
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EVERYONE DESERVES RECOURSE: FEASIBLE RE-
COURSE PATHS USING DATA AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Decisions made using machine learning models can negatively impact individuals
in critical applications such as healthcare and finance by denying essential services
or access to opportunity. Algorithmic recourse supplements a negative AI decision
by providing rejected individuals with advice on the changes they can make to their
profiles, so that they may eventually achieve the desired outcome. Most existing
recourse methods provide single-step changes by using counterfactual explanations.
These counterfactual explanations are computed assuming a fixed (not learned)
distance function. Further, few works consider providing more realistic multi-step
changes in the form of recourse paths. However, such methods may fail to provide
any recourse path for some individuals or provide paths that might not be feasible,
since intermediate steps needed to reach the counterfactual explanation may not
be realizable. We introduce a framework for learning an optimal distance function
and threshold to compute multi-step recourse paths for all. First, we formalize the
problem of finding multi-step recourse paths. Given a set of feasible transitions, we
propose a data-driven framework for learning the optimal distance and threshold
for each step with PAC (Probably Approximately Correct) guarantees. Finally,
we provide a data augmentation algorithm to ensure that a solution exists for all
individuals. Experiments on several datasets show that the proposed method learns
feasible recourse paths for all individuals.

1 INTRODUCTION

Machine learning (ML) models are increasingly being used for algorithmic decision-making in high
stakes applications. Hence, when individuals are adversely affected by these decisions, the provision
of transparent explanations for the negative decisions becomes paramount. For example, consider the
scenario where credit line applications of bank customers get denied. The imperative for transparency
and explainability is further underscored by regulatory mandates such as the Equal Credit Opportunity
Act (ECOA), the Fair Credit Reporting Act (FCRA) (Ammermann, 2013), the ’Right to Explanation’
enshrined in the EU General Data Protection Regulation (EU-GDPR) (Goodman & Flaxman, 2017),
and the U.S. AI Bill of Rights (House, 2022).

These explanations often take the form of sequential steps aimed at achieving desired or favorable
outcomes for affected users. Such recommended steps represent algorithmic recourse, and provide
users with a pathway to address adverse decisions by gradually changing their profile to one that
most likely receives the positive decision. Single-step recourses frequently rely on counterfactual
explanations (CFEs), which propose changes to the input data that would lead to a different decision
outcome (Wachter et al., 2017). However, recent research has highlighted the limitations of single-
step recourses, advocating instead for multi-step recourse paths towards favorable outcomes (Verma
et al., 2020; Venkatasubramanian & Alfano, 2020). It is imperative that such recourse paths remain
realistic, meaning they should be both feasible and actionable (Poyiadzi et al., 2020b), in order to
effectively assist end-users. Furthermore, algorithms designed to provide realistic recourse paths
should be able to provide recourse for every individual i.e., realism constraints should not come at
the cost of no recourse for some individuals.

Figure 1 provides a demonstrative example for the need for multi-step recourse paths for all. In-
dividuals represented in red are assigned the negative outcome by a given machine learning loan
classifier, and recourse paths need to be found for them. Finding counterfactual explanations and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(a) Counterfactual Explanation (b) FACE

(c) Ours

Figure 1: Illustration of a loan classification task with two features: cash deposit amount (X1) and debt amount
(X2), with normalized values for each feature. The three plots show three different methods to provide recourse.
(a): An example of providing a counterfactual explanation. While a recourse path is found, the recommendation
provided can be infeasible since the change in cash deposit amount is huge. (b): An example of a success and a
failure of a path-based algorithm. Given a particular value of the threshold τ = 0.07 on the distance between
the original point and the next point in the path, connecting points that have distance within this threshold can
help find a recourse path for the starred point, but not for the boxed point (the threshold is too low). If, on the
other hand, a high value of threshold is chosen (or equivalently a counterfactual explanation is found), then more
points may receive recourse, but such recourse is likely to be infeasible. (c): Our method learns the optimal
distance and threshold, and then augments to allow for recourse paths to be constructed for points that did not
receive a recourse path.

suggesting the line joining these as the path may lead to infeasible transitions, especially when the
distance between the input and counterfactual is large (dashed line in 1(a)). In the example shown,
the selected individual requires changing their cash deposit amount exorbitantly. Another approach
can be to define paths based on consecutively finding nearby individuals in the training set, and
moving in the direction of the boundary (Poyiadzi et al., 2020b; Pentyala et al., 2023), as shown in
1(b). However, these methods depend on a predefined distance function and a threshold parameter,
which are not learned. If the distance between two points exceeds the threshold, then a transition is
infeasible. Setting this distance threshold to a large value is equivalent to finding a nearest neighbor
counterfactual. Setting this threshold to a small value results in no recourse for some individuals
(boxed point in 1(b)), since it might be impossible to keep expanding the path by finding nearby points
within the distance threshold. This is especially problematic in settings such as the loan classification
task, where in practice such method would not provide any recourse to some individuals.

This work introduces a distance function and threshold learning framework, combined with an
augmentation technique to provide feasible recourse paths for every individual. The method is
model-agnostic and only requires access to a classifier’s prediction probability output. Given a set of
feasible transitions, we are able to learn a near-optimal distance function and threshold, that closely
approximate the true feasibility relationship for transitions. Using this learned feasibility relationship,
we provide a data augmentation technique that creates a recourse path for every individual that
initially received the negative outcome. This is shown in 1(c). The key characteristics of such a
path are 1) all intermediate transitions of it are more feasible and 2) the final point in it receives the
positive outcome of the given classifier. Figure 1 (b) shows a path based on our approach.

Our paper is structured as follows: in Section 2.2 we address the problem of learning feasible
transitions. For this problem, we give a hypothesis class containing distance functions and thresholds,
for which we prove PAC learnability; we show a bounded VC-dimension and an efficient Empirical
Risk Minimization (ERM) algorithm. In Section 2, we propose an augmentation algorithm that can

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

provide a feasible recourse path for every negatively affected individual and provide convergence
guarantees under certain assumptions. Finally, Section 3 contains our experiments on one synthetic
dataset and three real datasets. Experiments demonstrate that our method can efficiently provide
feasible recourse paths for all. To the best of our knowledge, this is the first work addressing the
learning of distance functions and thresholds in a multi-step recourse path setting. We also provide a
discussion section on how our method fits in the recourse literature.

1.1 BACKGROUND AND RELATED WORK

For a literature overview, (Karimi et al., 2022) provide various definitions, formulations, and solutions
to recourse, and highlight connections to other challenges like security, privacy, and fairness. Here,
we discuss the methods most relevant to ours.

Counterfactual explanations as recourse: A common approach in literature is to treat counterfac-
tual explanations (also known as contrastive explanations) as recourse-by-example (Wachter et al.,
2017; Sokol et al., 2019; Ustun et al., 2019; Guidotti, 2022). Yet, recent work has highlighted the
limitations of counterfactual explanations for algorithmic recourse, emphasizing the need to consider
causal relationships between features (Liu et al., 2024; Bynum et al., 2024).

