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Abstract
Self-supervised learning (SSL) is perfectly suited for applications in digital pathol-
ogy due to the scarcity of labeled data. Over the past years, many academic and
industrial labs have published pathology foundation models, claiming ‘state-of-
the-art’ performance due to improvements in architecture, methodology, and/or
training data. In this paper, we demonstrate that simply tuning the hyperparameters
of popular SSL method DINOv2, using a relatively small dataset, leads to similar
or superior performance. Specifically, we conduct three successive hyperparameter
searches, iteratively increasing either dataset or model size while narrowing the hy-
perparameter search space and carrying over promising hyperparameters. Overall,
this preliminary study demonstrates the importance of hyperparameter tuning in
this domain and proposes straight-forward strategies to improve foundation models
with additional compute and data.

1 Introduction

Figure 1: Successive hyperparameter searches are used to tune DINOv2 hyperparameters by optimiz-
ing performance 16 patch-level tasks. (1) ViT-Small (ViT-S) is tuned on 30% of the training dataset.
(2) Hyperparameter ranges are narrowed and the 5 best samples from (1) are used as initial samples
for tuning ViT-S using 100% of the dataset. (3) Hyperparameter ranges are again narrowed and the 5
best samples from (2) are used as initial samples for tuning ViT-Large (ViT-L) using 100% of the
data. The best models from each search are then evaluated on a suite of 10 slide-level tasks.

Self-supervised learning (SSL) is perfectly suited for applications in digital pathology due to the
scarcity of labeled data. Although millions of tissue slides are scanned every year, collecting labels for
most tasks of clinical interest requires multi-year follow-up or annotation by experts, so large labeled
datasets are rare. For example, the largest cohort of patients with shared characteristics in The Cancer
Genome Atlas (TCGA) [1] contains just 1133 slides, with less than 400 slides on average across the
32 cohorts. And the largest cohort in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) [2]
contains only 1137 slides, with less than 600 slides on average across the 11 cohorts. To account for
the prohibitively small amount of labeled data, the following paradigm has become commonplace.
First, train a foundation model via SSL on a large number of unlabeled pathology slides. Then, use
representations extracted from this foundation model to train a classification/regression model for a
downstream task of interest, such as disease diagnosis or prognosis [3, 4, 5, 6].
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Over the past years, several academic and industrial labs have published foundation models for digital
pathology, claiming superiority due to improvements in architecture [7, 8], methodology [6, 9, 10,
11, 12], and/or training data [13, 14, 15]. In this study we consider an alternative route: carefully
tuning the hyperparameters of a baseline SSL model. Tuning the hyperparameters of SSL models is
challenging. First, the lack of a meaningful validation loss makes it difficult to predict downstream
performance. This problem can be alleviated by constructing auxiliary validation tasks and using
them to evaluate models throughout training. Second, training modern foundation models is slow
due to the large size of the models and the training sets. Training a single model can take hundreds
or thousands of GPU-hours. Therefore, researchers typically focus on scaling model size and/or
dataset size/diversity, subsequently training models with fixed hyperparameters, either using the
values reported by the SSL method authors or some lightly modified version thereof.

In this paper we demonstrate that carefully tuning the hyperparameters of DINOv2 on a suite of
16 patch-level tasks leads to matching or even surpassing the slide-level task performance of some
digital pathology foundation models considered ‘state-of-the-art’, even when using a training set of
modest size. Specifically, we first tune a ViT-S on 30% of our training dataset. We then take the best
hyperparameter settings from this search and use them as the initial samples for a hyperparameter
search tuning a ViT-S on 100% of the training dataset. Finally, we use the best hyperparameter settings
from this search and use them as the initial samples for a hyperparameter search tuning a ViT-L
on 100% of the training dataset. In each successive search, we narrow the hyperparameter ranges,
helping the hyperparameter optimizer hone in on the most promising regions of the hyperparameter
space. We present an overview of this procedure in Figure 1. We conclude by showing a strong
correlation between patch-level and slide-level performance, validating our approach.

