EVERYONE DESERVES RECOURSE: FEASIBLE RE-
COURSE PATHS USING DATA AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Decisions made using machine learning models can negatively impact individuals
in critical applications such as healthcare and finance by denying essential services
or access to opportunity. Algorithmic recourse supplements a negative Al decision
by providing rejected individuals with advice on the changes they can make to their
profiles, so that they may eventually achieve the desired outcome. Most existing
recourse methods provide single-step changes by using counterfactual explanations.
These counterfactual explanations are computed assuming a fixed (not learned)
distance function. Further, few works consider providing more realistic multi-step
changes in the form of recourse paths. However, such methods may fail to provide
any recourse path for some individuals or provide paths that might not be feasible,
since intermediate steps needed to reach the counterfactual explanation may not
be realizable. We introduce a framework for learning an optimal distance function
and threshold to compute multi-step recourse paths for all. First, we formalize the
problem of finding multi-step recourse paths. Given a set of feasible transitions, we
propose a data-driven framework for learning the optimal distance and threshold
for each step with PAC (Probably Approximately Correct) guarantees. Finally,
we provide a data augmentation algorithm to ensure that a solution exists for all
individuals. Experiments on several datasets show that the proposed method learns
feasible recourse paths for all individuals.

1 INTRODUCTION

Machine learning (ML) models are increasingly being used for algorithmic decision-making in high
stakes applications. Hence, when individuals are adversely affected by these decisions, the provision
of transparent explanations for the negative decisions becomes paramount. For example, consider the
scenario where credit line applications of bank customers get denied. The imperative for transparency
and explainability is further underscored by regulatory mandates such as the Equal Credit Opportunity

Act (ECOA), the Fair Credit Reporting Act (FCRA) ( R ), the "Right to Explanation’
enshrined in the EU General Data Protection Regulation (EU-GDPR) ( , ),
and the U.S. AI Bill of Rights ( , ).

These explanations often take the form of sequential steps aimed at achieving desired or favorable
outcomes for affected users. Such recommended steps represent algorithmic recourse, and provide
users with a pathway to address adverse decisions by gradually changing their profile to one that
most likely receives the positive decision. Single-step recourses frequently rely on counterfactual
explanations (CFEs), which propose changes to the input data that would lead to a different decision
outcome ( , ). However, recent research has highlighted the limitations of single-
step recourses, advocating instead for multi-step recourse paths towards favorable outcomes (

, ). It is imperative that such recourse paths remain
reahstlc meamng they should be both feasible and actionable ( , ), in order to
effectively assist end-users. Furthermore, algorithms designed to provide realistic recourse paths
should be able to provide recourse for every individual i.e., realism constraints should not come at
the cost of no recourse for some individuals.

Figure 1 provides a demonstrative example for the need for multi-step recourse paths for all. In-
dividuals represented in red are assigned the negative outcome by a given machine learning loan
classifier, and recourse paths need to be found for them. Finding counterfactual explanations and



. Example point with an identified recourse path Example point for which no recourse path is found
[for distance threshold T = 0.07, prior to augmentation] ~ ®

—— Recourse path Augmented point
- Infeasible recourse path, for large T

s Unfavorably classified points
« Favorably classified points
—— Decision boundary

TN

cash doposit amount

X "y cash deposit ameunt
(a) Counterfactual Explanation (b) FACE

Figure 1: Illustration of a loan classification task with two features: cash deposit amount (X1) and debt amount
(X2), with normalized values for each feature. The three plots show three different methods to provide recourse.
(a): An example of providing a counterfactual explanation. While a recourse path is found, the recommendation
provided can be infeasible since the change in cash deposit amount is huge. (b): An example of a success and a
failure of a path-based algorithm. Given a particular value of the threshold 7 = 0.07 on the distance between
the original point and the next point in the path, connecting points that have distance within this threshold can
help find a recourse path for the starred point, but not for the boxed point (the threshold is too low). If, on the
other hand, a high value of threshold is chosen (or equivalently a counterfactual explanation is found), then more
points may receive recourse, but such recourse is likely to be infeasible. (¢): Our method learns the optimal
distance and threshold, and then augments to allow for recourse paths to be constructed for points that did not
receive a recourse path.

suggesting the line joining these as the path may lead to infeasible transitions, especially when the
distance between the input and counterfactual is large (dashed line in 1(a)). In the example shown,
the selected individual requires changing their cash deposit amount exorbitantly Another approach
can be to define paths based on consecutively finding nearby md1v1dua1s in the training set, and
moving in the direction of the boundary ( , ), as shown in
1(b). However, these methods depend on a predefined dlstance functlon and a threshold parameter,
which are not learned. If the distance between two points exceeds the threshold, then a transition is
infeasible. Setting this distance threshold to a large value is equivalent to finding a nearest neighbor
counterfactual. Setting this threshold to a small value results in no recourse for some individuals
(boxed point in 1(b)), since it might be impossible to keep expanding the path by finding nearby points
within the distance threshold. This is especially problematic in settings such as the loan classification
task, where in practice such method would not provide any recourse to some individuals.

This work introduces a distance function and threshold learning framework, combined with an
augmentation technique to provide feasible recourse paths for every individual. The method is
model-agnostic and only requires access to a classifier’s prediction probability output. Given a set of
feasible transitions, we are able to learn a near-optimal distance function and threshold, that closely
approximate the true feasibility relationship for transitions. Using this learned feasibility relationship,
we provide a data augmentation technique that creates a recourse path for every individual that
initially received the negative outcome. This is shown in 1(c). The key characteristics of such a
path are 1) all intermediate transitions of it are more feasible and 2) the final point in it receives the
positive outcome of the given classifier. Figure 1 (b) shows a path based on our approach.

