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Abstract

Ensemble Kalman inversion (EKI) is a sequen-
tial Monte Carlo method used to solve inverse
problems within a Bayesian framework. Unlike
backpropagation, EKI is a gradient-free optimiza-
tion method that only necessitates the evaluation
of artificial neural networks in forward passes. In
this study, we examine the effectiveness of EKI
in training neural ordinary differential equations
(neural ODEjs) for system identification and con-
trol tasks. To apply EKI to optimal control prob-
lems, we formulate inverse problems that incor-
porate a Tikhonov-type regularization term. Our
numerical results demonstrate that EKI is an effi-
cient method for training neural ODEs in system
identification and optimal control problems, with
runtime and quality of solutions that are competi-
tive with commonly used gradient-based optimiz-
ers.

1. Introduction

Already in 1988, two years after Rumelhart et al. (1986)
have proposed backpropagation as a training method for
multilayer perceptrons, Singhal & Wu (1988) used an ex-
tended Kalman filter (EKF) to train such neural networks.
In a follow-up study, Singhal & Wu (1989) noted that “the
Kalman algorithm converges in fewer iterations than back-
propagation and obtains solutions with fewer hidden nodes
in the network.” While a more detailed comparison of back-
propagation and EKFs showed that the latter may be associ-
ated with a substantially higher computational cost (Ruck
et al., 1992), a more efficient variant of the EKF used by
Singhal and Wu has been introduced by Puskorius & Feld-
kamp (1991) and been shown to converge towards desired
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solutions more rapidly than backpropagation in different
learning tasks. Until 2019, when Kovachki & Stuart (2019)
used a Monte Carlo approximation of the EKF, the so-called
ensemble Kalman filter (EnKF) (Evensen, 1994), to train
artificial neural networks (ANNSs), most applications of
Kalman filters to such training tasks were based on extended
and unscented Kalman filters (Haykin & Haykin, 2001) that
are known to suffer from computational and memory limi-
tations. The EnKF avoids these limitations by propagating
an ensemble of states that approximates the system state
distribution and from which covariance matrix estimates
are computed at every iteration. This method originated
in the geosciences and has been successfully applied to
many high-dimensional and non-linear data assimilation
problems (Katzfuss et al., 2016). In addition to its appli-
cation in data assimilation, the EnKF has been adapted to
solve general inverse problems of the form

y=G0)+¢, M

where one wishes to determine model parameters 8 € U
based on a known output variable y € ) and model
G: U — Y (Iglesias et al., 2013). The quantity £ ~ N (0,T)
denotes Gaussian noise with covariance I'. The use of EnKF
iterations to solve inverse problems has been dubbed “en-
semble Kalman inversion” (EKI). A continuous-time limit
of the discrete-time formulation of EKI has been derived by
Schillings & Stuart (2017).

Ensemble Kalman inversion belongs to the class of sequen-
tial Monte Carlo methods that are used to solve inverse
problems within a Bayesian framework (Idier, 2013; Dashti
& Stuart, 2017). Kovachki & Stuart (2019) have cast su-
pervised, semi-supervised, and online learning tasks into
inverse problems of the form (1) and solved them using EKI.
Unlike backpropagation, EKI is a gradient-free optimization
method that only requires one to evaluate ANNs in forward
passes. It can thus be easily parallelized.

Another variant of the EnKF has been used by Haber et al.
(2018) to solve non-linear regression and image classifica-
tion problems and an EKI-based sparse learning method
has been proposed by Schneider et al. (2022) to use time-
averaged statistics for data-driven discovery of differential
equations. Ensemble Kalman methods have also been com-
bined with auto-differentation approaches for parameter
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inference in dynamical systems and neural network models
of partially or fully unknown dynamics (Chen et al., 2022).

In this work, we study the ability of EKI to efficiently train
neural ordinary differential equations (neural ODEs) in sys-
tem identification and control tasks. Neural ODEs have
received renewed interest in recent years due to their diverse
applications in dynamical systems identification, timeseries
modeling (Wang & Lin, 1998; Chen et al., 2018) and op-
timal control (Asikis et al., 2022; Bottcher et al., 2022;
Bottcher & Asikis, 2022; Cuchiero et al., 2020). Inverse
problems (1) can be generalized to describe optimal control
problems that involve an additional Tikhonov-type regular-
ization term (Clason & Kaltenbacher, 2020). Complement-
ing earlier work on Tikhonov EKI (Chada et al., 2020), we
incorporate a regularization term in equation (1) to solve
optimal control problems with EKI and neural ODE:s.