The counterfactual-based approach when considered in its simplest form (identifying a minimally
distant counterfactual) relies on strong assumptions. Indeed, consider an individual who is subject to
an unfavorable AI prediction and who is given an example of another individual (real or synthetic)
as a ‘successful counterpart’ and a blueprint for future improvement. For such a recourse to be
helpful or reliable, one must assume that the suggested counterfactual data point is plausibly a “future
version” of the original rejected individual. This assumption is not generally true, as the algorithms
that identify a counterfactual typically only enforce proximity and sparsity between the counterfactual
and the original point. These methods neither specify the concrete actions needed to attain the
counterfactual state, nor do they consider causal process that governs how features change jointly
over time. To assert that a counterfactual is likely or plausibly achievable for the original point, one
solution is to use causal modeling, but as we detail later, this is difficult in real settings. Another
approach is to rely on additional safeguards to ensure that a counterfactual might be realistically
achievable. Path-based methods, which our solution is an example of, aim to provide such safeguards.

Causality-aware recourse: How can we make sure that a given positively classified point (i.e., a
counterfactual) represents an achievable state for a given initial point? The most principled approach
is to deploy causal reasoning. Yet, methods that take this route have to grapple with prohibitive
complexity of accurately modeling causal relationships on multivariate data.

In this line of work, experiments are typically limited to synthetic data on a few variables, suggesting
limited applicability of these methods in critical real-life settings (König et al., 2021; Dominguez-
Olmedo et al., 2022; Karimi et al., 2020; Dominguez-Olmedo et al., 2023). Furthermore, deploying
the machinery of do-calculus (Pearl, 2009) requires starting with a proposed intervention, and hence
the methods for causally aware recourse must comb through large sets of possible changes that a
person might enact, in order to then generate ‘feasible’ samples from each of the counterfactual
distributions for each intervention. This is not only computationally expensive, but also non-intuitive,
as ideally we would like to check feasibility of an identified target point, and not the other way
around.

A different approach focused on providing recourse for any differentiable machine learning-based
decision-making system is in (Joshi et al., 2019). The method relies on modeling the underlying data
distribution or manifold, but is not applicable to gradient-free models, which are commonly used in
critical settings such as healthcare and personal finance.

Path-based recourse: In its minimal form, providing recourse might simply mean identifying a target
point corresponding to a more favorable AI decision. To find a better target, several methods rely on
building paths – sequences of point transitions between the initial point and one of its counterfactual
points. This is known as path-based recourse. The existence of a path grants credibility to the end
point of the path as a feasible target state. Indeed, it is more likely that a target state is achievable if
we can describe a series of small (and hence arguably feasible) steps that lead to the target state.

Path-based approach to identifying recourse involves iteratively optimizing changes to an individual’s
features, while controlling the radius to which each change is constrained to ensure that each

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

transition is feasible. (Hamer et al., 2023) introduce Stepwise Explainable Paths (StEP), a data-driven
framework offering users interventions to alter outcomes, with privacy and robustness guarantees.
A prominent example of a path-based recourse algorithm is FACE (Poyiadzi et al., 2020a) – a
model-agnostic method for generating counterfactual explanations. Similar work includes (Small
et al., 2023; Nguyen et al., 2023). Despite its many advantages, existing path-based methods suffer
from two key shortcomings: a) if the distance threshold used to constrain the search for each ‘next
step’ is too large, recourse path may involve transitions that are either costly, unlikely, or infeasible
and b) if the distance threshold is small, the algorithm may fail to find a path for some individuals

The strength of our work is in addressing the shortcomings of existing path-based methods. Mitigating
failure to provide recourse is of particular importance, as such failures potentially trigger fairness
concerns. Consider data collected under racial or gender-sensitive selection bias. If members of a
certain demographic group are under-represented in either data class, it is likely that fewer group
members will receive a path to recourse, as FACE and similar algorithms rely on density to identify
suitable transitions. In this work, we take a position in asserting that everyone deserves recourse.

2 ALGORITHMS AND THEORETICAL RESULTS

2.1 FORMAL PROBLEM DEFINITION

In our recourse setting, individuals are represented by feature vectors from some feature space I.
We are given a set of individuals V ⊆ I, and a trained classifier f : I 7→ [0, 1] together with
some threshold α ∈ (0, 1). An individual x ∈ I receives the positive outcome of the classifier iff
f(x) ≥ α, and the negative outcome iff f(x) < α. We define Vp = {x ∈ V | f(x) ≥ α} and
Vn = {x ∈ V | f(x) < α} to be the positive and negative individuals of the input set V respectively.

The goal of our problem is to provide actionable recourse to individuals in Vn. For an individual
x, we define actionable recourse as a path of feasible transitions x = x1 7→ x2 7→ x3 7→ . . . 7→ xk,
where xi ∈ I for all i ∈ [k], the transition xi 7→ xi+1 is feasible and relatively “easy”, and xk is the
first positive profile (f(xk) ≥ α) in the sequence. The recourse interpretation of the above path is
that the individual can gradually change their profile, starting from x, and consecutively making the
feasible change from xi 7→ xi+1 for all i ∈ [k − 1], they can reach a positive profile xk.

We assume that we are given a “distance” function d : I2 7→ R≥0 and a threshold τ ≥ 0. Then,
x 7→ y is feasible iff d(x, y) ≤ τ , under the interpretation that the larger d is the more dissimilar
the two individuals that are compared. Note that we do not require d to be a metric. For example,
when d is not symmetric we capture directional feasibility; x 7→ y might be feasible while y 7→ x
is not. To capture how easy a feasible transition is, we assume that we are given a weight function
w : I2 7→ R≥0. For a feasible x 7→ y, the larger w(x, y) is the more difficult the transition. This
work addresses two problems:

The Problem of Learning (d, τ): Prior works assume explicit knowledge of d and τ to define
feasible transitions. In our work, we show how we can explicitly learn d, τ so that we approximate
the ground-truth transition feasibility function as optimally as possible.

The Augmentation Problem: Finding feasible recourse for x ∈ Vn corresponds to finding a path
Px = {x = x1, x2, x3, . . . , xk} for some k ≥ 1, such that xi ∈ V for all i ∈ [k], d(xi, xi+1) ≤ τ for
all i ∈ [k − 1] and yk ∈ Vp. However, this might not always be possible. For that reason, we want
to augment V by adding a new set of individuals U ⊆ I , such that it is always possible to find a path
Px = {x = x1, x2, x3, . . . , xk} for some k ≥ 1, with xi ∈ V ∪U for all i ∈ [k], d(xi, xi+1) ≤ τ for
all i ∈ [k − 1] and yk ∈ Vp ∪ Up, where Up are the individuals of U receiving the positive classifier
label. We also want the weights w(xi, xi+1) for consecutive profiles to be as small as possible.