Our paper is structured as follows: in Section 2.2 we address the problem of learning feasible
transitions. For this problem, we give a hypothesis class containing distance functions and thresholds,
for which we prove PAC learnability; we show a bounded VC-dimension and an efficient Empirical
Risk Minimization (ERM) algorithm. In Section 2, we propose an augmentation algorithm that can



provide a feasible recourse path for every negatively affected individual and provide convergence
guarantees under certain assumptions. Finally, Section 3 contains our experiments on one synthetic
dataset and three real datasets. Experiments demonstrate that our method can efficiently provide
feasible recourse paths for all. To the best of our knowledge, this is the first work addressing the
learning of distance functions and thresholds in a multi-step recourse path setting. We also provide a
discussion section on how our method fits in the recourse literature.

1.1 BACKGROUND AND RELATED WORK

For a literature overview, ( s ) provide various definitions, formulations, and solutions
to recourse, and highlight connections to other challenges like security, privacy, and fairness. Here,
we discuss the methods most relevant to ours.

Counterfactual explanations as recourse: A common approach in literature is to treat counterfac-
tual explanatrons (also known as contrastive explanatrons) as recourse-by-example (

, ). Yet, recent work has highlighted the
hmrtatrons of counterfactual explanatrons for algorithmic recourse, emphasizing the need to consider
causal relationships between features ( s ; R ).

The counterfactual-based approach when considered in its simplest form (identifying a minimally
distant counterfactual) relies on strong assumptions. Indeed, consider an individual who is subject to
an unfavorable Al prediction and who is given an example of another individual (real or synthetic)
as a ‘successful counterpart’ and a blueprint for future improvement. For such a recourse to be
helpful or reliable, one must assume that the suggested counterfactual data point is plausibly a “future
version” of the original rejected individual. This assumption is not generally true, as the algorithms
that identify a counterfactual typically only enforce proximity and sparsity between the counterfactual
and the original point. These methods neither specify the concrete actions needed to attain the
counterfactual state, nor do they consider causal process that governs how features change jointly
over time. To assert that a counterfactual is likely or plausibly achievable for the original point, one
solution is to use causal modeling, but as we detail later, this is difficult in real settings. Another
approach is to rely on additional safeguards to ensure that a counterfactual might be realistically
achievable. Path-based methods, which our solution is an example of, aim to provide such safeguards.

Causality-aware recourse: How can we make sure that a given positively classified point (i.e., a
counterfactual) represents an achievable state for a given initial point? The most principled approach
is to deploy causal reasoning. Yet, methods that take this route have to grapple with prohibitive
complexity of accurately modeling causal relationships on multivariate data.

In this line of work, experiments are typlcally limited to synthetic data on a few Varrables suggesting
limited apphcabrhty of these methods in critical real-life settings (

s ; s ). Furthermore, deploying
the machinery of do—calculus ( , ) requires starting with a proposed intervention, and hence
the methods for causally aware recourse must comb through large sets of possible changes that a
person might enact, in order to then generate ‘feasible’ samples from each of the counterfactual
distributions for each intervention. This is not only computationally expensive, but also non-intuitive,
as ideally we would like to check feasibility of an identified target point, and not the other way
around.

A different approach focused on providing recourse for any differentiable machine learning-based
decision-making system is in ( , ). The method relies on modeling the underlying data
distribution or manifold, but is not applicable to gradient-free models, which are commonly used in
critical settings such as healthcare and personal finance.

Path-based recourse: In its minimal form, providing recourse might simply mean identifying a farget
point corresponding to a more favorable Al decision. To find a better target, several methods rely on
building paths — sequences of point transitions between the initial point and one of its counterfactual
points. This is known as path-based recourse. The existence of a path grants credibility to the end
point of the path as a feasible target state. Indeed, it is more likely that a target state is achievable if
we can describe a series of small (and hence arguably feasible) steps that lead to the target state.

Path-based approach to identifying recourse involves iteratively optimizing changes to an individual’s
features, while controlling the radius to which each change is constrained to ensure that each



transition is feasible. ( , ) introduce Stepwise Explainable Paths (StEP), a data-driven
framework offering users interventions to alter outcomes, with privacy and robustness guarantees.
A prominent example of a path-based recourse algorithm is FACE ( )—a
model- agnostlc method for generating counterfactual explanations. Similar work 1ncludes (

, , ). Despite its many advantages, existing path-based methods suffer
from two key shortcomings: a) if the distance threshold used to constrain the search for each ‘next
step’ is too large, recourse path may involve transitions that are either costly, unlikely, or infeasible
and b) if the distance threshold is small, the algorithm may fail to find a path for some individuals

The strength of our work is in addressing the shortcomings of existing path-based methods. Mitigating
failure to provide recourse is of particular importance, as such failures potentially trigger fairness
concerns. Consider data collected under racial or gender-sensitive selection bias. If members of a
certain demographic group are under-represented in either data class, it is likely that fewer group
members will receive a path to recourse, as FACE and similar algorithms rely on density to identify
suitable transitions. In this work, we take a position in asserting that everyone deserves recourse.

2 ALGORITHMS AND THEORETICAL RESULTS

2.1 FORMAL PROBLEM DEFINITION

In our recourse setting, individuals are represented by feature vectors from some feature space Z.
We are given a set of individuals V' C Z, and a trained classifier f : Z — [0, 1] together with
some threshold « € (0,1). An individual x € Z receives the positive outcome of the classifier iff
f(z) > «, and the negative outcome iff f(z) < a. We define V,, = {z € V| f(z) > «} and
V.. ={z € V| f(z) < a} to be the positive and negative individuals of the input set V respectively.

The goal of our problem is to provide actionable recourse to individuals in V,,. For an individual
x, we define actionable recourse as a path of feasible transitions = x1 — X2 — T3 — ... — Xy,
where x; € 7 for all 4 € [k, the transition z; — x;,1 is feasible and relatively “easy”, and xj is the
first positive profile (f(xx) > «) in the sequence. The recourse interpretation of the above path is
that the individual can gradually change their profile, starting from z, and consecutively making the
feasible change from x; — x;11 for all i € [k — 1], they can reach a positive profile xy.