2. Contributions

The main contributions of our work are as follows:

* Combining EKI with neural ODEs for system identifi-
cation tasks.

* Formulating optimal control problems in terms of an
inverse problem (1) that accounts for a control-energy
regularization term.

» Formulating EKI updates for solving optimal control
problems with neural ODE:s.

* Comparing gradient-based and EKI-based optimiza-
tion of neural ODE:s in system identification and con-
trol tasks.

Our source codes are publicly available at (Bottcher, 2023).

3. Ensemble Kalman inversion

Ensemble Kalman inversion is a gradient-free optimization
method that can be used to solve inverse problems (1) in
an iterative manner. Because different neural-network op-
timization problems can be cast in the form (1) (Kovachki
& Stuart, 2019), we will use EKI in this work to determine
the optimal neural ODE parameters 6* € U that minimize
a given loss function. In Sections 4 and 5, we will reframe
neural ODE-based system identification and optimal con-
trol problems as inverse problems and demonstrate how
they can be solved using EKI. We compare the ability of
EKI to efficiently identify solutions that are close to the
desired optimum with algorithms that rely on backpropaga-
tion through time (BPTT) (Williams & Peng, 1990; Werbos,
1990; Feldkamp & Puskorius, 1993).

Based on a discrete-time formulation of the EnKF for in-
verse problems (Iglesias et al., 2013), a corresponding

continuous-time formulation has been derived by Schillings
& Stuart (2017). As a starting point, we consider an en-
semble {§)}7_, C U of neural-network parameters. In
accordance with Schillings & Stuart (2017), the continuous-

time evolution of the ensemble {#7) }_1 is described by
60 = —c*COr (G -y), @
69)(0) = 65’ , 3)

where the empirical cross-covariance matrix is

% in: (9(3 ) ® (G(g(j)) _ G‘) )

The ensemble means § and G are given by

J J
=1 , 1 .
= j§ 09 and G= j§ GOY), )
j=1 j=1

respectively.

For linear inverse problems where G(6) = A#, it has been
shown by Schillings & Stuart (2017) that Eq. (2) can be
rewritten as

0D (t) = —C(0)Ve®(6; ), (6)

where

1 1,
®(0y) = lly — ADIF = ST (= A0)I5, (D)

and

% i: (09 =8) ® (09 -3) . ®

Jj=1

For any symmetric, positive-definite operator C: ‘H — H,
we use the notations | -||c=|C"?|% and
(e =(C7Y2, C~Y2), to indicate adapted ver-
sions of the norm || - ||3; and inner product (-, -4 associated
with a Hilbert space .

Equation (6) shows that #U) — #* in the limit ¢t — oo
where 6* minimizes ®(6;y) within the subspace
span{ﬂ(] ) _ 00} _, of U. Here,  is the mean of the initial

ensemble {65} i

4. Learning dynamical systems
4.1. Neural ODEs
field

A neural ODE parameterizes the vector

f:R™ x R — R" of a dynamical system

m(t) = f(:L‘(t), t) ’ )
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where z(t) € R™ is the system state at time t. We use
x(0) = zo € R™ to denote the corresponding initial condi-
tion.

Specifically, a neural ODE is an artificial neural network
fo(x(t),t) with parameters # € R that is used to represent
the right-hand side of Eq. (9). When numerically integrating
the dynamical system (9) with vector field fp(x(t),t), we
say that the underlying artificial neural network becomes
time-unfolded. For example, considering a simple forward
Euler scheme with time step At, we have

Tpt1 = i + Atfo(zr, tr), (10)

where z, = x(t) and ¢, = kAt for some positive integer k.
Equation (10) shows that integrating the dynamical system
(9) produces a residual neural network (He et al., 2016) that
satisfies

folxp, tr) = fo(wp_1 + Atfo(wr_1,te_1),tx). (11)

Given observations {Z(t¢)}seq1,...,m} at times ¢, € [0, T,
our goal is to learn fy(x(¢),t). To do so, we use the mean
squared error

M
MSE(# Z

E:

2(te) — 2(t4; 0))° (12)

as a loss function and train a neural ODE with a suitable
optimizer that minimizes Eq. (12).
4.2. Numerical experiments