2.2 LEARNING FEASIBLE TRANSITIONS

Let h∗ : I2 7→ {0, 1} be the ground truth function that determines feasibility of transitions, i.e., for
any x, y ∈ I we have h∗(x, y) = 1 if x 7→ y is feasible, 0 otherwise. Let

H =

{
hd,τ = 1{

(x,y)∈I2 | d(x,y)≤τ
} | d ∈ D and τ ∈ R≥0

}
(1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 Computing the ERM classifier h̄ for bounded D
Input: D and S = {(xi, yi, h

∗(xi, yi)) | i ∈ [m]}.
1: ml←∞
2: for each d ∈ D and each τ ∈ {d(xi, yi) | i ∈ [m]} do
3: if LS(hd,τ) < ml then
4: h̄← hd,τ , ml← LS(h̄)
5: end if
6: end for

where D is just a set of “distance” functions from I2 to R≥0. Given D as the set of “distance”
functions we are interested in,H is a hypothesis class, whose individual hypotheses are parameterized
by d (the specific distance function they use) and τ (a threshold). Then, each such hypothesis hd,τ

returns 1 for supposedly feasible transitions and 0 otherwise, and is of the form

hd,τ (x, y) =

{
1 if d(x, y) ≤ τ

0 otherwise

For any h ∈ H and (x, y) ∈ I2, let ℓ(h, x, y) be the 0− 1 loss function, i.e.

ℓ(h, x, y) =

{
1 if h(x, y) ̸= h∗(x, y)

0 otherwise

Also, let L(h) be the expected loss of h, where the expectation is over randomly drawing two individ-
uals x, y from I according to the data producing distribution; L(h) can be viewed as the real loss of
h. In addition, for a training set S that contains m labeled i.i.d. sampled pairs (xi, yi, h∗(xi, yi)), we
define the empirical loss of classifier h as LS(h) =

∑m
i=1 ℓ(h, x

i, yi).

We want to choose d ∈ D and τ such that L(hd,τ) is as small as possible. Let h̄ = argminh∈H LS(h)

be the empirical risk minimizer (ERM) of S. We call ρ-ERM, with ρ ≥ 1, a h̃ ∈ H such that
LS(h̃) ≤ ρ · LS((̄h)). Towards our goal, we use the following fundamental theorem.
Theorem 2.1 ((Shalev-Shwartz & Ben-David, 2014)). Let H be a hypothesis class, and let ϵ, δ ∈
(0, 1) be any desired accuracy and confidence parameters respectively. Let V C be the VC-dimension
of H1. Let S be a training set with at least O(

V C+log 1
δ

ϵ2) training examples and h̃ a ρ-ERM of S.
Then, with probability at least 1− δ we have L(h̄) ≤ ρ ·minh∈H L(h) +O(ϵ).

What the above theorem says, is that the ρ-ERM of the training set S approximates well the best
hypothesis ofH with high probability, provided that the training set is large enough. For this theorem
to be applied, V C needs to be bounded. For a definition of VC-dimension see (Shalev-Shwartz &
Ben-David, 2014). In what follows we show a couple of examples of hypothesis classes with bounded
VC-dimension, where a ρ-ERM is also efficiently computable.

2.2.1 THE CASE OF BOUNDED D

We first prove that for our hypothesis class as defined in (1), V C is bounded as long as |D| is bounded
(user-defined fixed and finite set D). Specifically, V C depends on |D| in an inverse exponential way,
which makes the required sample complexity highly practical in |D|.
Theorem 2.2. Let V C be the VC-dimension of the hypothesis defined in (1). If |D| is bounded, let N
be the smallest integer such that |D| < 2N

N+1 . Then, V C ≤ N .

We now show that the ERM classifier h̄ can be computed efficiently in this case (we get an ρ-ERM
with ρ = 1). Details are provided in Algorithm 1.
Theorem 2.3. The classifier h̄ computed by Algorithm 1 is an ERM when D is bounded.

Combining theorems 2.1, 2.2 and 2.3 proves the following, which essentially says that an accurate
feasibility classifier can be computed efficiently for the bounded D case.

1The VC-dimension is a measure of learning complexity for a hypothesis class

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 2 Augmentation Algorithm
Input: Sets V, Vp, Vn, functions d, f, w, parameters α, τ, λ.

1: for each x ∈ Vn do
2: U ← ∅
3: Initialize recourse path Px ← [x].
4: while True do
5: Let x′ be the end point of the path Px.
6: q ← argmaxy∈V ∪U

{
λ

w(x′,y) + (f(y)− f(x′))
}

7: if d(x′, q) > τ or q ∈ Px then
8: q ← argmaxy∈I\(U∪V) s.t.

d(x′,y)≤τ

{
λ

w(x′,y) + (f(y)− f(x′))
}

and U ← U ∪ {q}

9: end if
10: Extend Px by appending w as its new end point.
11: if f(q) ≥ α then
12: Save Px as the recourse path of x and break the while loop.
13: end if
14: end while
15: end for

Theorem 2.4. Let H be the hypothesis class defined in (1) with bounded D, and let ϵ, δ ∈ (0, 1)
be any desired accuracy and confidence parameters respectively. Let N be as defined in Theorem
2.2. Let S be a training set with at least O(

N+log 1
δ

ϵ2) training examples. Then h̄ can be efficiently
computed, and with probability at least 1− δ we have L(h̄) ≤ minh∈H L(h) +O(ϵ).

2.2.2 THE CASE OF A MORE STRUCTURED AND UNBOUNDED D

We now study a more flexible scenario, where D does not need to be finite. Here we assume that
each x ∈ I has n features. We use Ij to denote the domain of feature j ∈ [n]. For every feature
j ∈ [n], let fj : I2j 7→ R≥0 be a given comparison function for that feature. In other words, fj(a, b)
captures the difficulty in changing feature j from value a ∈ Ij to value b ∈ Ij ; the higher fj(a, b) is
the more difficult/improbable the change. Let also g : R≥0 7→ R≥0 be a given strictly monotonically
increasing function. For any β ∈ Rn

≥0, we define the similarity/comparison function:

dw(x, y) = g
(n∑

j=1

βj · fj(xj , yj)
)
, for x, y ∈ I (2)

Note that this form of distance/comparison function encapsulates a plethora of widely used distance
functions, such as (weighted) LP-norms. Now, the set D from (1) will contain all functions that can
be defined by any β ∈ Rn

≥0, and learning a function fromH is equivalent to learning β and τ .

Theorem 2.5. The VC-dimension ofH is at most 2n+ 1.

Theorem 2.6. An O(1)-ERM can be computed efficiently, when D contains all functions of form (2).

Combining theorems 2.1, 2.5 and 2.6 proves the following; an approximately accurate feasibility
classifier can be computed efficiently when distance functions are defined as in (2).