We assume that we are given a “distance” function d : 72— R> and a threshold 7 > 0. Then,
x +— y is feasible iff d(x,y) < 7, under the interpretation that the larger d is the more dissimilar
the two individuals that are compared. Note that we do not require d to be a metric. For example,
when d is not symmetric we capture directional feasibility;  +— y might be feasible while y —
is not. To capture how easy a feasible transition is, we assume that we are given a weight function
w:I?— R>o. For a feasible « +— y, the larger w(z, y) is the more difficult the transition. This
work addresses two problems:

The Problem of Learning (d,7): Prior works assume explicit knowledge of d and 7 to define
feasible transitions. In our work, we show how we can explicitly learn d, T so that we approximate
the ground-truth transition feasibility function as optimally as possible.

The Augmentation Problem: Finding feasible recourse for = € V), corresponds to finding a path
P, ={x =uzy,29,23,...,x} forsome k > 1, such that z; € V foralli € [k], d(x;,z;11) < 7 for
all i € [k — 1] and yy, € V,,. However, this might not always be possible. For that reason, we want
to augment V' by adding a new set of individuals U C Z, such that it is always possible to find a path
P, ={z=uz,29,23,...,x} forsome k > 1, withz; € VUU foralli € [k], d(x;,z;11) < 7 for
alli € [k — 1] and yy, € V,, U Up, where U, are the individuals of U receiving the positive classifier
label. We also want the weights w(x;, x;+1) for consecutive profiles to be as small as possible.

2.2 LEARNING FEASIBLE TRANSITIONS

Leth* : 7% — {0, 1} be the ground truth function that determines feasibility of transitions, i.e., for
any z,y € Z we have h*(x,y) = 1if 2 — y is feasible, 0 otherwise. Let

H = {hdﬂ' = ]l{(x,y)EIQ | d(m,y)ﬁ‘r} | deDand T € Rzo} (1)



Algorithm 1 Computing the ERM classifier h for bounded D
Input: D and S = {(z;,v:, h*(zi,y:)) | i € [m]}.

1: ml < oo
: for each d € D and each 7 € {d(x;,y;) | i € [m]} do

if Ls(hd,q—) < ml then

h < hgr, ml < Lg(h)

end if

end for

A

>

where D is just a set of “distance” functions from Z? to R>q. Given D as the set of “distance’
functions we are interested in, 7 is a hypothesis class, whose individual hypotheses are parameterized
by d (the specific distance function they use) and 7 (a threshold). Then, each such hypothesis hg, -
returns 1 for supposedly feasible transitions and 0 otherwise, and is of the form

1 ifd(z,y) <7
har(2,y) = {O otherwise

For any h € H and (z,y) € Z2, let £(h, z,y) be the 0 — 1 loss function, i.e.

1 if h(z,y) # h*(z,y)
(h = ’
(h,,y) {0 otherwise
Also, let L(h) be the expected loss of h, where the expectation is over randomly drawing two individ-
uals x, y from Z according to the data producing distribution; L(h) can be viewed as the real loss of

h. In addition, for a training set S that contains m labeled i.i.d. sampled pairs (2t 9, h* (2%, '), we
define the empirical loss of classifier h as Lg(h) = >0, £(h, 2", y").

We want to choose d € D and 7 such that L(hg, ) is as small as possible. Let h = arg min, 4, Ls(h)
be the empirical risk minimizer (ERM) of S. We call p-ERM, with p > 1, a h € H such that

Ls(h) < p- Lg((h)). Towards our goal, we use the following fundamental theorem.

Theorem 2.1 (( , ). Let H be a hypothesis class, and let €, €
(0,1) be any desired accuracy and confidence parameters respectively. Let V C be the VC-dimension
of H'. Let S be a training set with at least O(Vcti;%%) training examples and h a p-ERM of S.
Then, with probability at least 1 — § we have L(h) < p - minpey L(h) + O(e).

What the above theorem says, is that the p-ERM of the training set .S approximates well the best
hypothesis of H with high probability, provided that the training set is large enough. For this theorem
to be applied, V' C needs to be bounded. For a definition of VC-dimension see (

, ). In what follows we show a couple of examples of hypothesis classes with bounded
VC-dimension, where a p-ERM is also efficiently computable.

2.2.1 THE CASE OF BOUNDED D

We first prove that for our hypothesis class as defined in (1), V'C'is bounded as long as | D| is bounded
(user-defined fixed and finite set D). Specifically, V' C' depends on |D| in an inverse exponential way,
which makes the required sample complexity highly practical in |D|.

Theorem 2.2. Let V C be the VC-dimension of the hypothesis defined in (1). If |D| is bounded, let N

D| < 2. Then, VC < N.

be the smallest integer such that

We now show that the ERM classifier i can be computed efficiently in this case (we get an p-ERM
with p = 1). Details are provided in Algorithm 1.

Theorem 2.3. The classifier h computed by Algorithm I is an ERM when D is bounded.

Combining theorems 2.1, 2.2 and 2.3 proves the following, which essentially says that an accurate
feasibility classifier can be computed efficiently for the bounded D case.

'The VC-dimension is a measure of learning complexity for a hypothesis class



Algorithm 2 Augmentation Algorithm
Input: Sets V, V,,, V,,, functions d, f, w, parameters o, 7, .
1: for each z € V,, do

22 U<«+0

3:  Initialize recourse path P, + [z].

4:  while True do

5: Let 2’ be the end point of the path P,.