2 Experimental setup
Model We train two sizes of Vision Transformer (ViT) [16], ViT-Small (ViT-S) (21M parameters)
and ViT-Large (ViT-L) (303M parameters), using DINOv2 with iBOT disabled1. We tune DINOv2
hyperparameters related to the learning rate schedule, weight decay schedule, teacher temperature and
momentum schedules, and augmentation policy. ViT architectural specifications are in Appendix A.3,
and the full list of the tuned hyperparameters, along with their ranges, is in Appendix A.4.

Training data All foundation models we train in this study are trained on 10,073 formalin-fixed
paraffin-embedded hematoxylin-and-eosin-stained whole slide images (WSIs) from TCGA [17]. We
use Otsu’s method [18] to distinguish background from foreground and subsequently patchify the
foreground into non-overlapping 256× 256 patches at 20× magnification, yielding 133M patches
(approximately 13,000 patches per slide on average), representing tissue from 31 cancer types
spanning 27 organs. A breakdown of slides and patches per cancer type is provided in Appendix A.5.
Models are trained for 1 epoch (i.e., each patch is seen exactly once) with a batch size of 4,480.

Patch-level and slide-level tasks Patch-level tasks, constructed by patchifying WSIs and then
annotating at the patch level, are designed to benchmark a model’s ability to learn micro-scale
properties of cancerous tissue (such as tumor cellularity, cancer grade, or histology) and typically
contain a few thousand to a few hundred-thousand patches. Slide-level tasks, on the other hand,
are constructed by annotating full WSIs, and are designed to benchmark a model’s ability to learn
macro-scale properties of cancerous tissue (such as major histological subtypes) or properties of the
associated patient (such as genomic characteristics or risk of cancer recurrence). Because slide-level
tasks are the most clinically actionable, we treat them as the downstream tasks of interest. However,
instead of tuning directly on slide-level tasks, which would bias the model unfairly in their favor,
we tune SSL hyperparameters by evaluating on 16 patch-level tasks. After hyperparameter tuning
is completed, we evaluate the best models on 10 slide-level tasks and compare to public pathology
foundation models (see Section 4.2 and Figure 2). Subsequently, we show a strong correlation
between patch-level and slide-level performance (see Section 4.3 and Figure 4). Overviews of patch-
and slide-level tasks are provided in Appendixes A.1 and A.2, respectively.

3 Hyperparameter tuning strategy
To account for variation in the difficulty of different tasks and the scale of their corresponding
evaluation metrics, we tune hyperparameters with respect to a weighted summary score (WSS)
computed based on performance relative to the performances of a set of baseline models. That is,

1We found in our preliminary experiments that iBOT leads only to a marginal improvement in performance
while making learning less stable.
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several ‘baseline’ models consisting of a variety of pathology and non-pathology foundation models.
Then, we evaluated all baseline models across all patch-level tasks and computed the mean and the
standard deviation of their performances. We compute a model’s WSS every 10% through training
and early stop after two consecutive epochs where a new best WSS has not been attained.

3.1 Chaining hyperparameter searches
At a high level, we perform hyperparameter tuning via the following protocol:

0. Design initial hyperparameter search space based on DINOv2 defaults.
1. Run Bayesian hyperparameter search using MODEL_SIZE and DATA_FRACTION for some

number of samples.
2. Look at the best hyperparameter settings (based on WSS) and narrow the hyperparameter

search space.
3. If possible, increase either MODEL_SIZE or DATA_FRACTION and return to Step 1, using the

top hyperparameter settings from the previous search as the initial samples for the next
search. Otherwise, continue to Step 4.

4. Evaluate the top models from the final search on the slide-level evaluation suite.

3.2 Downstream models
For patch-level tasks, in order to evaluate the learned representation rather than the downstream model,
we use simple models: k-NN (k = 20) for classification, linear regression for regression, and softmax
regression for multi-class classification with probability outputs. We use 5-fold cross-validation
and repeat it 10 times with randomly drawn cross-validation splits and, where applicable, model
initializations and average the results.
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Figure 2: Performances broken down by model (y-axis) and slide-
level task (x-axis). For overall survival (OS) the metric reported
is the C-index [19], and for all other tasks the metric is AUC.
For tasks with multiple datasets, performances across datasets are
averaged.