Theorem 2.7. Let H be the hypothesis class defined in (1) with D containing all functions of the
form 2, and let ϵ, δ ∈ (0, 1) be any desired accuracy and confidence parameters respectively. Let S
be a training set with at least O(

n+log 1
δ

ϵ2) training examples. Then a hypothesis h̃ can be efficiently
computed, such that with probability at least 1− δ we have L(h̃) ≤ O(1) ·minh∈H L(h) +O(ϵ).

2.3 THE AUGMENTATION ALGORITHM

The algorithm begins by sequentially considering each point of Vn. For each x ∈ Vn it tries to
construct a path to some positive point by iteratively expanding the end of the path. Initially, the path
is just x. If the already constructed path is from x to x′ (x′ being the end point) then we try to expand

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

as follows. At first, we look to see if there is a point in the current set of available points V ∪ U that
can serve as a feasible and easy transition from x′, while encouraging this point to be closer to the
boundary 2. Hence, we solve the next optimization problem:

q = argmax
y∈V ∪U

{ λ

w(x′, y)
+

(
f(y)− f(x′)

)}
If d(x′, q) ≤ τ and q is has not been visited before in the path, we expand the path by adding q as the
new end point. If this is not the case then we solve the slightly different optimization problem shown
below, which tries to find a feasible transition to a new q /∈ V ∪ U , and then we augment U with it.

q = argmax
y∈I\(V ∪U) s.t.

d(x′,y)≤τ

{ λ

w(x′, y)
+
(
f(y)− f(x′)

)}
The first term, i.e., λ/w(x′, y), guides the optimizer towards choosing transitions that are easy (have
small weight w(x′, y)). In addition, λ > 0 is a hyperparameter that controls how important this term
should be. The second term, i.e., f(y)− f(x′), forces the optimizer to move closer to the decision
boundary of the classifier f , by maximizing the difference between f(y) and f(x′); the higher the f
value of a point is the closer it is to receiving the positive outcome. At last, the reason we decided to
first look for an extension point in U ∪ V instead of looking for a fresh point, is because we want to
utilize the given dataset as much as possible, since solving the second optimization problem is more
time consuming and might give very realistic feature profiles.

On a high level, including f(y) − f(x′) in the maximization problem is exactly what helps the
algorithm converge. In the ideal case, the points of the path should consecutively move closer to the
decision boundary; the f values should consecutively increase along the path, until we finally hit the
classification threshold α. This could very well be the case in the absence of the first term. However,
the presence of the first term might lead some iterations of the algorithm to prioritize small weights in
the chosen transitions. By carefully tuning λ in our experiments we make sure that the algorithm will
converge almost always, even if we have iterations where the f -value of consecutive points decreases.
Hence, recourse is achieved for everyone. The full details of our approach are in Algorithm 2.

Finally, we provide a formal convergence scenario for our algorithm.
Theorem 2.8. When for all x ∈ I, there exists y ∈ I \ V s.t. f(y)− f(x) > λ

mina,b w(a,b) , and the
algorithm only chooses fresh points (not in U ∪ V) to expand paths, the algorithm always converges.

The proof is provided in the appendix.

3 EXPERIMENTAL EVALUATION

Datasets and models: We evaluate our method on one synthetic dataset generated using a causal
graph, and 3 real-world datasets. For details on how we generate the synthetic data see Appendix
A. The first real dataset we consider is PIMA (Smith et al., 1988), where the task is to predict if a
patient is diabetic. For predictors/features we use glucose levels, BMI, blood pressure, and insulin
. The second real dataset is UCI Adult (Becker & Kohavi, 1996), where the goal to evaluate if an
individual’s income is greater than or less than 50k. For predictors in Adult we use age, education,
capital gain, capital loss, and hours per week. Finally, we consider the HELOC dataset (Explainable
Machine Learning Challenge), where the goal is to evaluate the risk of performance for credit. We
choose external risk estimate, months since oldest trade, average months in file, revolving balance
divided by credit limit, and installment balance divided by original loan amount as predictors. For
each of the datasets, we train logistic regression models (note that our method is model agnostic
and only requires access to prediction probabilities). Additional experiments on two more model
classes (gradient boosting and neural networks) are provided in the appendix. Models are trained
and all experiments are run by first transforming the data using the minimum and maximum scalar
transformation. Details on model performance on the train and test set are provided in the appendix.

Feasible transitions data: For each dataset, a set of samples are chosen, and we generate labels for
whether a transition is feasible between each of these points using defined rules. Note that these rules

2This is encouraged but not enforced because some transitions might require moving away from the boundary
first. For example, becoming a student may reduce your income but eventually lead to a higher income

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

are varied to show the effectiveness of our approach. For details on how we generate the labels for
the synthetic dataset see Appendix A. For PIMA, we take the entire training set, and for each pair of
points label a transition as feasible if the L1 distance for each feature is below the standard deviation
for that feature. For Adult, we consider a thousand random samples, and consider transitions to be
feasible only if age, education and hours-per-week are increasing and capital gain and capital loss are
within a fifth of the standard deviation of their values in the data set. For HELOC we also take 1000
random samples, and we consider transitions to be feasible if the L1 distance for each feature is below
the standard deviation for it, the first three features are increasing and the last two are decreasing.
The % of the 1 label i.e., transition is feasible, in the pairs created for each set was 1) 11.31% for the
Synthetic Data, 2) 37.65% for PIMA, 3) 17.23% for Adult and 4) for 0.444% HELOC. We discuss
the creation and availability of this data in the discussion section.

Learning d, τ : In all datasets the set D from (1) contains 5 distance functions: L1, L2, Mahalanobis,
Cosine distance, and the Jensen-Shannon distance. We discuss the choice of these distance functions in
the discussion section. For Adult and HELOC, the functions also incorporate the natural monotonicity
constraints, since such constraints are intuitive. The way we implement this is by returning∞ if the
monotonicity is violated. Finally, in all datasets we uniformly subsample 25% of the pairs described
in the previous paragraph as the training set of ERM.

Transition weights: For a transition between two individuals x, y we use the same weight function
as in (Poyiadzi et al., 2020a). Let fρ : I 7→ R≥0 be a likelihood function that depends on the dataset
density ρ. Note that ρ is computed without the augmented points. Then the weight of the transition
from x to y is defined to be w(x, y) = d(x,y)

fρ

(
x+y
2

) , where d is the function chosen by ERM.

Augmentation Solver: To solve the optimization problem presented in Algorithm 2, the learned
distance functions and thresholds are used as constraints and Bayesian optimization is used. The
implementation has been taken from (Nogueira, 2014–). To allow for any arbitrary constraints and
machine learning models (eg., non-convex decision boundaries), any metaheuristic optimization
algorithm can be used. Bayesian optimization is widely used and does not assume any functional
form on the target function, and is hence valuable for our problem. In each iteration, the evaluated
target function is line 6 from Algorithm 2. Number of iterations and number of initial points are
found using grid search. More details are provided in the supplementary material.