6: g < argmax,cyyy {m +(f(y) — f(zl))}

7: ifd(z',q) > 7 orq € P, then

8: q ¢ argMaxye7\ (UUV) st {m + (fly) — f(x’))} and U <+ U U {q}

d(z’,y) <t

9: end if o

10: Extend P, by appending w as its new end point.
11: if f(¢) > « then

12: Save P, as the recourse path of x and break the while loop.
13: end if

14:  end while

15: end for

Theorem 2.4. Let H be the hypothesis class defined in (1) with bounded D, and let €,6 € (0,1)

be any desired accuracy and confidence parameters respectively. Let N be as defined in Theorem

1 -
2.2. Let S be a training set with at least O( N+51§g 2) training examples. Then h can be efficiently

computed, and with probability at least 1 — § we have L(h) < minpey L(h) + O(e).

2.2.2 THE CASE OF A MORE STRUCTURED AND UNBOUNDED D

We now study a more flexible scenario, where D does not need to be finite. Here we assume that
each « € 7 has n features. We use Z; to denote the domain of feature j € [n]. For every feature
j € [n],let f; : I]2 — R be a given comparison function for that feature. In other words, f;(a, b)
captures the difficulty in changing feature j from value a € Z; to value b € T;; the higher f;(a,b) is
the more difficult/improbable the change. Let also g : R>o — R be a given strictly monotonically
increasing function. For any 3 € RZ, we define the similarity/comparison function:

dule.y) =9( DB filapyy). forayel @)
j=1

Note that this form of distance/comparison function encapsulates a plethora of widely used distance
functions, such as (weighted) LP-norms. Now, the set D from (1) will contain all functions that can
be defined by any 3 € R%, and learning a function from H is equivalent to learning (3 and 7.

Theorem 2.5. The VC-dimension of H is at most 2n + 1.
Theorem 2.6. An O(1)-ERM can be computed efficiently, when D contains all functions of form (2).

Combining theorems 2.1, 2.5 and 2.6 proves the following; an approximately accurate feasibility
classifier can be computed efficiently when distance functions are defined as in (2).

Theorem 2.7. Let ‘H be the hypothesis class defined in (1) with D containing all functions of the

Sform 2, and let €,6 € (0,1) be any desired accuracy and confidence parameters respectively. Let S

n-+log % )
€2

be a training set with at least O( training examples. Then a hypothesis h can be efficiently

computed, such that with probability at least 1 — 6 we have L(h) < O(1) - minpey L(h) 4+ O(e).

2.3 THE AUGMENTATION ALGORITHM

The algorithm begins by sequentially considering each point of V,,. For each z € V, it tries to
construct a path to some positive point by iteratively expanding the end of the path. Initially, the path
is just x. If the already constructed path is from x to ' (2’ being the end point) then we try to expand



as follows. At first, we look to see if there is a point in the current set of available points V' U U that
can serve as a feasible and easy transition from z’, while encouraging this point to be closer to the
boundary ?. Hence, we solve the next optimization problem:

A

q:argmax{i—i— fly) — f(a }
yevou \w(z',y) ( @) ( )>

If d(«’, q) < 7 and ¢ is has not been visited before in the path, we expand the path by adding g as the

new end point. If this is not the case then we solve the slightly different optimization problem shown

below, which tries to find a feasible transition to a new ¢ ¢ V U U, and then we augment U with it.

q= argmax {#, +(fy) - f(x’))}
yeZ\(VUU) s.t. w(z’,y)
d(z’y)<T

The first term, i.e., A\/w(2’, y), guides the optimizer towards choosing transitions that are easy (have
small weight w(z’,y)). In addition, A > 0 is a hyperparameter that controls how important this term
should be. The second term, i.e., f(y) — f(z’), forces the optimizer to move closer to the decision
boundary of the classifier f, by maximizing the difference between f(y) and f(2’); the higher the f
value of a point is the closer it is to receiving the positive outcome. At last, the reason we decided to
first look for an extension point in U U V instead of looking for a fresh point, is because we want to
utilize the given dataset as much as possible, since solving the second optimization problem is more
time consuming and might give very realistic feature profiles.

On a high level, including f(y) — f(z’) in the maximization problem is exactly what helps the
algorithm converge. In the ideal case, the points of the path should consecutively move closer to the
decision boundary; the f values should consecutively increase along the path, until we finally hit the
classification threshold «. This could very well be the case in the absence of the first term. However,
the presence of the first term might lead some iterations of the algorithm to prioritize small weights in
the chosen transitions. By carefully tuning A in our experiments we make sure that the algorithm will
converge almost always, even if we have iterations where the f-value of consecutive points decreases.
Hence, recourse is achieved for everyone. The full details of our approach are in Algorithm 2.

Finally, we provide a formal convergence scenario for our algorithm.

Theorem 2.8. When for all x € T, there existsy € T\ V s.t. f(y) — f(z) > —2—— and the

ming,, w(a,b)’
algorithm only chooses fresh points (not in U U V') to expand paths, the algorithm always converges.

The proof is provided in the appendix.
3 EXPERIMENTAL EVALUATION

Datasets and models: We evaluate our method on one synthetic dataset generated using a causal
graph, and 3 real-world datasets. For details on how we generate the synthetic data see Appendix

A. The first real dataset we consider is PIMA ( s ), where the task is to predict if a
patient is diabetic. For predictors/features we use glucose levels, BMI, blood pressure, and insulin
. The second real dataset is UCI Adult ( " ), where the goal to evaluate if an

individual’s income is greater than or less than 50k. For predictors in Adult we use age, education,
capital gain, capital loss, and hours per week. Finally, we consider the HELOC dataset (

), where the goal is to evaluate the risk of performance for credit. We
choose external risk estimate, months since oldest trade, average months in file, revolving balance
divided by credit limit, and installment balance divided by original loan amount as predictors. For
each of the datasets, we train logistic regression models (note that our method is model agnostic
and only requires access to prediction probabilities). Additional experiments on two more model
classes (gradient boosting and neural networks) are provided in the appendix. Models are trained
and all experiments are run by first transforming the data using the minimum and maximum scalar
transformation. Details on model performance on the train and test set are provided in the appendix.

