human evaluation. Best scores
per-column are bolded. We explore two approaches: EXAG(MLLM) use MLLM for predicting
exaggeration, while EXAG(ITA) uses VQAScore and exaggerated candidates from Sec. 3.2. Human
evaluation incldues 11 countries with 381 samples (231/150 for GS/GN)

Method Model Flux1 Qwen SD3.5 Avg.

Image-Text Alignment

VQAScore 0.14 -0.02 0.143 0.09
PickScore 0.06 -0.05 0.03 0.01
ImageReward -0.09 -0.24 -0.19 -0.17
CLIPScore 0.04 -0.28 0.02 -0.05
CuRe 0.17 0.10 -0.01 0.09

MLLM
GPT-4o 0.53 0.27 0.48 0.43
InternVL3 0.38 -0.14 0.14 0.13
QwenVL2.5 0.12 0.02 0.11 0.09

ALIGN (InternVL3) 0.51 0.30 0.31 0.38
Human – 0.65 0.40 0.55 0.55

Table 9: Detailed results per T2I model, using Spearman correlation with GT-FAITH human scores

China France Iran Nigeria USA India Brazil Avg.
89.80 90.54 85.21 91.62 91.44 91.61 91.68 90.27

Table 10: LLM generated descriptors validation by humans.

Method Model Flux1 Qwen SD3.5 Avg.
LLM GT Descriptors EXAG (VQAscore) -0.276 -0.256 -0.220 -0.251
Stereotype Cand. EXAG (VQAscore) 0.349 0.184 0.230 0.183
MLLM-Desc. EXAG (VQAscore) -0.221 -0.092 0.063 -0.083

Human – 0.231 0.097 0.482 0.270

Table 11: Exaggeration per T2I (Spearman). Correlation across different text-to-image genera-
tors.

Activity Example Subactivities (across countries)
Eating Home, Restaurant
Greeting Namaste (India), Prostrating (Nigeria), Three-kiss (Iran), Cheek kiss (France)
Dancing Samba (Brazil), Flamenco (Spain), Bharatanatyam (India), Dragon Dance (China)
Game Kabaddi (India), Ayoayo (Nigeria), Pétanque (France), Baseball (USA), Mahjong (China)
Celebration Nowruz (Iran), Carnival (Brazil), Bastille Day (France), Thanksgiving (USA), Chinese New Year (China)
Religious Tazieh (Iran), Candomblé ceremony (Brazil), Catholic mass (Mexico), Temple aarti (India)

Table 12: A subset of examples of subactivities in CULTIVate. Highlights distinctive cultural
practices across countries.
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Figure 7: Detailed results using different correlations with GT-FAITH. ALIGN and HAL show
consistent negative correlation in both humans and models (−0.74), validating the accuracy of our
descriptor-based metrics. ALIGN and EXAG are also negatively correlated, though values differ:
humans penalize exaggeration as misalignment, whereas ALIGN counts it as aligned if it matches
a ground-truth descriptor. This highlights the need for EXAG to capture exaggeration effects not
reflected in alignment alone, especially since its computation depends on noisy ground-truth images.

Figure 8: Illustration of descriptor effectiveness in guiding image editing for improved gen-
eration. (a) Initial T2I-generated images (top to bottom: Nano-Banana, Nano-Banana, FLUX,
Qwen-Image). (b) Generated feedback by AHEaD: We use AHEaD feedback along with refer-
ence descriptors Dllm to create clear instruction prompts (prompt in Table.31) (c) Edited images:
Nano-Banana is utilized to edit images according to instruction prompts generated in (b). (d) Real
images.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Region GT-FAITH GT-EXAG GT-HAL GT-IMAGE-REALISM

FRANCE 3.09 (0.73) 2.63 (0.70) 2.29 (0.74) 3.25 (0.39)
BRAZIL 3.61 (0.65) 2.27 (0.47) 1.79 (0.61) 3.46 (0.20)
CHINA 2.95 (0.84) 2.66 (0.52) 2.19 (0.52) 3.17 (0.44)
INDIA 3.27 (0.94) 2.38 (0.73) 1.97 (0.56) 3.56 (0.65)
MEXICO 2.91 (1.00) 2.41 (0.86) 2.38 (0.88) 2.98 (0.65)
GERMANY 3.25 (0.79) 2.25 (0.59) 2.04 (0.84) 3.10 (0.52)
NIGERIA 3.53 (0.73) 1.97 (0.57) 1.92 (0.52) 3.75 (0.57)
TURKEY 2.79 (1.22) 2.40 (0.79) 2.58 (1.18) 3.33 (0.55)
USA 3.96 (0.45) 2.19 (0.47) 1.59 (0.42) 3.48 (0.52)
IRAN 2.52 (0.76) 3.03 (0.78) 2.78 (0.53) 3.15 (0.61)
SPAIN 3.03 (1.10) 2.25 (0.74) 2.43 (0.68) 2.95 (0.45)