To study the ability of neural ODEs that are trained with
EKI to efficiently learn a dynamical system based on given
observation data, we first consider the dynamical system

i) [(—005 1 B
@)= (0 L) () »

with initial condition (1 (0),22(0)) " = (1,0) ". The solu-
tion of this initial value problem is
r1(t)\ [ e t/?0cos(t)
<J;2(t)) o (—et/QO sin(t) ) * (14

To train a neural ODE fp(z(t),t) to represent the vector
field associated with Eq. (13), we use 100 reference points
from a discretized solution of the initial value problem as
training data. The discretized solution consists of 500 time
points ¢, € [0,40] and the set of 100 training data points
consists of 10 subsets of 10 points associated with consec-
utive time steps [see red dots in Fig. 1(a)]. The first points
in each subset are selected uniformly at random without
replacement from the set of 500 points.
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Figure 1. Learning a dynamical system from observation data us-
ing BPTT and EKI. (a) We employ a neural ODE to learn the
dynamical system (13). Solid blue and orange lines correspond
to solutions that are obtained with BPTT and EKI, respectively.
The dashed black line indicates the solution of the original dynam-
ical system for (x1(0),z2(0))" = (1,0)". Red dots represent
observation data that is used to train the neural ODE. (b) Mean
squared error (MSE) associated with BPTT (solid blue line) and
EKI (solid orange line) as a function of the number of training
epochs m [see Eq. (12)]. The neural ODE consists of one hidden
layer with 10 tanh neurons. Its total number of parameters is 52.
In the gradient-based optimization, we used the Adam optimizer
and set the learning rate to 7 = 0.01. The EKI optimizer has
22 ensemble members and an exponential scheduler to adapt 7.,
[see Eq. (15)]. For EKI, we also show the MSE evolution if no
scheduler is used for ,,,. The EKI MSE is based on the minimum
MSE in the whole ensemble. We stopped both training algorithms
when their runtime exceeded one minute.

We represent fy(x(t),t) using a neural network with one
hidden layer and 10 tanh neurons. The total number of
parameters is 52. If not stated otherwise, weights and biases
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EKI SGD SGD Adam Adam
(n=0.01) (=0.1) (n=0.01) (=0.1)
training error 4.89 x 1077 247x107® 5.02x107° 1.03x107°% 5.79x1077
test error 911 x107% 248x107! 547x107% 1.12x107% 7.86x1073

Table 1. Training and test errors associated with different optimizers. Training has been stopped after the training time exceeded 60
seconds. SGD and Adam results are based on the same initial neural-network parameters. For EKI, the initial ensemble size is 22 and the
diagonal elements of the covariance matrix are updated according to the exponential scheduler (15).

BKI SGD SGD Adam Adam
(n=0.01) (n=0.1) (n=0.01) (n=0.1)
training error 4.00x1077 5.62x107*  4.57x107° 2.02x1077 1.02x 1077
test error 1.38 x107° 838x1072 1.19x107% 1.44x107° 1.97x107°

Table 2. Training and test errors associated with different optimizers. Training has been stopped after the training time exceeded 60
seconds. SGD and Adam results are based on the same initial neural-network parameters. For EKI, the initial ensemble size is 22 and the
diagonal elements of the covariance matrix are updated according to the exponential scheduler (15).

are initialized from U (—+/d, v/d), where d is the inverse of
the number of input features. In all examples, we integrate
neural ODEs using a Dormand—Prince method (Dormand &
Prince, 1980; Hairer et al., 1993). For EKI, we use an ensem-
ble size of J = 22 and a diagonal covariance matrix with
entries (I';,)i; = Ym0sj, Where m is the current training
epoch and §;; is the Kronecker delta function (i.e., §;; = 1
if ¢ = j and O otherwise). We initially set v = 0.9 and then
reduce its value every two iterations using an exponential
scheduler. That is, every two iterations, we set

am

TYm ="Y0€ ", (15)

where o > 0 modulates the decrease of ;. We use an
exponential decay in v, to map small differences between
G (9,(,];)) and y in Eq. (2) to noticeable updates in 0. In
our simulations, we set o = 0.35.

Figure 1(b) shows that this adaptive EKI method
is able to train the described neural ODE to repre-
sent the dynamical system (13) with initial condition
(21(0),22(0)) " = (1,0) T. Without exponential scheduler,
the MSE decreases more slowly as a function of training
epochs. To compare the EKI-based solution with a solution
that uses a gradient-based optimizer, we train the same neu-
ral ODE using the Adam optimizer (Kingma & Ba, 2015),
an adaptive gradient-descent method, with a learning rate of
n=0.01.!