Feasible transitions data: For each dataset, a set of samples are chosen, and we generate labels for
whether a transition is feasible between each of these points using defined rules. Note that these rules

>This is encouraged but not enforced because some transitions might require moving away from the boundary
first. For example, becoming a student may reduce your income but eventually lead to a higher income



are varied to show the effectiveness of our approach. For details on how we generate the labels for
the synthetic dataset see Appendix A. For PIMA, we take the entire training set, and for each pair of
points label a transition as feasible if the L1 distance for each feature is below the standard deviation
for that feature. For Adult, we consider a thousand random samples, and consider transitions to be
feasible only if age, education and hours-per-week are increasing and capital gain and capital loss are
within a fifth of the standard deviation of their values in the data set. For HELOC we also take 1000
random samples, and we consider transitions to be feasible if the L1 distance for each feature is below
the standard deviation for it, the first three features are increasing and the last two are decreasing.
The % of the 1 label i.e., transition is feasible, in the pairs created for each set was 1) 11.31% for the
Synthetic Data, 2) 37.65% for PIMA, 3) 17.23% for Adult and 4) for 0.444% HELOC. We discuss
the creation and availability of this data in the discussion section.

Learning d, 7: In all datasets the set D from (1) contains 5 distance functions: L1, L2, Mahalanobis,
Cosine distance, and the Jensen-Shannon distance. We discuss the choice of these distance functions in
the discussion section. For Adult and HELOC, the functions also incorporate the natural monotonicity
constraints, since such constraints are intuitive. The way we implement this is by returning oo if the
monotonicity is violated. Finally, in all datasets we uniformly subsample 25% of the pairs described
in the previous paragraph as the training set of ERM.

Transition weights: For a transition between two individuals x, y we use the same weight function
as in ( , ). Let f, : T — R be a likelihood function that depends on the dataset
density p. Note that p is computed without the augmented points. Then the weight of the transition

from z to y is defined to be w(x,y) = fdéi’fj) , where d is the function chosen by ERM.
P\ T2

Augmentation Solver: To solve the optimization problem presented in Algorithm 2, the learned
distance functions and thresholds are used as constraints and Bayesian optimization is used. The
implementation has been taken from ( , ). To allow for any arbitrary constraints and
machine learning models (eg., non-convex decision boundaries), any metaheuristic optimization
algorithm can be used. Bayesian optimization is widely used and does not assume any functional
form on the target function, and is hence valuable for our problem. In each iteration, the evaluated
target function is line 6 from Algorithm 2. Number of iterations and number of initial points are
found using grid search. More details are provided in the supplementary material.

Evaluation of Recourse Paths: In order to evaluate each recourse method that we test, we use three
metrics. At first, let V,, be the individuals that initially received the negative outcome of the classifier,
and let d and 7 be the distance function and the threshold respectively, as computed by the ERM.

1. Validity score: For every x € V,,, let P, be its recourse path. Note that in the case of
counterfactual explanations | P,| = 2 (z and the computed counterfactual), and when using
FACE ( , ) we might even have P, = (). We define the validity v(P;) of
P, as an indicator variable that is 1 if P, # 0 and d(z,w) < 7 for every consecutive z, w €
P,, 0 otherwise. The validity score is then defined as validity VAL = ﬁ > owey, V(Pr).

2. Average Path Distance and Weight: For any recourse path P = {1, 29,..., 2}, we
define the average path distance and weight as d(P) = 1 Z;:ll d(x;,x;41) and w(P) =

% Zi—:ll w(l‘i, $i+1) respectively.

Comparison baselines: ( R ) offer a list of implementations for recourse methods.
However, most of them only provide single-step recourse paths. We compare to the only implementa-
tion that offers multi-step recourse paths ( , ), and also compare to finding the

nearest neighbor on the other side of the boundary (single -step) for completeness.

3.1 RESULTS

Results from distance function and threshold learning: In Table 1 we report the outcomes of the
ERM algorithm. Since ERM is inherently randomized (recall that we subsample 25% of the given
pairs) we ran the algorithm 5 times. In the table we report the mean and the standard deviation of all
important metrics across those 5 runs. The metrics under consideration are 1) the computed threshold,
and 2) the 0 — 1 error of the resulting feasibility function across the whole set of labeled pairs. We
also note that in every dataset, the chosen distance was consistent across all 5 runs.



Table 1: Outcome of ERM on the 4 datasets

[ Learned Distance | Mean Threshold | SD of Threshold | Mean Loss % | SD of Loss %

Synthetic Data | L2 | 0.208456 | 0.000138 | 9.231 | 0.00285
PIMA | L2 | 0228212 | 0.000958 | 20113 | 0.000003448
Adult | Mahalanobis | 4.236288 | 0.002453 | 3.0464 | 0.000821
HELOC | Mahalanobis | 12506612 | 0.022587 | 0.12582 | 0.000949
Metrics for the Synthetic dataset for different methods Metrics for the HELOC dataset for different methods
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Figure 2: Evaluation of recourse paths using our method, FACE, and CE. Higher validity is better and
lower distances and weights is better. Our method finds feasible (low distance and weights) recourse
for all (validity=1) while other methods cannot.

Results from augmentation: Recourse paths are generated for 50 random samples for all four
datasets. Figure 2 reports the metrics for our method on the four datasets, and we compare against
two baselines: FACE, and nearest neighbor counterfactual explanations (CE). For FACE, a graph
is constructed for each of the datasets with the distance function and threshold chosen for the
graph as the same distance function and threshold that is learned using our method. The nearest
neighbor counterfactual is the closest point to the point that achieves a positive outcome, and the
path between these two points is evaluated. The choice of A\ for each dataset is provided in the
Appendix A.1.Example recourse paths are provided in the appendix.