GS 3.04 (0.97) 2.44 (0.74) 2.28 (0.83) 3.31 (0.59)
GN 3.28 (0.89) 2.31 (0.65) 2.13 (0.75) 3.15 (0.50)

Table 13: Human evaluation absolute scores. Scores shows mean (standard deviation) Likert
scores. GT-FAITH, GT-HAL, GT-EXAG, and GT-IMG-REALISM evaluate cultural faithfulness,
hallucination, exaggeration and realism of generated images. Results are on 11 countries, 9 activities
(1 or 2 sub-activity), 3 T2I images, and 2 annotator per each image/form.

LLM Descriptor Generator — System Prompt
System: You are an expert in cross-cultural visual representation. Your task is to generate
precise visual descriptors capturing how a typical scene of a given activity appears in a specific
country. Descriptors must cover both traditional and modern variations and represent common
culturally accurate scenes.
Rules: 1. The output must strictly follow this JSON structure:
"descriptors":["token":"...", "style":"traditional|modern|neutral"]
2. Use culturally-aware terminology (e.g., samovar, sari) when appropriate; use
broader cultural phrases when high specificity is unnecessary.
3. Focus only on the core activity scene (not before/after events).
4. Capture multiple common variations where they exist.
5. If the dimension has no representative descriptors, return an empty list.

Table 14: LLM descriptor generator — System Prompt

LLM Descriptor Generator — Setting & Background
Goal: Describe the environment — the physical location, architecture, and design
elements that define the atmosphere of the scene.
Guidelines: INCLUDE:
– Location and architectural style (indoors/outdoors; temple interior, city street)
– Art and design (calligraphy, geometric tiles, minimalist décor)
– Major furnishings (communal tables, floor cushions, rugs)

EXCLUDE: people, clothing, handheld objects, specific actions.

Generate up to {max items} descriptors for:
{concept}

Table 15: LLM descriptor generator — Setting & Background
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LLM Descriptor Generator — Objects
Goal: Identify the core objects central to the activity.
Guidelines:
- Ensure descriptors accurately represent objects common in the activity scene
within the given country.
- INCLUDE: essential tools, vessels, foods (samovar, board game, hot pot).
- Use visually descriptive categories (e.g., “bowls of noodle soup”) instead of
abstract labels (“Chinese food”).
EXCLUDE: people, animals, clothing, architecture, actions, background décor.
Generate up to {max items} descriptors for:
{concept}

Table 16: LLM descriptor generator — Objects

LLM Descriptor Generator — Attire
Goal: Describe typical clothing, accessories, and appearance features.
Guidelines: - Use specific garment names only when culturally essential (e.g.,
sari).
- Otherwise, use broader cultural categories (e.g., traditional West African attire).
- Include both traditional and modern clothing variations unless the concept is
strictly historical.
INCLUDE: garments, headwear, accessories, ceremonial markings, uniforms.
EXCLUDE: tools, furniture, actions, gestures.

Generate up to {max items} descriptors for: {concept}

Table 17: LLM descriptor generator — Attire

LLM Descriptor Generator — Interaction & Gesture
Goal: Capture actions, gestures, and social dynamics central to the activity.
Guidelines: INCLUDE:
– Key person–object actions (pouring tea from samovar)
– Social gestures (sharing food, group dancing)
– Culturally typical postures and formations (kneeling rows)
EXCLUDE: static object descriptions, clothing, setting details. Focus on actions
and interactions.

Generate up to {max items} descriptors for: {concept}

Table 18: LLM descriptor generator — Interaction & Gesture

LLM Descriptor Generator — Spatial Arrangement
Goal: Describe layout and spatial organization of people and objects.
Guidelines: INCLUDE:
- Positioning of people relative to key objects or surfaces
- Culturally meaningful configurations (eating at a table vs. around a sofreh)
- Ensure descriptors cover common variations in the activity across the country.