For an appropriate comparison of the two optimization meth-

'In all numerical experiments that use the Adam optimizer,
we set B1 = 0.9, B2 = 0.999, and ¢ = 1078, Here, 81, 52
are coefficients that are used to compute running averages of the
gradient and its square. The parameter ¢ is used in the denominator
of gradient updates to improve numerical stability.

ods, we stop the neural ODE training when the training time
exceeds one minute on a single core of an Intel® Core™ i7-
10510U CPU @ 1.80GHz x 8. The total numbers of training
epochs of EKI and Adam are 66 (i.e., ca. 1 per second) and
2277 (i.e., ca. 38 per second), respectively. The training and
test errors of EKI are 4.89 x 10~7 and 9.11 x 104, respec-
tively. The training error of Adam is 1.03 x 107, about
twice as large as that of EKI, while the test error of Adam
is 1.12 x 1072 and thus almost equivalent to that of EKI.
We also performed numerical experiments for an additional
learning rate (7 = 0.1) and for stochastic gradient descent
(SGD). The results are summarized in Table 1. While Adam
can achieve a smaller training error for the learning rate
1 = 0.1, the corresponding test error is substantially larger
than for the training with n = 0.01. The performance of
SGD is inferior to Adam for the two tested learning rates.
Overall, EKI can deliver a competitive performance against
the adaptive learning method Adam.

As an example of a non-linear dynamical system, we con-
sider the ODE
(16)

which describes the motion of a simple pendulum with
natural frequency w. In our numerical experiments, we
set w = 1. As initial condition, we use x(0) = /4 and
#(0) = 0. As in the previous example, the neural network
parameterizing fy(z(t),t) has 10 tanh neurons.

& = —wsin(x),

To train a neural ODE fp(z(t),t) to represent the vector
field associated with Eq. (16), we use 100 reference points
from a discretized solution of the initial value problem as
training data. The discretized solution consists of 200 time
points t; € [0,20] and the set of 100 training data points
consists of 10 subsets of 10 points associated with consec-
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Figure 2. Learning a dynamical system from observation data us-
ing BPTT and EKI. (a) We employ a neural ODE to learn the
dynamical system (16). Solid blue and orange lines correspond
to solutions that are obtained with BPTT and EKI, respectively.
The dashed black line indicates the solution of the original dy-
namical system for z(0) = 7/4 and ©:(0) = 0. Red dots represent
observation data that is used to train the neural ODE. (b) Mean
squared error (MSE) associated with BPTT (solid blue line) and
EKI (solid orange line) as a function of the number of training
epochs m [see Eq. (12)]. The neural ODE consists of one hidden
layer with 10 tanh neurons. Its total number of parameters is 52.
In the gradient-based optimization, we use the Adam optimizer
and set the learning rate to 7 = 0.01. The EKI optimizer has 22
ensemble members and an exponential scheduler to adapt vy, [see
Eq. (15)]. For EKI, the MSE is based on the minimum MSE in the
whole ensemble. We stopped both training algorithms when their
runtime exceeded one minute.

utive time steps [see red dots in Fig. 2(a)]. The first points
in each subset are selected uniformly at random without
replacement from the set of 200 points.

We use J = 22 ensemble members and an exponential

scheduler (15) with g = 1.4-2.6 and o = 0.4. The adap-
tive 7, again helps the EKI-based optimizer reach small
loss values [see Fig. 2(b)]. We again stop training when the
training time exceeds one minute. Figure 2(b) shows that
the training loss associated with EKI is slightly larger than
that associated with Adam (4.00 x 10~7 vs. 2.02 x 10~7).
We also performed additional numerical experiments using
the Adam optimizer with a learning rate of 7 = 0.1 and
SGD with n = 0.1,0.01. The training and test errors are
summarized in Table 2. The smallest test error has been
achieved with EKI.