Evaluation of Recourse Paths: In order to evaluate each recourse method that we test, we use three
metrics. At first, let Vn be the individuals that initially received the negative outcome of the classifier,
and let d and τ be the distance function and the threshold respectively, as computed by the ERM.

1. Validity score: For every x ∈ Vn, let Px be its recourse path. Note that in the case of
counterfactual explanations |Px| = 2 (x and the computed counterfactual), and when using
FACE (Poyiadzi et al., 2020a) we might even have Px = ∅. We define the validity v(Px) of
Px as an indicator variable that is 1 if Px ̸= ∅ and d(z, w) ≤ τ for every consecutive z, w ∈
Px, 0 otherwise. The validity score is then defined as validity V AL = 1

|Vn|
∑

x∈Vx
v(Px).

2. Average Path Distance and Weight: For any recourse path P = {x1, x2, . . . , xk}, we
define the average path distance and weight as d(P) = 1

k

∑k−1
i=1 d(xi, xi+1) and w(P) =

1
k

∑k−1
i=1 w(xi, xi+1) respectively.

Comparison baselines: (Pawelczyk et al., 2021) offer a list of implementations for recourse methods.
However, most of them only provide single-step recourse paths. We compare to the only implementa-
tion that offers multi-step recourse paths (Poyiadzi et al., 2020b), and also compare to finding the
nearest neighbor on the other side of the boundary (single -step) for completeness.

3.1 RESULTS

Results from distance function and threshold learning: In Table 1 we report the outcomes of the
ERM algorithm. Since ERM is inherently randomized (recall that we subsample 25% of the given
pairs) we ran the algorithm 5 times. In the table we report the mean and the standard deviation of all
important metrics across those 5 runs. The metrics under consideration are 1) the computed threshold,
and 2) the 0− 1 error of the resulting feasibility function across the whole set of labeled pairs. We
also note that in every dataset, the chosen distance was consistent across all 5 runs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 1: Outcome of ERM on the 4 datasets

Learned Distance Mean Threshold SD of Threshold Mean Loss % SD of Loss %

Synthetic Data L2 0.298456 0.000138 9.231 0.00285

PIMA L2 0.228212 0.000958 20.113 0.000003448

Adult Mahalanobis 4.236288 0.002453 3.0464 0.000821

HELOC Mahalanobis 1.2506612 0.022587 0.12582 0.000949

Figure 2: Evaluation of recourse paths using our method, FACE, and CE. Higher validity is better and
lower distances and weights is better. Our method finds feasible (low distance and weights) recourse
for all (validity=1) while other methods cannot.

Results from augmentation: Recourse paths are generated for 50 random samples for all four
datasets. Figure 2 reports the metrics for our method on the four datasets, and we compare against
two baselines: FACE, and nearest neighbor counterfactual explanations (CE). For FACE, a graph
is constructed for each of the datasets with the distance function and threshold chosen for the
graph as the same distance function and threshold that is learned using our method. The nearest
neighbor counterfactual is the closest point to the point that achieves a positive outcome, and the
path between these two points is evaluated. The choice of λ for each dataset is provided in the
Appendix A.1.Example recourse paths are provided in the appendix.

We note that across all datasets, both FACE and CE are unable to find valid paths for a set of points.
This issue is especially exacerbated in the synthetic dataset and the HELOC dataset, hence these
methods would not be able to provide recourse to all. Instead, our method always finds a valid path
to recourse for every individual i.e., V AL = 1. The average distance and weight (lower is better)
are consistently worse for the CE method. Our average distance and weight, both of which can be
interpreted as measures of how “easy” the transitions in the path are, are comparable to FACE across
datasets, demonstrating that the augmentation does not lead to substantially costlier paths.3

Variation in λ: The value of λ determines our algorithm’s convergence. A larger value corresponds
to more steps but with lower average distance and weight between steps. This is demonstrated in
figure 3, where we report 3 values of λ for PIMA and the synthetic data. We report the evaluation
metrics, and additionally report the average path lengths and runtime, since λ directly impacts these
measures. Choosing a larger λ clearly leads to paths that are more “easy” (lower weights and lower
distance), but this comes at the cost of a large path length and computation runtime. For PIMA a
large lambda resulted in no recourse path for a few individuals (shown by validity being less than 1),

3The issue of not finding recourse is exacerbated when a point is isolated in a sparse region of the data. See
Appendix A.7 for an analysis of path validity by the FACE method as a function of data sparsity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 3: Evaluation of paths using different λ-s. The path length for the synthetic data has been
scaled down by a factor of 10 and the weights have been scaled up by a factor of 10, for readability.

but this is because we had to kill the execution since augmentation was happening in very small steps
(slow convergence). We highlight this to reflect on the need for an appropriate λ.

4 DISCUSSION

On the availability and construction of feasible transitions data and choice of constraints:
Ideally, every end-user subject to a models decision should be able to provide constraints under which
they can obtain recourse, and existing methods such as (Sharma et al., 2020; Ustun et al., 2019) can
include these in their optimization to find realistic recourse. However, having constraints for every
individual, especially in large-scale applications is challenging. While we show that our framework
is also applicable when provided a causal graph, often having access to complete or imperfect causal
knowledge (Karimi et al., 2020) is also not viable, especially for large scale datasets.

Instead, our paper takes a data-driven approach where constraints for the path (to learn the distance
function and threshold) can be provided based on domain knowledge by practitioners (eg., in finance
and healthcare). For example, individuals can only increase their income by ten percent of their current
income. While other methods that provide algorithmic recourse, several of which are implemented in
(Pawelczyk et al., 2021). can accommodate for these constraints, certain constraints can lead to all
these methods returning no recourse (eg., allowing income to only increase by ten percent might not
provide recourse to low income individuals). Instead, our method still allows for multi-step recourse
paths through augmentation, ensuring that a recourse path is provided.

On the choice of distance functions for algorithmic recourse: Seminal methods for counterfactual
explanations (Wachter et al., 2017; Ustun et al., 2019; Sharma et al., 2020; Mothilal et al., 2020) and
several others implemented in (Pawelczyk et al., 2021) use some lp norm to generate counterfactual
explanations. Hence, we consider the L1 and L2 distance functions. (Chen et al., 2020) show
that using the Mahalanonbis distance can capture feature interactions. Cosine and Jensen-Shannon
distances are not widely used in the recourse literature, however, they show that distance functions do
not need to be metric for our method to work. Other distance functions can also easily be incorporated
into our proposed method for distance function and threshold learning.