EXCLUDE: clothing details, object descriptions, actions.
Generate up to {max items} descriptors for: {concept}

Table 19: LLM descriptor generator — Spatial Arrangement
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LLM Refiner Prompt
System: You refine candidate visual descriptors for evaluating the cultural align-
ment of AI-generated images representing a specific concept or activity in a given
country. Your job is to select, clean, and filter descriptors based on cultural accu-
racy and relevance.
Task: Select and refine descriptors according to the concept, country, and de-
scriptor dimension.
Dimensions:
- Setting — venues, architecture, décor
- Objects — central objects in the activity
- Attire — clothing, accessories, headwear
- Interaction — gestures, postures, social relations
- Spatial Layout — positioning patterns

Rules: 1. Keep only culturally accurate descriptors.
2. Create a diverse set covering typical variations.
3. Do not invent new descriptors.
4. Merge duplicates or overly specific items.
5. Remove unrelated descriptors.
6. Keep phrases concise (1–4 words).
7. Descriptors must match the assigned dimension.
8. Output up to {max items} descriptors.
9. If none are valid, return an empty list.

Output Format: ["token":"item","style":"traditional|modern|neutral"]
Input: Concept: {prompt} in {country} Dimension: {dimension} Can-
didate Descriptors: {candidate descriptors}

Table 20: LLM Refiner Prompt

MLLM Descriptor Exctractor (System Prompt)
As an expert on cross-cultural visual representation, your task is to generate precise visual
descriptors to evaluate the cultural alignment and accuracy of AI-generated images.
Goal: Capture visual elements of a typical scene of an activity in a specific country, covering
both traditional and modern variations.
Rules: 1. Output strictly in JSON: "descriptors":["token":"...",
"style":"traditional|modern|neutral"]
2. Use culturally-aware terms (e.g., samovar, sari) when precise, or broader cultural terms
when sufficient.
3. Focus on the core activity scene—not before or after actions.
4. Capture common variations (e.g., eating at a table vs. sitting on the floor).
5. If nothing distinctive exists, return an empty list.

Table 21: System Prompt for descriptor generation.

MLLM Descriptor Extractor (Setting & Background Prompt)
Goal: Describe the environment (location, architecture, design, furnishings).
INCLUDE:
- Indoors/outdoors (temple interior, busy street, simple home)
- Art & design (calligraphy, tiles, minimalist decor)
- Major furnishings (floor cushions, rugs, communal tables)

EXCLUDE: clothing, handheld objects, actions.

Table 22: MLLM descriptor detector (Setting & Background).
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Objects Prompt
Goal: Identify key objects, tools, foods, vessels central to the activity.

INCLUDE: essential items (samovar, board game, noodle bowls, shared hot pot).

EXCLUDE: animals, clothing, architecture, actions, background décor.

Table 23: Prompt: Objects.

Attire Prompt
Goal: Describe typical clothing, accessories, and appearance.

Rules:
- Use specific garment names only when culturally essential (e.g., sari).
- Otherwise, use broader cultural categories.
- Always include both traditional and modern possibilities.

INCLUDE: garments, headwear, accessories, ceremonial markings, uniforms.
EXCLUDE: tools, furniture, actions, gestures.

Table 24: MLLM descriptor detector (Attire).

Interaction & Gesture Prompt
Goal: Capture actions, gestures, and social dynamics.

INCLUDE:
- Person and/or object actions (pouring tea from a samovar)
- Social gestures (sharing food, group dancing)
- Group formations (kneeling rows, circle formations)

EXCLUDE: static objects, clothing, setting.

Table 25: Prompt: Interaction & Gesture.

MLLM Descriptor Detector (Spatial Arrangement)
Goal: Describe the physical layout and positioning of key objects.

INCLUDE:
- Relative positions (sitting around sofreh, standing in line)
- Culturally significant layouts (table seating vs. floor seating)

EXCLUDE: clothing, object details, gestures.

Table 26: MLLM descriptor extractor (Spatial Arrangement).
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Prompt
System: You are a helpful assistant that identifies culture-specific visual elements that
a text-to-image model may exaggerate when depicting a given activity in a given coun-
try. These elements should represent unrealistic overuse, oversized forms, or out-of-place
insertions of cultural cues. Return only concise visual stereotypes based on observable
features.