We note that across all datasets, both FACE and CE are unable to find valid paths for a set of points.
This issue is especially exacerbated in the synthetic dataset and the HELOC dataset, hence these
methods would not be able to provide recourse to all. Instead, our method always finds a valid path
to recourse for every individual i.e., VAL = 1. The average distance and weight (lower is better)
are consistently worse for the CE method. Our average distance and weight, both of which can be
interpreted as measures of how “easy” the transitions in the path are, are comparable to FACE across
datasets, demonstrating that the augmentation does not lead to substantially costlier paths.?

Variation in \: The value of )\ determines our algorithm’s convergence. A larger value corresponds
to more steps but with lower average distance and weight between steps. This is demonstrated in
figure 3, where we report 3 values of A for PIMA and the synthetic data. We report the evaluation
metrics, and additionally report the average path lengths and runtime, since A directly impacts these
measures. Choosing a larger A clearly leads to paths that are more “easy” (lower weights and lower
distance), but this comes at the cost of a large path length and computation runtime. For PIMA a
large lambda resulted in no recourse path for a few individuals (shown by validity being less than 1),

3The issue of not finding recourse is exacerbated when a point is isolated in a sparse region of the data. See
Appendix A.7 for an analysis of path validity by the FACE method as a function of data sparsity.



Results for varying A for the Synthetic dataset Results for varying A for the PIMA dataset
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Figure 3: Evaluation of paths using different A-s. The path length for the synthetic data has been
scaled down by a factor of 10 and the weights have been scaled up by a factor of 10, for readability.

but this is because we had to kill the execution since augmentation was happening in very small steps
(slow convergence). We highlight this to reflect on the need for an appropriate \.

4 DISCUSSION

On the availability and construction of feasible transitions data and choice of constraints:
Ideally, every end-user subject to a models decision should be able to pr0v1de constraints under which
they can obtain recourse, and existing methods such as ( , , ) can
include these in their optimization to find realistic recourse. However, havmg constraints for every
individual, especially in large-scale applications is challenging. While we show that our framework
is also applicable when provided a causal graph, often having access to complete or imperfect causal
knowledge ( , ) is also not viable, especially for large scale datasets.

Instead, our paper takes a data-driven approach where constraints for the path (to learn the distance
function and threshold) can be provided based on domain knowledge by practitioners (eg., in finance
and healthcare). For example, individuals can only increase their income by ten percent of their current
income. While other methods that provide algorithmic recourse, several of which are implemented in
( , ). can accommodate for these constraints, certain constraints can lead to all
these methods returning no recourse (eg., allowing income to only increase by ten percent might not
provide recourse to low income individuals). Instead, our method still allows for multi-step recourse
paths through augmentation, ensuring that a recourse path is provided.

On the choice of distance functions for algorithmic recourse: Seminal methods for counterfactual

explanations ( ; , ; , ; , ) and
several others 1mplemented in ( , ) use some [, norm to generate counterfactual
explanations. Hence, we consider the L1 and L2 distance functions. ( s ) show

that using the Mahalanonbis distance can capture feature interactions. Cosine and Jensen-Shannon
distances are not widely used in the recourse literature, however, they show that distance functions do
not need to be metric for our method to work. Other distance functions can also easily be incorporated
into our proposed method for distance function and threshold learning.

5 CONCLUSION

We studied the problem of providing actionable recourse by suggesting multi-step transitions (recourse
paths) to individuals. We presented an augmentation algorithm that empirically provides recourse for
all. To strengthen the feasibility of recourse, we are the first to study the problem of PAC learning
of the ground-truth transitions through a hypothesis class of distance functions and thresholds. We
see two main limitations in our work which are opportunities for future work: 1) for the hypothesis
class in (1), we can studying more expressive feasibility functions, e.g., feasibility measures using
casual constraints and 2) learning feasible transitions involved label generation ; future directions
will include using human annotators for labeling transitions.
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A APPENDIX

A.1 DETAILS ON DATASETS AND MODELS

Table 2 provides datasets and models used, along with optimization parameters used to generate the
results in 2. All datasets have been randomly split into train and test in a 75:25 ratio.

A.2 DETAILS ON BAYESIAN OPTIMIZATION

Bayesian optimization works by constructing a posterior distribution of functions (gaussian process)
that best describes the function you want to optimize. As the number of observations grows, the
posterior distribution improves, and the algorithm becomes more certain of which regions in parameter
space are worth exploring and which are not. Details on the method and implementation can be found
here ( ).

The empirical convergence of our method depends on the chosen value of A (as shown in theorem
2.8). In general, we observe that larger learned distance thresholds (Adult and HELOC) result in
larger optimal A. The tried \ values range between 0 and 0.2. Beyond those values, all methods do
not converge to a solution due to very small steps towards the decision boundary. The number of
iterations and number of initial points for bayesian optimization are varied from 10-100 in steps of
10, and the value that returns the lowest distance average.

Table 2: Details on datasets, models, and parameters

| Samples | Train Accuracy % | Test Accuracy % | B.O. initial points | B.O. iterations | X

Synthetic Data | 100 | 96.67 | 96.48 | 10 | 10 | 0.000145
PIMA | 768 | 76.12 | 75.23 | 50 | 50 | 0.000145
Adult | 42556 | 81.20 | 81.04 | 100 | 10 | 0.1
HELOC | 3614 | 71.39 | 71.59 | 50 | 50 | 0.1

A.3 SYNTHETIC CAUSAL DATA GENERATION

We experimented on causal data to test the algorithm which learns the distance threshold 7 and the
regularization parameter A from the feasibility labels. Below, we describe the data generating process.

N =20000
v € NN(O7 04)
W ~N(0,1)
Z ~N(0,1)
z s . . 1
D ~Binomial(N,p = W)
. . 1
. : X ~Binomial(N,p = W)
Y =sigmoid(2+«Z +D + X +¢)

Figure 4: Directed Acyclic Graph (DAG) and the structural equation model used to generate the
distribution of ‘origin points’ in our synthetic causal dataset.