Since pathology foundation mod-
els extract representations at the
patch level, some aggregation is
needed to turn the thousands of
patch-level representations into a
single slide-level representation.
Learnable pooling, such as a
AttMIL [20], could be used, but
this would complicate the eval-
uation protocol by introducing
more hyperparameters and the
need for gradient descent-based
optimization. Instead, we opt for
parameterless mean-pooling fol-
lowing Wolfein et al. [21] and Chen et al. [22]. Accordingly, we fit the following models on top
of PCA-reduced (number of components C = 50) mean-pooled patch embeddings: k-NN with
k = 5 for classification and regression, and Cox Proportional Hazards model (with regularization
coefficient α = 0.01) for time-to-event prediction. PCA is critical due to the large dimensionality
of SSL representations and relatively small size of slide-level datasets. For each task, we use 3-fold
cross-validation and repeat it 10 times with randomly drawn cross-validation splits and average the
results. For all patch- and slide-level tasks, neither k nor α nor any other hyperparameters were tuned
at any point beyond ensuring in preliminary experiments that the chosen values enabled learning.

4 Results
4.1 Hyperparameter searches
We started with a hyperparameter search training a ViT-S on 30% of the full training dataset. We
drew 58 samples in this search. The top 5 models, by peak WSS at any point during training, had an
average WSS of −7.1. We then narrowed the hyperparameter search space to exclude parts of the
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space not represented among the best samples and used the top 5 samples as the initial samples for
the next hyperparameter search: ViT-S trained on 100% of the training dataset. Adjustments were
made to carried-over hyperparameters as needed to cast them into the new search space, and warm-up
schedules were scaled so their absolute lengths remained unchanged.

For the ViT-S 100% search, we drew 61 hyperparameter samples in addition to the initial 5 samples.
The top 5 samples in this search had an average peak WSS of 0.1. The top samples from the ViT-S 30%
search perform well in the ViT-S 100% search. Notably, the second best sample from the 30% search
achieved the third highest WSS in the 100% search. We again narrowed the hyperparameter search
space and used the top 5 samples as the initial samples for the final hyperparameter search: ViT-L
trained on 100% of the training dataset. For this final search, we sampled 7 sets of hyperparameters in
addition to the initial 5 samples. The top 5 samples yielded an average peak WSS of 1.4, outperforming
a baseline ViT-L trained with the default DINOv2 hyperparameters, which achieved a WSS of −0.8.

4.2 Comparison to strong publicly available models
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Figure 3: Average slide-level perfor-
mance as a function of the number of
patches in the training dataset. Perfor-
mance of models trained in this study in-
creases monotonically with dataset and
model size. The impact of the dataset
size appears to be stronger than the im-
pact of the model size.

We take the best two models from the ViT-L 100% search
(ViT-L #1 and ViT-L #2), and evaluate them on the slide-
level task suite. We compare against four models: Vir-
chow [13], a ViT-H (631M parameters); Hibou-L [14], a
ViT-L (303M parameters); Kaiko-L/14 [9], a ViT-L; and
Prov-GigaPath’s tile encoder [8], a ViT-G (1.1B parame-
ters). We find that our models outperform both Virchow
and Hibou-L, considered ‘state-of-the-art’ at the time of
their publication. Full slide-level task results are in Fig-
ure 2. Furthermore, we can trivially improve downstream
performance by taking the trained downstream models for
ViT-L #1 and #2 and simply averaging their predictions.
However, Kaiko-L/14 and Prov-GigaPath still outperform
our models by a significant margin, demonstrating that in-
creases in training data yields significantly stronger models
when used correctly. As visualized in Figure 3, ViT-L #1,
ViT-L #2, and the ViT-L Ensemble all perform extremely
well relative to models Virchow and Hibou-L despite seeing a fraction of the data.

4.3 Correlation between patch-level and slide-level performance
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Figure 4: Patch-level (top) and slide-
level (bottom) performance for the best
ViT-L, ViT-S 100%, and ViT-S 30%
models found during the hyperparameter
searches. We compare to a ViT-L trained
with DINOv2 default hyperparameters,
as well as Hibou-L and Virchow. Kaiko-
L/14 and Prov-GigaPath are omitted.