Task: Generate up to {{num elements}} candidate exaggerated elements for the ac-
tivity and country below. Elements must be concise noun phrases describing culture-
specific items (e.g., “Persian rugs”, “giant flags”). Focus on attire, objects, symbols, dec-
orations, architecture, and interaction styles. Avoid generic or non–culture-specific items
(e.g., “trees”, “crowds”). Do not describe scenarios or contexts—only list the exaggerated
element itself.

ACTIVITY: {{concept}}
COUNTRY: {{country}}

User: Provide the final list as a single line of noun phrases separated by the “—” character.
Do not include numbering, explanations, or extra text.

Example format:
Persian rugs | oversize lanterns | giant religious symbols
| people in traditional robes

Table 27: EXAG Candidate Generation Prompt

ALIGN Likert Scoring Prompt
System: You are a helpful assistant scoring how well an image depicts an activity as it
would typically appear in the specified country. Provide a rating from 1 to 5 using the
guidelines below. Only output the score in the required format.

Scoring Scale:
1 = Not well at all (completely wrong or unrelated)
2 = Slightly relevant
3 = Somewhat accurate
4 = Mostly accurate
5 = Exactly as expected for this country

Task:
PROMPT: {{prompt}}
COUNTRY: {{country}}

User: Respond with ONLY the score in the exact format below:
score is < num >

Do not include any other text, explanation, or formatting.

Table 28: ALIGN MLLM-as-a-Judge Prompt
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HAL MLLM-as-a-Judge Prompt
System: You are a helpful assistant scoring whether an image contains incorrect elements
with respect to the mentioned activity and country. Rate on a scale from 1 to 5 using the
rules below. Only output the score in the required format.

Scoring Scale:
1 = Not at all. All elements seem appropriate.
2 = Slightly. One minor element seems foreign.
3 = Somewhat. A few elements feel unusual.
4 = Mostly. Many elements appear incorrect or from another culture.
5 = Strongly. The image is completely wrong, most elements are wrong, the activity is
wrong, or the scene belongs to another country.

Task:
PROMPT: {{prompt}}
COUNTRY: {{country}}

User: Respond with ONLY the score in the exact format below:
score is < num >

Do not include any other text, explanation, or formatting.

Table 29: HAL MLLM-as-a-Judge prompt

EXAG MLLM-as-a-Judge Prompt
System: You are a helpful assistant scoring how exaggerated an image is in terms of
cultural elements (e.g., attire, objects, background, art/design). Rate on a scale from 1 to
5 using the rules below. Only output the score in the required format.

Scoring Scale:
1 = Appropriate and balanced.
2 = Slightly decorative but within cultural norms.
3 = Several features feel idealized or overly emphasized.
4 = Many elements feel exaggerated and unrealistic.
5 = Strongly stereotypical, misleading, or culturally irrelevant.

Task:
PROMPT: {{prompt}}
COUNTRY: {{country}}

User: Respond with ONLY the score in the exact format below:
score is < num >

Do not include any other text, explanation, or formatting.

Table 30: EXAG MLLM-as-a-Judge Prompt
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
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Image Editing Instruction Prompt
Task: Edit the image to correctly show {{activity}} in {{country}} by following the in-
structions below.

Remove:
- All hallucinated elements from the HAL list
- All exaggerated elements from the EXAG list
- Any objects, clothing, poses, or background features that belong to the wrong culture, historical
period, or activity

Add/Preserve:
- ALIGN list that must remain present
- Add correct interaction from REF DESCP list if mentioned in HAL/EXAG
- ADD 1-3 different types of attire from REF DESCP if mentioned in HAL/EXAG
- ADD 1 correct background from REF DESCP if mentioned in HAL/EXAG
Input:
ACTIVITY: {{activity}}
COUNTRY: {{country}}
HAL DESCRIPTORS: {{HAL}}
EXAG DESCRIPTORS: {{EXAG}}
ALIGN DESCRIPTORS: {{ALIGN}}
REFERENCE DESCRIPTORS: {{REF DESCP}}

Table 31: Image editing instruction prompt template. AHEaD feedback (HAL, EXAG, ALIGN)
combined with reference descriptors Dllm guides image editing to improve cultural accuracy.
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