5 CONCLUSION

We studied the problem of providing actionable recourse by suggesting multi-step transitions (recourse
paths) to individuals. We presented an augmentation algorithm that empirically provides recourse for
all. To strengthen the feasibility of recourse, we are the first to study the problem of PAC learning
of the ground-truth transitions through a hypothesis class of distance functions and thresholds. We
see two main limitations in our work which are opportunities for future work: 1) for the hypothesis
class in (1), we can studying more expressive feasibility functions, e.g., feasibility measures using
casual constraints and 2) learning feasible transitions involved label generation ; future directions
will include using human annotators for labeling transitions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Sarah Ammermann. Adverse action notice requirements under the ecoa and the fcra. Consumer
Compliance Outlook, 2nd Q, 2013.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Lucius EJ Bynum, Joshua R Loftus, and Julia Stoyanovich. A new paradigm for counterfactual
reasoning in fairness and recourse. arXiv preprint arXiv:2401.13935, 2024.

Yatong Chen, Jialu Wang, and Yang Liu. Strategic recourse in linear classification. arXiv preprint
arXiv:2011.00355, 236, 2020.

Ricardo Dominguez-Olmedo, Amir H Karimi, and Bernhard Schölkopf. On the adversarial robustness
of causal algorithmic recourse. In International Conference on Machine Learning, pp. 5324–5342.
PMLR, 2022.

Ricardo Dominguez-Olmedo, Amir-Hossein Karimi, Georgios Arvanitidis, and Bernhard Schölkopf.
On data manifolds entailed by structural causal models. In International Conference on Machine
Learning, pp. 8188–8201. PMLR, 2023.

FICO Explainable Machine Learning Challenge. HELOC.

Bryce Goodman and Seth Flaxman. European union regulations on algorithmic decision-making and
a “right to explanation”. AI magazine, 38(3):50–57, 2017.

Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and bench-
marking. Data Mining and Knowledge Discovery, pp. 1–55, 2022.

Jenny Hamer, Jake Valladares, Vignesh Viswanathan, and Yair Zick. Simple steps to success:
Axiomatics of distance-based algorithmic recourse. arXiv preprint arXiv:2306.15557, 2023.

The White House. Ai bill of rights, 2022.

Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, and Joydeep Ghosh. Towards
realistic individual recourse and actionable explanations in black-box decision making systems.
arXiv preprint arXiv:1907.09615, 2019.

Amir-Hossein Karimi, Julius Von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorith-
mic recourse under imperfect causal knowledge: a probabilistic approach. Advances in neural
information processing systems, 33:265–277, 2020.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algorithmic
recourse: contrastive explanations and consequential recommendations. ACM Computing Surveys,
55(5):1–29, 2022.

Harsha Kokel et al. Beyond Data: Efficient Knowledge-guided Learning for Sparse and Structured
Domains. PhD thesis, 2023.

Gunnar König, Timo Freiesleben, and Moritz Grosse-Wentrup. A causal perspective on meaningful
and robust algorithmic recourse. arXiv preprint arXiv:2107.07853, 2021.

Lydia T Liu, Solon Barocas, Jon Kleinberg, and Karen Levy. On the actionability of outcome
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
22240–22249, 2024.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
through diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pp. 607–617, 2020.

Duy Nguyen, Ngoc Bui, and Viet Anh Nguyen. Feasible recourse plan via diverse interpolation. In
International Conference on Artificial Intelligence and Statistics, pp. 4679–4698. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization
tool for Python, 2014–. URL https://github.com/bayesian-optimization/
BayesianOptimization.

Martin Pawelczyk, Sascha Bielawski, Johannes van den Heuvel, Tobias Richter, and Gjergji Kas-
neci. Carla: a python library to benchmark algorithmic recourse and counterfactual explanation
algorithms. arXiv preprint arXiv:2108.00783, 2021.

Judea Pearl. Causality. Cambridge university press, 2009.

Sikha Pentyala, Shubham Sharma, Sanjay Kariyappa, Freddy Lecue, and Daniele Magazzeni. Privacy-
preserving algorithmic recourse. arXiv preprint arXiv:2311.14137, 2023.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: Feasible
and actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, AIES ’20, pp. 344–350, New York, NY, USA, 2020a. Association for
Computing Machinery. ISBN 9781450371100. doi: 10.1145/3375627.3375850. URL https:
//doi.org/10.1145/3375627.3375850.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: feasible
and actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on AI,
Ethics, and Society, pp. 344–350, 2020b.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, 2014. ISBN 978-1-10-705713-5.

Amit Sharma and Emre Kiciman. Dowhy: An end-to-end library for causal inference. arXiv preprint
arXiv:2011.04216, 2020.

Shubham Sharma, Jette Henderson, and Joydeep Ghosh. Certifai: A common framework to provide
explanations and analyse the fairness and robustness of black-box models. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pp. 166–172, 2020.

Edward A Small, Jeffrey N Clark, Christopher J McWilliams, Kacper Sokol, Jeffrey Chan, Flora D
Salim, and Raul Santos-Rodriguez. Counterfactual explanations via locally-guided sequential
algorithmic recourse. arXiv preprint arXiv:2309.04211, 2023.

Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and Robert Scott Johannes.
Using the adap learning algorithm to forecast the onset of diabetes mellitus. In Proceedings
of the annual symposium on computer application in medical care, pp. 261. American Medical
Informatics Association, 1988. URL https://www.kaggle.com/datasets/uciml/
pima-indians-diabetes-database.

Kacper Sokol, Alexander Hepburn, Raul Santos-Rodriguez, and Peter Flach. blimey: surrogate
prediction explanations beyond lime. arXiv preprint arXiv:1910.13016, 2019.

Ryosuke Sonoda. Fair oversampling technique using heterogeneous clusters. Information Sciences,
640:119059, 2023.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In
Proceedings of the conference on fairness, accountability, and transparency, pp. 10–19, 2019.

Suresh Venkatasubramanian and Mark Alfano. The philosophical basis of algorithmic recourse. In
Proceedings of the 2020 conference on fairness, accountability, and transparency, pp. 284–293,
2020.

Sahil Verma, Varich Boonsanong, Minh Hoang, Keegan E Hines, John P Dickerson, and Chirag Shah.
Counterfactual explanations and algorithmic recourses for machine learning: A review. arXiv
preprint arXiv:2010.10596, 2020.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2011. ISBN 0521195276.

12

https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://doi.org/10.1145/3375627.3375850
https://doi.org/10.1145/3375627.3375850
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 DETAILS ON DATASETS AND MODELS

Table 2 provides datasets and models used, along with optimization parameters used to generate the
results in 2. All datasets have been randomly split into train and test in a 75:25 ratio.

A.2 DETAILS ON BAYESIAN OPTIMIZATION

Bayesian optimization works by constructing a posterior distribution of functions (gaussian process)
that best describes the function you want to optimize. As the number of observations grows, the
posterior distribution improves, and the algorithm becomes more certain of which regions in parameter
space are worth exploring and which are not. Details on the method and implementation can be found
here Nogueira (2014–).