Figure 4 demonstrates the relationship between WSS and
slide-level performance. Using all points from the ViT-L
#1, ViT-S #1, and DINOv2 baseline training runs, we find
a correlation of 0.929 (95% CI: [0.785, 0.978]) between
WSS and average slide-level performance (see Figure 5).

5 Discussion
Despite the impressive empirical progress in applying SSL
to digital pathology, the field is still in its infancy. Even
the largest models and datasets are small in comparison
to analogous efforts in other domains, e.g., language mod-
eling. Our work highlights the burning need for develop-
ment of better methods for selecting SSL hyperparameters.
Inspiration can be taken from language modeling, where
significantly more resources have been put into understand-
ing data and model scaling laws and how to accordingly
tune hyperparameters. For example, some attention in the
language modeling community has been given to the Max-
imal Update Parameterization (µP) [23, 24] which aims to
provide theoretical foundations for hyperparameter trans-
fer across model size. While it is unclear how to extend
µP to vision-based SSL methods such as DINOv2, this
research direction is critical.
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A Appendix

A.1 Patch-level tasks

Table 1: Patch-level tasks used for hyperparameter tuning. For classification tasks, the number in
parentheses represents the number of classes.

Task name # patches Task type Organ Description Metric
BreastPathQ [25] 2,579 regression breast tumor cellularity Kendall’s tau
MHIST [26] 3,152 classification (2) colorectal histology AUC
CRC-100K [27] 107,000 classification (9) colorectal tissue types balanced accuracy
PatchCamelyon [28, 29] 327,680 classification (2) lymph node metastases balanced accuracy
CAMEL [30] 15,403 classification (2) colorectal adenomas AUC
Chaoyang [31] 6,160 classification (4) colorectal adenomas macro AUC
Gleason [32] 21,496 classification (4) prostate Gleason score macro AUC
Cytomorphology [33] 171,373 classification (14) bone marrow cell types macro AUC
IDC [34] 277,524 classification (2) breast invasive ductal carcinoma AUC
Osteosarcoma [35] 1,144 classification (3) bone necrosis balanced accuracy
CoNIC [36] 4,831 classification (6) colon cell types 1 - L1 loss
UniToPatho [37] 8,669 classification (6) colon lesion histology macro AUC
BreakHis [38] 7,909 classification (8) breast lesion histology macro AUC
IDC Grading [39] 906 classification (3) breast grade of invasive ductal carcinoma macro AUC
GLySAC [40] 14,315 classification (7) stomach cell nuclei macro AUC
BRACS [41] 4,539 classification (7) breast lesion histology macro AUC

A.2 Slide-level tasks

Table 2: Slide-level tasks used for evaluation. Data for all TCGA cohorts are available publicly. For
overall survival, the metric used is the C-index [19], and for all other tasks the metric is AUC.

Task name Datasets Targets
Mutations TCGA-BRCA (938) TP53, PIK3CA, CDH1
MSI TCGA-COAD (332), TCGA-STAD (339)
HRD TCGA-BRCA (1022)
Biomarkers TCGA-BRCA (1062) ER, HER2, IDC, ILC
Survival TCGA-COAD (449), TCGA-STAD (388) Overall survival

Slide-level tasks focus on predicting tumor molecular and histological characteristics and predicting
patient survival. The molecular characteristics included predicting mutation status in several clinically
meaningful genes often associated with targeted therapies. For example, patients with a PIK3CA
mutation are candidates for alpesilib, patients with homologous recombination deficiency (HRD) are
candidates for PARP inhibitors such as olaparib, and patients with microsatellite instability (MSI) are
candidates for immune checkpoint inhibitors such as pembrolizumab. Testing for these mutations
from a digitized pathology slide may enable avoiding time-consuming and expensive NGS panels,
which are not available to all patients. Additionally, predicting patient survival typically relies on
either basic clinicopathological characteristics or genomic signatures, which share the time and cost
constraints of testing for genomic alterations and only have modest accuracy. Tasks focused on other
molecular and histological biomarkers, such as identifying ductal (IDC) and lobular (ILC) carcinomas,
are usually done by pathologists, and an automated tool could speed up diagnostic workflows.
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A.3 Vision transformer details

Table 3: Architectural parameters of Vision Transformer model variants. Since various ViT-Giant
configurations exist, we report the one used for Prov-GigaPath [8].