5. Optimal control

We will now focus on the gradient-free training of neural
ODE controllers. As a starting point, we consider the bound-
ary value problem

T = f(x(t)vu(t)at)v

where the vector field f: R™ x R™ xR — R" describes the
evolution of the system state z:(¢) € R™ subject to a control
function u(t) € R™.?

z(0)=z9, «(T)=2z*, (17)

In optimal control, one wishes to identify a Lebesgue-
measurable control function u(t) that satisfies the constraint
(17) and minimizes the functional

T
j:qb(x(T),TH—/O L(x(®),ult),)dt,  (18)

where ¢: R" xR — Rand L: R" x R™ xR — R (Speyer
& Jacobson, 2010; Lewis et al., 2012). That is, one wishes
to minimize J and steer the dynamical system as defined
in Eq. (17) from its initial state xo € R™ to a desired tar-
get state z* € R" in finite time 7. If we were to impose
additional constraints on the control function u(t), it has
to be chosen from a corresponding set of admissible con-
trols (Wang & Xu, 2018).

In this work, we focus on the special case where
o(2(T),T) = 0and L(x(t), u(t), t) = L(u(t)) = [[u(®)||3
The condition ¢(x(T"), T) = 0 means that the endpoint cost
is zero. Because L(u(t)) = ||u(t)||3, the running (or inte-
grated) cost is positive for a non-zero control signal. The
corresponding cost function is given by the control energy

T
MM:AHWMM (19)

The outlined optimal control problem aims at finding the
control signal u*(t) that is associated with the smallest

2To adhere to the standard notation in control theory, we use
m to denote the dimension of the vector space associated with the
control signal u(t). Therefore, it is important to distinguish m
from the number of epochs.
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control energy and satisfies the constraint (17). That is,
u*(t) = arg min,, ;) Erfu] . (20)

subject to the constraint (17).

Using Pontryagin’s maximum principle (Pontryagin, 1987),
a necessary condition for optimal control, we can find the
control that satisfies Eqs. (17) and (20) by minimizing the
control Hamiltonian

H(a(t), ult), A1), £) = (&) F(t), u(t) ) + [lu(®)]3,

2
at every time point ¢. The time-dependent components of the
Lagrange multiplier vector A(t) € R™ are called the adjoint
(or costate) variables of the system (Speyer & Jacobson,
2010; Bertsekas, 2012).

5.1. Neural ODE controllers

While Pontryagin’s maximum principle provides a neces-
sary condition for optimal control (Pontryagin, 1987), the
Hamilton—Jacobi—Bellman equation offers both necessary
and sufficient conditions for optimality (Zhou, 1990; Bell-
man & Dreyfus, 1962). Nonlinear optimal control prob-
lems are usually solved through indirect and direct numer-
ical methods, and recently transformation methods have
been proposed to convert non-linear control problems into
linear ones (Kaiser et al., 2021). Indirect optimal control
solvers involve different kinds of shooting methods (Oberle
& Grimm, 2001) that use the maximum principle and a
control Hamiltonian to construct a system of equations that
describe the evolution of state and adjoint variables. On
the other hand, direct methods involve parameterizing state
and control functions and solving the resulting optimiza-
tion problem. Possible function parameterizations include
piecewise constant functions and other suitable basis func-
tions (Bock & Plitt, 1984). Over the past two decades,
pseudospectral methods have been a successful approach to
solving nonlinear optimal control problems, with applica-
tions in aerospace engineering (Gong et al., 2006). How-
ever, it has been shown that certain pseudospectral methods
are incapable of solving standard benchmark control prob-
lems (Fahroo & Ross, 2008). Here, we parameterize and
learn control functions u(t) using neural ODEs wy(t) with
parameters 6 € RN (Asikis et al., 2022; Béttcher et al.,
2022; Bottcher & Asikis, 2022). The boundary value prob-
lem (17) hence becomes
T = f(.’L'(ﬁ),’u,g(t),t) )

2(0)=xz¢, «(T)=z". (22)

Before applying EKI to optimal control problems, we have
to adapt both the underlying inverse problem and ensemble
iterations. Recall that the standard EKI algorithm as sum-
marized in Section 3 aims at finding a solution to the inverse

problem (1) by minimizing the functional

I~ (y=GO)I3 - 23)

DN =

2(0:9) = 3 ly-GOI: =

To account for the additional regularization term in optimal
control problems, we extend the inverse problem (1) using

z=F(0)+¢, (24)

where F: U xU — 2,2 = (y,0)T € Z, & = (&,&)T,

&~ N(0,%) and
2= (o ) 03)

The first element of the function F(0) = (G(6), H(6)) ',

G(6), describes the evolution of the controlled system state
x(t) associated with f(x(t), ug(¢),t) while the second ele-
ment, H(0), accounts for the control energy term Erp[ug].