The empirical convergence of our method depends on the chosen value of λ (as shown in theorem
2.8). In general, we observe that larger learned distance thresholds (Adult and HELOC) result in
larger optimal λ. The tried λ values range between 0 and 0.2. Beyond those values, all methods do
not converge to a solution due to very small steps towards the decision boundary. The number of
iterations and number of initial points for bayesian optimization are varied from 10-100 in steps of
10, and the value that returns the lowest distance average.

Table 2: Details on datasets, models, and parameters

Samples Train Accuracy % Test Accuracy % B.O. initial points B.O. iterations λ

Synthetic Data 100 96.67 96.48 10 10 0.000145

PIMA 768 76.12 75.23 50 50 0.000145

Adult 42556 81.20 81.04 100 10 0.1

HELOC 3614 71.39 71.59 50 50 0.1

A.3 SYNTHETIC CAUSAL DATA GENERATION

We experimented on causal data to test the algorithm which learns the distance threshold τ and the
regularization parameter λ from the feasibility labels. Below, we describe the data generating process.

N =20000

ϵ ∼N (0, 0.4)

W ∼N (0, 1)

Z ∼N (0, 1)

D ∼Binomial(N,p =
1

1 + e−5Z
)

X ∼Binomial(N,p =
1

1 + e−7W
)

Y =sigmoid(2 ∗ Z+D+X+ ϵ)

Figure 4: Directed Acyclic Graph (DAG) and the structural equation model used to generate the
distribution of ‘origin points’ in our synthetic causal dataset.

First, we generate N = 20, 000 samples according to the data-generating process described in
Figure 4, to obtain Ω = {(Xi

origin, D
i
origin, Z

i
origin, Y

i
origin)}Ni=1.

Then, we define feasible and infeasible transitions f(Xorigin, Dorigin, Xtarget, Dtarget) ∈ {1, 0}
using monotonicity constraints on X and D:

f(Xorigin, Dorigin, Xtarget, Dtarget) =

{
1 if Xtarget >= Xorigin and Dtarget <= Dorigin

0 otherwise

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

We then proceed, for each initial point, to sample ns = 5 feasible and ns = 5 infeasible points
from the counterfactual distirbution under interventions we defined as feasible and infeasible. Upon
sampling 5 values of (X,D,Z,Y) corresponding to feasible interventions, we impose an additional
constraint to further re-brand these cases: we will call them feasible if in addition to satisfying the
monotonicity constraints defined by f , the resulting change in Z is not too large.4 The process is
described in Algorithm 3.

Algorithm 3 Synthetic Data Feasibility Labeling Algorithm
Input: Set Ω, function f , parameters τf , ns.

1: for each data point ω ∈ Ω do
2: for feasibility label φ ∈ {0, 1} do
3: nsampled ← 0
4: while nsampled < ns do
5: Sample (Xtarget, Dtarget) s.t. f(Xorigin, Dorigin, Xtarget, Dtarget) = φ
6: (Xi

target, D
i
target, Z

i
target, Y

i
target) ∼ Pdo(X→Xtarget,D→Dtarget)(X,D,Z, Y)

7: nsampled ← nsampled + 1
8: if φ == 1 {for ‘feasible’ labels} then

9: φ̃←
{
1 if |Ztarget − Zorigin| < τf
0 otherwise

10: end if
11: end while
12: end for
13: end for

For step 6 of the Algorithm 3, we used the dowhy (Sharma & Kiciman, 2020) package fitted to the
DAG in Figure 4. As the value of parameter that controls the additional constraint on feaisbility labels
in Step 8, we used τf = 0.1

A.4 PROOFS FOR THEOREMS

Proof of Theorem 2.2. Consider any set of N pairs of individuals pi = (xi, yi) ∈ I2, where i ∈ [N].
Any “distance” function d : I2 7→ R≥0 explicitly induces an ordering πd(1), πd(2), . . . , πd(N) of
[N], such that d(pπd(1)) ≤ d(pπd(2)) ≤ . . . ≤ d(pπd(N)); by assuming some infinitesimal noise on d
all ties are broken and the ordering is unique. The functions d ∈ D can produce at most |D| such pair
orderings. For each ordering produced by a d ∈ D, you can have N +1 different labelings depending
on the chosen threshold τ . Hence, at most |D|(N +1) different labelings that can be produced by the
hypotheses ofH. On the other hand, the total number of labelings is 2N+1. Given that |D| < 2N

N+1 ,
there must be at least one labeling that cannot be produced. Therefore, V C ≤ N , since any set of N
pairs cannot be shattered.

Proof of Theorem 2.3. For a given d ∈ D, order and re-index all (xi, yi, h∗(xi, yi)) ∈ S such that
d(x1, y1) ≤ d(x2, y2) ≤ . . . ≤ d(xm, ym). It is clear that trying a threshold that is between two
consecutive distances in the above ordering will not affect the empirical error, and therefore it suffices
to only focus on the d(xi, yi) as values for the threshold τ .

Proof of Theorem 2.5. Consider any set of 2n + 1 pairs of individuals pi = (xi, yi) ∈ I2, where
i ∈ [2n + 1]. Assume w.l.o.g. that H can shatter the set of pairs and can produce all possible
labelings. For notational convenience, we use cij = fj(x

i
j , y

i
j). At first, for each feature j ∈ [n], we

are interested in the (potentially) two pairs ijmax, i
j
min ∈ [n] such that ijmax = argmaxi∈[n] c

i
j and

ijmin = argmini∈[n] c
i
j . Let M = {i ∈ [2n + 1] | ∃j ∈ [n] with i = ijmax ∨ i = ijmin}. Clearly,

|M | ≤ 2n, and hence by the pigeonhole principle there exists i∗ ∈ [2n+ 1] such that i∗ /∈M .

4While using the do- calculus can be thought of as requiring that a resulting data point is plausible, this
second-order feasibility constraint on the feature Z can be understood as additionally requiring that the change
is not too costly.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Now consider a labeling ℓ : [2n + 1] 7→ {0, 1}, such that ℓ(pi∗) = 1 and ℓ(pi) = 0 for all
i ∈ [2n+ 1] \ {i∗}. Regardless of the chosen threshold,H can only produce this labeling if there’s a
βℓ ∈ Rn

≥0 such that dβℓ
(pi∗) < dβℓ

(pi) for all i ∈ [2n+ 1] \ {i∗}. For that to be true, since g() is
strictly increasing, the following 2n inequalities must hold:

n∑
j=1

(ci
∗

j − cij) · βl,j < 0, ∀i ∈ [2n+ 1] \ {i∗} (3)

Since i∗ /∈ M , for each j ∈ [n], there exists at least one coefficient ci
∗

j − cij > 0 and at least one
coefficient ci

∗

j − cij < 0. This means that in a Gaussian elimination processes applied only to the
coefficients of the system, we can only use positive multiplicative factors that will not be altering the
directions of the inequalities. Therefore, for any feature j̄ that we might choose, we will eventually
end up with an inequality of the form Cj̄ · βℓ,j̄ < 0. The constant Cj̄ is the one resulting from the
Gaussian elimination process. Since, βℓ,j̄ ≥ 0 we thus have Cj̄ < 0.