Model Layers Hidden size MLP size Heads Params
ViT-Small 12 384 1536 6 21M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M
ViT-Giant 40 1536 8192 24 1.1B

A.4 Tuned hyperparameters

Table 4: A summary of hyperparameters tuned in this study and their initial ranges for the first (ViT-S
30% data) hyperparameter search.

Hyperparameter Initial Range Equation
LR [0.0002, 0.0024] (log)
LR final value factor [0.01, 0.5] (log)
LR warmup epochs [0.02, 0.15]
patch-embed LR multiplier [0.1, 0.4]
weight decay init [0.01, 0.1] (log)
weight decay final value factor [1, 8] (log) final value = init × factor
teacher temp init [0.02, 0.06]
teacher temp final value factor [1.0, 3.0] final value = init × factor
teacher temp warmup epochs [0.25, 0.35]
momentum init [0.990, 0.996]
momentum final value factor [0.5, 1.0] final value = init + (1-init) × factor
DINO local crop max [0.3, 0.6] global crop scale = (max, 1.0)
DINO local crop min factor [0.1, 0.5] local crop scale = (max × factor, max)
normal color jitter probability [0.0, 1.0]
stain color jitter intensity [0.03, 0.10]
stain color jitter probability [0.6, 0.9]
sample super-patch frequency [0.0, 0.5]

The final three hyperparameters of Table 4 are hyperparameters that we introduce based on recent
papers showing potential for mixed-magnification training [11, 9] and stain augmentation [14]. In
particular, ‘sample super-patch frequency’ represents the probability that the sampled 256 × 256
patch is combined with neigboring 256× 256 to form a single 512× 512 patch. ‘stain color jitter
intensity’ and ‘stain color jitter probability’ determine the strength and frequency of the RandStainNA
stain augmentation [42].
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A.5 Training Data

Table 5: A breakdown of the TCGA cohorts used for training and the respective number of slides
used and average patches per slide (PPS).

Cancer Subtype Abbrev. # Slides Avg PPS
Bladder Urothelial Carcinoma BLCA 107 14,991
Breast Invasive Carcinoma BRCA 20 13,179
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma CESC 279 10,541
Cholangiocarcinoma CHOL 39 19,847
Colon Adenocarcinoma COAD 459 12,297
Diffuse Large B-Cell Lymphoma DLBC 44 10,363
Esophageal Carcinoma ESCA 158 12,181
Glioblastoma Multiforme GBM 860 10,102
Head and Neck Squamous Cell Carcinoma HNSC 472 11,941
Kidney Chromophobe KICH 121 14,534
Kidney Renal Clear Cell Carcinoma KIRC 519 14,333
Kidney Renal Papillary Cell Carcinoma KIRP 298 13,738
Brain Lower Grade Glioma LGG 844 10,787
Liver Hepatocellular Carcinoma LIHC 379 14,261
Lung Adenocarcinoma LUAD 541 12,824
Lung Squamous Cell Carcinoma LUSC 512 12,756
Mesothelioma MESO 87 10,393
Ovarian Serous Cystadenocarcinoma OV 107 15,086
Pancreatic Adenocarcinoma PAAD 209 12,936
Pheochromocytoma and Paraganglioma PCPG 196 15,208
Prostate Adenocarcinoma PRAD 449 13,223
Rectum Adenocarcinoma READ 165 10,828
Sarcoma SARC 600 17,227
Skin Cutaneous Melanoma SKCM 475 13,360
Stomach Adenocarcinoma STAD 442 11,640
Testicular Germ Cell Tumors TGCT 254 15,797
Thyroid Carcinoma THCA 519 14,131
Thymoma THYM 181 15,335
Uterine Corpus Endometrial Carcinoma UCEC 566 17,496
Uterine Carcinosarcoma UCS 91 17,892
Uveal Melanoma UVM 80 9,469
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A.6 Correlation between WSS and slide-level performance
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Figure 5: Relationship between weighted summary score and average slide-level performance. The
strong correlation confirms that optimizing performance of the model on patch-level tasks is an
effective way to tune hyperparameters for slide-level performance without tuning directly on the
slide-level tasks. Different points for the same model represent different stages of training.
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