As in the unregularized EKI method that we described in
Section 3, the evolution of the ensemble {6 }7_, associ-
ated with the inverse problem (24) is given by

6U) = —BOF(g)n ! (F(&U)) — z) ,  (26)
09 (0) = 0% , (27)

where the empirical cross-covariance matrix, BF'(6), and

the ensemble mean, F', are given by

J

BF(9) = %Z (9@ - é) ® (F(G(j)) - F) . (28)

Jj=1
and

J
_ 1 A
—— €)
FfJZF(HJ), (29)
j=1
respectively. The associated loss function is
~ 1
B(0;2) = S 1572(z = F(0))[% - (30)

We now identify y in z = (y,0) " with the target state x*,
and we set G(0) = x(T;0) and H(0) = Er|ug]'/?. This
yields the loss function

M Brlug). (3D

T * 1 *
B(f:2°) = S la(T:0) o2 + o

The above formulation of optimal control problems is simi-
lar in its mathematical structure to Tikhonov EKI that has
been introduced by Chada et al. (2020) to regularize the
parameter vector 6 while solving inverse problems using
EKI.
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Figure 3. Controlling linear dynamics with neural ODEs. The neural ODE controller uq(t) has been trained with BPTT and EKI in panels
(a,c) and (b,d), respectively. (a,b) Evolution of the system state x(¢) and control function u(¢). Dashed and dotted lines show solutions
x*(t) = sinh(t)/sinh(1) and u* (¢) = exp(—t)/ sinh(1) associated with the optimal control problem (32) and (33). We set zp = 0 and
T = a =0b=z" = 1in all simulations. Numerical solutions in panels (a,b) are indicated by colored lines. Different lines correspond to
different values of the control energy regularization parameter p € {0.001, 0.0025, 0.005, 0.0075, 0.01}. The neural ODE controller
ug(t) consists of three hidden layers with five exponential linear units (ELU) neurons each. Its total number of parameters is 106. In the
gradient-based optimization, we used the Adam optimizer and set the learning rate to n = 0.175. (c,d) The loss function i)(Hm; z*)asa
function of the number of training epochs m. For EKI, we set I' = 0.3, = 0.01 and show the minimum loss in the whole ensemble.
After three iterations, we set I' = 0.15. For BPTT, ensemble variances are not relevant and we thus optimize the loss function for which

r=r'=1.

5.2. Numerical experiments

We now examine if neural ODE controllers that are trained
with EKI are able to learn effective control functions. To
do so, we consider the optimal control problem that aims at
identifying

u*(t) = arg min,, ;) Er[u] (32)

subject to

t=ax+bu, x(0)==xzy, x(T)=zx". (33)

The mathematical structure of this optimal control prob-
lem is similar to that of control problems encountered in
regulating temperature within a room (Lewis et al., 2012).

We use Pontryagin’s maximum principle to derive u*(¢),
which we will assume to be the optimal control signal asso-

ciated with Egs. (32) and (33). This calculation yields

ae—at

w(t) = bsinh(aT) (v G4

* xoeaT) .

For a > 0, the magnitude of u*(¢) decays exponentially
with ¢ because the value of the system state of the uncon-
trolled dynamics & = ax can be influenced more effectively
for small values of ¢ than for large ones. The opposite holds
fora < 0.

The system state z(t) under the influence of v*(t) is

sinh(at)

*(4) = at
(1) = woe™ + sinh(aT)

(z* —xoe™) . (35)

Finally, the control energy associated with the optimal con-
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trol signal (34) is

o 672aT)($* _ IEoeaT)Q

262 sinh? (aT')

T
Brlu*] :/0 wi(ty?dt = 24
(36)

In the following numerical experiments, we consider the
optimal control problem (32) and (33) for which zg = 0
and T = a = b = ¥ = 1. The corresponding opti-
mal control signal, system state, and control energy are
u*(t) = exp(—t)/sinh(1), *(t) = sinh(¢)/sinh(1), and
Er[u*] = 2/(e* — 1) &~ 0.313. The neural ODE controller
ug(t) that we employ consists of three hidden layers with
five exponential linear units (ELU) neurons each. Its total
number of parameters is 106.

In the gradient-based optimization (i.e., for BPTT), we do
not use an ensemble of ANN parameters and thus minimize
the loss function (31) for which I' = IV = 1. We use the
Adam optimizer and set the learning rate to n = 0.175. We
evaluated different learning rates within the range of 0.1 to
0.2 and chose the learning rate that produced solutions that
closely resembled the optimal ones.