Now consider a labeling ℓ′ : [2n + 1] 7→ {0, 1}, such that ℓ′(pi∗) = 0 and ℓ′(pi) = 1 for all
i ∈ [2n+ 1] \ {i∗}. Regardless of the chosen threshold,H can only produce this labeling if there’s a
βℓ′ ∈ Rn

≥0 such that dβℓ′ (pi∗) > dβℓ′ (pi) for all i ∈ [2n+ 1] \ {i∗}. For that to be true, since g() is
strictly increasing, the following 2n inequalities must hold:

n∑
j=1

(cij − ci
∗

j) · βℓ′,j < 0, ∀i ∈ [2n+ 1] \ {i∗} (4)

Using the exact same analysis that led to Cj̄ < 0, we can see that in this case we will have Cj̄ > 0.
Therefore,H cannot simultaneously achieve both of the labelings ℓ, ℓ′.

Proof of Theorem 2.6. Consider any given set S that contains m pairs (xi, yi), with i ∈ [m]. Com-
puting an ERM classifier corresponds to finding β and γ that satisfy as many of the following m
constraints as possible:

n∑
j=1

βj · fj(xi
j , y

i
j) ≤ γ, for i ∈ [m]

This is because g is monotonically increasing and we can set τ = g(γ). Since, the values fj(xi
j , y

i
j)

are given constants, this is a linear system. Even though this problem is NP-hard (reduction to
MAX-SAT) there are efficient and very accurate O(1)-approximation algorithms for it (Williamson
& Shmoys, 2011) (best ratio achieved by an SDP approach and is 0.7846).

Proof of Theorem 2.8. We claim that under the assumption of the theorem statement, the f() value
of all points along the path will be strictly increasing. We show this via induction.

• Induction Basis: For the second point of the path, the f() value will increase because will
apply the theorem hypothesis to the starting point of the path.

• Inductive step: Say that for our path so far the f() value is increasing. Consider the end
point x. For x there exists y such that f(y) − f(x) > λ

mina,b w(a,b) . We now claim that y
cannot be in the path. If it is, the path contains a point with a f() value strictly larger than
that of x. Therefore, since y is not in the path, the optimization problem will necessarily
pick y′ with f(y′) − f(x) > 0; if not we have f(y′) − f(x) + λ

w(y′,x) < λ
mina,b w(a,b) <

f(y)− f(x) + λ
mina,b w(a,b) .

A.5 EXPERIMENTS ON XGBOOST AND NEURAL NETWORK

Experiments are also performed on XGBoost and Neural network models for the PIMA Diabetes
dataset. The results are shown in 5. We observe a similar trend as in the results for the logistic
regression model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 5: Results on XGBoost and Neural network models for the PIMA Diabetes dataset

Table 3: Recourse path for a query in the PIMA dataset, compared to the CE method

Glucose BloodPressure Insulin BMI

Nearest Counterfactual
159 66 0 30.4
151 60 0 26.1

Ours
159 66 0 30.4
157.82 65.131 0 30.2
155.586 64.84 0 30.1
153.40 64.11 0 29.32
151.20 64.60 0 29.32
151.20 64.20 0 29.31
149.26 65.20 0 29.30

A.6 ADDITIONAL EXAMPLE RECOURSE PATH

Table 3 shows an example recourse path for PIMA. The first row in the table for both nearest
counterfactual and ours is the input point for which we are seeking to provide the recourse path.
FACE is unable to find a path for this individual. CE suggests a single step recourse path with drastic
changes in the values of each feature except insulin. Instead, our method provides a sequence of
smoother steps that lead to the positive outcome.

An additional example for a recourse path for the HELOC dataset is shown in Table 4.

Table 4: Recourse path for a query in HELOC comparing CE with our method. Here P (Y = 1)
refers to the probability of positive (desirable) classification, with scores corresponding to loan denial
highlighted in red, and approval qualifying scores in green. The feature names are abbreviared as
follows: ERE : ExternalRiskEstimate ; MSOTO : MSinceOldestTradeOpen ;
AF : AverageMInFile ; NFRB : NetFractionRevolvingBurden; NFIB : NetFractionInstallBurden

ERE MSOTO AF NFRB NFIB P (Y = 1)

Original point 68. 124. 51. 72. 73. 0.26
Nearest Counterfactual 75. 161. 67. 40. 75. 0.51

Our path
68. 124. 51. 72. 73. 0.26
75.7 152.7 77.4 64.3 62.8 0.48
83.4 181.3 103.9 56.7 52.7 0.71

A.7 ANALYSIS OF VALIDITY FOR THE BENCHMARK METHOD (FACE)

Central to our contribution is the argument that, unlike our approach which guarantees recourse,
salient path-based algorithms may fail to provide recourse for some negatively classified data instances.
We therefore examine the relationship between dataset sparsity and the rate of successful generation
of a recourse path using FACE.

Figure 6 below demonstrates this relationship on the HELOC data. We sample k negatively classified
data instances from the training set. For each sample of k points, we run FACE algorithm and record
the percentage of instances for which FACE successfully identified a recourse path (all other instances
receiving no recourse). We further compute average pairwise Mahalanobis distance for the sampled k

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 6: Validity (i.e., success rate) of the FACE algorithm on subsets of the HELOC dataset. Left:
as a function of the number of negative instances selected into the sample. Right: as a function of the
density of the sampled negative instances set. For points belonging to the sparse regions of the data,
FACE may not identify a recourse path.

points as a proxy for sample density. We repeat the experiment 50 times for each k. Additionally, we
exclude the successful paths of length two (consisting only of the initial point and its counterfactual),
such paths representing ‘lucky draws’ of negative instances that are already very close to the decision
boundary. The graphs report results averaged over 50 experiments.

It is important to note that even when the set of negative instances in the full dataset is dense, FACE
may fail to identify a recourse path for instances which are isolated in a sparse local region of the
data manifold. This is especially important since such sparse regions may represent individuals who
are underrepresented in the dataset, which in turn might be associated with membership in protected
social groups. It is known that sampling bias adversely affects various demographic groups Kokel
et al. (2023); Sonoda (2023). If membership in such a group is also associated with being in a sparse
region of the data manifold, failure of path-based methods might disproportionally affect members of
such groups.

17

	Introduction
	Background and Related Work

	Algorithms and Theoretical Results
	Formal Problem Definition
	Learning Feasible Transitions
	The case of bounded D
	The case of a more structured and unbounded D

	The Augmentation Algorithm

	Experimental Evaluation
	Results

	Discussion
	Conclusion
	Appendix
	Details on datasets and models
	Details on bayesian optimization
	Synthetic causal data generation
	Proofs for Theorems
	Experiments on XGBoost and Neural network
	Additional Example Recourse Path
	Analysis of validity for the benchmark method (FACE)