First, we generate N = 20 000 samples according to the data-generating process described in
Figure 4, to obtain Q = {(X” D: A Vi N

origin’ ~origin’ “origin’ * origin

Then, we define feasible and infeasible transitions f(Xorigin, Dorigin, Xtarget, Dtarget) € {1,0}
using monotonicity constraints on X and D:

1if Xta'r‘get >= Xorigin and Dtarget <= Dorigin

f(XOrigin7 Dorigina Xtarget; Dtarget) = {0 otherwise
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We then proceed, for each initial point, to sample ns; = 5 feasible and ns; = 5 infeasible points
from the counterfactual distirbution under interventions we defined as feasible and infeasible. Upon
sampling 5 values of (X,D,Z,Y) corresponding to feasible interventions, we impose an additional
constraint to further re-brand these cases: we will call them feasible if in addition to satisfying the
monotonicity constraints defined by f, the resulting change in Z is not too large.* The process is
described in Algorithm 3.

Algorithm 3 Synthetic Data Feasibility Labeling Algorithm
Input: Set ), function f, parameters 7y, n,.

1: for each data point w € Q) do
2:  for feasibility label p € {0,1} do

3 Nsampled < 0
4: while ng4mprea < ns do
5: Sample (thrget; thrget) S~t‘~ f(Xorigin7 Dorigin7 Xtargeta Dtarget) =
6: (tha'rgeh Diltargeﬁ Ztlargeh Yrttzrget) ~ PdO(XﬁXta,rgef,7D—>Df,a,rgaf,) (X? D’ Z7 Y)
7: Nsampled — Nsampled +1
8: if o == 1 {for ‘feasible’ labels} then
9: ~ 1if |Ztarget - Zorigin‘ < Tf
’ 0 otherwise
10: end if
11: end while
12:  end for
13: end for
For step 6 of the Algorithm 3, we used the dowhy ( , ) package fitted to the

DAG in Figure 4. As the value of parameter that controls the additional constraint on feaisbility labels
in Step 8, we used 7y = 0.1

A.4 PROOFS FOR THEOREMS

Proof of Theorem 2.2. Consider any set of N pairs of individuals p; = (2%, y*) € Z?, where i € [N].
Any “distance” function d : Z? — R explicitly induces an ordering m4(1), 74(2), ..., ma(IN) of
[N], such that d(pr, (1)) < d(Pr,(2)) < - -+ < d(pr,(n)); by assuming some infinitesimal noise on d
all ties are broken and the ordering is unique. The functions d € D can produce at most |D| such pair
orderings. For each ordering produced by a d € D, you can have N + 1 different labelings depending
on the chosen threshold 7. Hence, at most |D|(N + 1) different labelings that can be produced by the

hypotheses of 7. On the other hand, the total number of labelings is 2V 1. Given that |D| < %,

there must be at least one labeling that cannot be produced. Therefore, VC' < N, since any set of N
pairs cannot be shattered. O

Proof of Theorem 2.3. For a given d € D, order and re-index all (z°, y%, h*(z*,y")) € S such that
d(zt,yt) < d(z?,y?) < ... < d(z™,y™). Itis clear that trying a threshold that is between two
consecutive distances in the above ordering will not affect the empirical error, and therefore it suffices
to only focus on the d(z?, y*) as values for the threshold 7. O

Proof of Theorem 2.5. Consider any set of 2n + 1 pairs of individuals p; = (z%,3%) € Z2, where
i € [2n 4 1]. Assume w.l.o.g. that # can shatter the set of pairs and can produce all possible
labelings. For notational convenience, we use ¢; = f; (], y;). At first, for each feature j € [n], we

are interested in the (potentially) two pairs i/,,,,,%},;, € [n] such that i/, = arg max;c, ¢} and
i i = argmincp, cb. Let M = {i € 2n+ 1] | 3j € [n] withi = i, Vi = i, }. Clearly,

|M| < 2n, and hence by the pigeonhole principle there exists i* € [2n + 1] such that i* ¢ M.

*While using the do- calculus can be thought of as requiring that a resulting data point is plausible, this
second-order feasibility constraint on the feature Z can be understood as additionally requiring that the change
is not too costly.
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Now consider a labeling ¢ : [2n + 1] — {0,1}, such that ¢(p;+) = 1 and £(p;) = 0 for all
i € [2n + 1]\ {i*}. Regardless of the chosen threshold, # can only produce this labeling if there’s a
Be € RZ, such that dg, (pi+) < dg,(p;) forall i € [2n + 1]\ {¢*}. For that to be true, since g() is
strictly increasing, the following 2n inequalities must hold:

(e =) By <0, Vie[2n+1]\{i*} 3)

j=1

Since i* ¢ M, for each j € [n], there exists at least one coefficient c; — cé- > 0 and at least one

coefficient ¢! — ¢ < 0. This means that in a Gaussian elimination processes applied only to the
coefficients of the system, we can only use positive multiplicative factors that will not be altering the
directions of the inequalities. Therefore, for any feature j that we might choose, we will eventually
end up with an inequality of the form C - 8, ; < 0. The constant C’; is the one resulting from the
Gaussian elimination process. Since, 5&3 > 0 we thus have C’; < 0.