For EKI, the initial number of ensemble members is J = 2
and we set I' = 0.3,V = 0.01. After three iterations, we
add 20 new ensemble members and set I' = 0.15. We
observe that a small number of ensemble members yields
a good initial performance. Adding new ensemble mem-
bers helps EKI learn good parameters as the optimization
progresses. These observations on expanding the initial en-
semble are consistent with related work (Kovachki & Stuart,
2019).

To investigate how the control energy regularization param-
eter i [see Eq. (31)] affects the learned system state and
control function, we vary p within the range of 0.001 to
0.01 in the loss function ®(6; z*). The dashed and dotted
black lines in Fig. 3(a,b) represent the optimal solutions
a*(t) and u*(¢). Solid red lines show the control solutions
ug(t) learned by neural ODE controllers. Solid blue lines
indicate the corresponding system state evolution. As we
show in Fig. 3(a,b), variations in y produce variations in
the learned solutions of the optimal control problem. Fur-
thermore, the shown simulation results suggest that both
the gradient-based optimizer and EKI are capable of train-
ing neural ODE controllers to learn control functions that
closely approximate the optimal solution.

We calculated the MSE between the learned and optimal
control solution to compare the quality of the solutions
learned using BPTT and EKI. We find the the MSE is about
1-1.4 x 10~3 (BPTT) and 0.4-0.6 x 103 (EKI). The MSE
associated with EKI is thus about 50% of that associated
with the BPTT-based solution.

Figure 3(c,d) shows the loss function ®(6,,,; z*) associated

with BPTT and EKI as a function of the number of training
epochs m. Different loss trajectories correspond to different
control energy regularization parameters . After approxi-
mately 90-100 epochs, Adam-based optimization stabilizes
at certain loss values, although it may achieve small loss
values earlier in the training process. In contrast, EKI is
able to achieve similar results within only 4-5 epochs. In the
studied control example, EKI and Adam-based optimization
achieve about 1 and 10 optimization steps per second.

Our results show that EKI can account for a control energy
regularization term and be employed to solve an optimal
control problem in a gradient-free manner.

6. Discussion and conclusion

We studied the ability of ensemble Kalman inversion (EKI)
as an alternative method to backpropagation for training
neural ODE:s in system identification and optimal control
tasks. Ensemble Kalman inversion is a gradient-free opti-
mization method that solves general inverse problems within
a Bayesian framework. It only requires one to evaluate arti-
ficial neural networks in forward passes, making backward
passes unnecessary.

After providing an overview of the basic formalism of EKI,
we applied this method to system identification problems
associated with linear and non-linear dynamics. Our results
showed that EKI performs well with respect to gradient-
based optimization methods such as SGD and Adam. We
also applied EKI to optimal control problems that involve
an additional control energy regularization term to keep
the integrated square norm of the control signal small [see
Egs. (19) and (31)]. We reformulated EKI iterations to ac-
count for such a regularization term and applied this adapted
method to an optimal control problem with an underlying
linear vector field. The EKI approach that we use for solv-
ing optimal control problems is similar in its mathematical
structure to Tikhonov EKI (Chada et al., 2020).

In summary, our results suggest that EKI can serve as an ef-
fective alternative to gradient-based optimization techniques
in training neural ODEs for system identification problems.
Additionally, we extended the use of EKI to optimal control
problems, providing a new perspective on solving inverse
problems that arise in control theory using EKI.

There are several promising avenues for future research. For
instance, it would be interesting to examine EKI’s effective-
ness in higher-dimensional system identification and con-
trol tasks, and contrast its performance with other gradient-
based techniques that have been utilized in training neural
ODE:s (Chen et al., 2018; Ainsworth et al., 2021). Moreover,
future research may study the geometric properties of the op-
tima found by gradient-based methods and EKI, providing
insights into the similarities and differences between these
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optimization approaches. Such an analysis can broaden
our understanding of optimization landscapes (Bottcher &
Wheeler, 2022) and help guide the development of optimiza-
tion algorithms that are both robust and efficient. Addition-
ally, future work may focus on EKI’s capacity to train neural
ODE:s using noisy observation data or other types of obser-
vation data that make the use of gradient-based methods
more challenging. Finally, investigating the use of EKI in
training physics-informed neural networks and their corre-
sponding controllers (Mowlavi & Nabi, 2022) would be a
valuable area of investigation as well.
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