Now consider a labeling ¢ : [2n + 1] — {0,1}, such that #'(p;«) = 0 and ¢ (p;) = 1 for all
i € [2n + 1]\ {i*}. Regardless of the chosen threshold, # can only produce this labeling if there’s a
Be € RY such that dg,, (pi=) > dg,, (p;) forall i € [2n 4 1]\ {i*}. For that to be true, since g() is
strictly increasing, the following 2n inequalities must hold:

> (e =) By <0, Vie[2n+1]\{i"} )

j=1

Using the exact same analysis that led to C; < 0, we can see that in this case we will have C; > 0.
Therefore, H cannot simultaneously achieve both of the labelings ¢, ¢'. O

Proof of Theorem 2.6. Consider any given set S that contains m pairs (z°,y*), with i € [m]. Com-
puting an ERM classifier corresponds to finding 5 and ~y that satisfy as many of the following m
constraints as possible:

S - filah ) <, fori € m

Jj=1

This is because ¢ is monotonically increasing and we can set 7 = g(7y). Since, the values f; (J:;, y;)
are given constants, this is a linear system. Even though this problem is NP-hard (reduction to
MAX-SAT) there are efficient and very accurate O(1)-approximation algorithms for it (

, ) (best ratio achieved by an SDP approach and is 0.7846). O

Proof of Theorem 2.8. We claim that under the assumption of the theorem statement, the f() value
of all points along the path will be strictly increasing. We show this via induction.

* Induction Basis: For the second point of the path, the f() value will increase because will
apply the theorem hypothesis to the starting point of the path.

* Inductive step: Say that for our path so far the f() value is increasing. Consider the end
point z. For x there exists y such that f(y) — f(z) > A We now claim that y

ming,, w(a,b)”
cannot be in the path. If it is, the path contains a point with a f() value strictly larger than
that of . Therefore, since y is not in the path, the optimization problem will necessarily
pick y' with f(y') — f(x) > 0; if not we have f(y/) — f(x) + —2— <

w(y’,x)  mingp w(a,b)

Fy) = F@) + smtowan- .

A.5 EXPERIMENTS ON XGBOOST AND NEURAL NETWORK
Experiments are also performed on XGBoost and Neural network models for the PIMA Diabetes

dataset. The results are shown in 5. We observe a similar trend as in the results for the logistic
regression model.

15



Figure 5: Results on XGBoost and Neural network models for the PIMA Diabetes dataset

Table 3: Recourse path for a query in the PIMA dataset, compared to the CE method

Metrics for the PIMA dataset for different methods for an XGBoost model

Metrics for the PIMA dataset for different methods for a neural network model
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ours
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FACE
cE
ours

Validity Weight

PIMA Dataset

Validity

Distance
PIMA Dataset

Weight

| Glucose  BloodPressure  Insulin  BMI
159 66 0 30.4
Nearest Counterfactual 151 60 0 26.1
159 66 0 30.4
Ours 157.82 65.131 0 30.2
155.586 64.84 0 30.1
153.40 64.11 0 29.32
151.20 64.60 0 29.32
151.20 64.20 0 29.31
149.26 65.20 0 29.30

A.6 ADDITIONAL EXAMPLE RECOURSE PATH

Table 3 shows an example recourse path for PIMA. The first row in the table for both nearest
counterfactual and ours is the input point for which we are seeking to provide the recourse path.
FACE is unable to find a path for this individual. CE suggests a single step recourse path with drastic
changes in the values of each feature except insulin. Instead, our method provides a sequence of
smoother steps that lead to the positive outcome.

An additional example for a recourse path for the HELOC dataset is shown in Table 4.

Table 4: Recourse path for a query in HELOC comparing CE with our method. Here P(Y = 1)
refers to the probability of positive (desirable) classification, with scores corresponding to loan denial
highlighted in red, and approval qualifying scores in green. The feature names are abbreviared as
follows: ERE : ExternalRiskEstimate ; MSOTO : MSinceOldestTradeOpen ;

AF : AverageMInFile ; NFRB : NetFractionRevolvingBurden; NFIB : NetFractionInstallBurden

‘ ERE MSOTO AF NFRB NFIB P(Y =1)
Original point 68. 124. 51. 72. 73. 0.26
Nearest Counterfactual 75. 161. 67. 40. 75.
68. 124. 51. 72. 73. 0.26
Our path 75.7 152.7 774 64.3 62.8 0.48
83.4 181.3 1039  56.7 52.7

A.7 ANALYSIS OF VALIDITY FOR THE BENCHMARK METHOD (FACE)

Central to our contribution is the argument that, unlike our approach which guarantees recourse,
salient path-based algorithms may fail to provide recourse for some negatively classified data instances.
We therefore examine the relationship between dataset sparsity and the rate of successful generation
of a recourse path using FACE.

Figure 6 below demonstrates this relationship on the HELOC data. We sample k negatively classified
data instances from the training set. For each sample of k points, we run FACE algorithm and record
the percentage of instances for which FACE successfully identified a recourse path (all other instances
receiving no recourse). We further compute average pairwise Mahalanobis distance for the sampled &
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Validity of FACE, by sample size Validity of FACE, by sample density

° ° ° °
& 2 & >

°
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Mean validity
(% instances that received recourse,

averaged across 50 experiments)

Mean validity
(% instances that received recourse,
averaged across 50 experiments)

°
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25 35 50 75 Average pairwise distance
Number of negative instances sampled among the sampled negative instances

°
°

Figure 6: Validity (i.e., success rate) of the FACE algorithm on subsets of the HELOC dataset. Left:
as a function of the number of negative instances selected into the sample. Right: as a function of the
density of the sampled negative instances set. For points belonging to the sparse regions of the data,
FACE may not identify a recourse path.

points as a proxy for sample density. We repeat the experiment 50 times for each k. Additionally, we
exclude the successful paths of length two (consisting only of the initial point and its counterfactual),
such paths representing ‘lucky draws’ of negative instances that are already very close to the decision
boundary. The graphs report results averaged over 50 experiments.

It is important to note that even when the set of negative instances in the full dataset is dense, FACE
may fail to identify a recourse path for instances which are isolated in a sparse local region of the
data manifold. This is especially important since such sparse regions may represent individuals who
are underrepresented in the dataset, which in turn might be associated with membership in protected
social groups. It is known that sampling bias adversely affects various demographic groups Kokel
et al. (2023); Sonoda (2023). If membership in such a group is also associated with being in a sparse
region of the data manifold, failure of path-based methods might disproportionally affect members of
such groups.
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