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Adaptive Hierarchical Aggregation for Federated Object
Detection
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ABSTRACT
In practical object detection scenarios, distributed data and strin-
gent privacy protections significantly limit the feasibility of tradi-
tional centralized trainingmethods. Federated learning (FL) emerges
as a promising solution to this dilemma. Nonetheless, the issue of
data heterogeneity introduces distinct challenges to federated object
detection, evident in diminished object perception, classification,
and localization abilities. In response, we introduce a task-driven
federated learning methodology, dubbed Adaptive Hierarchical
Aggregation (FedAHA), tailored to overcome these obstacles. Our
algorithm unfolds in two strategic phases from shallow-to-deep
layers: (1) Structure-aware Aggregation (SAA) aligns feature ex-
tractors during the aggregation phase, thus bolstering the global
model’s object perception capabilities; (2) Convex Semantic Calibra-
tion (CSC) leverages convex function theory to average semantic
features instead of model parameters, enhancing the global model’s
classification and localization precision. We demonstrate experi-
mentally and theoretically the effectiveness of the proposed two
modules respectively. Our method consistently outperforming the
state-of-the-art methods across multiple valuable application sce-
narios from 2.26% to 7.61%. Moreover, we build a real FL system
using Raspberry Pis to demonstrate that our approach achieves a
good trade-off between performance and efficiency.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; Ob-
ject detection.

KEYWORDS
Federated Learning, Object Detection, Data Heterogeneity

1 INTRODUCTION
In recent years, significant success has been achieved in object
detection thanks in part to the large scale of labeled dataset, such
as the MS COCO [26], ImageNet [5] and SA-1B [20]. However,
in practical scenarios, the traditional centralized training strategy
cannot be effectively implemented due to the data silos and privacy
protection, such as the General Data Protection Regulation (GDPR)
[35]. Therefore, it is imperative to explore new training paradigms
for object detection tasks.
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Figure 1: Illustration of heterogeneous federated learning
for object detection in practical scenarios. Data are heteroge-
neously distributed across numerous clients. Heterogeneity
diminishes the model’s capacity to perceive objects and abil-
ity to classify and locate objects.

Federated learning (FL), a distributed machine learning paradigm
that eliminates the need for data transfer, effectively addresses the
limitations mentioned above. It was introduced by McMahan et al.
along with the FedAvg [33] algorithm and has been extensively
explored in the field of computer vision [15, 31, 40, 44, 48]. FL has
been an active and challenging research topic and shows promising
results in real-world setting [10, 11, 18, 27]. Along with its pilot
progress, researches on federated learning are baffled by the key
challenge: the issue of data heterogeneity. To address this challenge,
some federated learning algorithms based on improvements to
FedAvg have been proposed, such as FedProx [24], SCAFFOLD
[19] and FedDF [25]. However, these proposed methods have been
validated on classification tasks. Unfortunately, federated object
detection tasks have received relatively less attention.

Compared to classification tasks, detection tasks face unique chal-
lenges when dealing with the issue of data heterogeneity. On one
hand, data heterogeneity reduces the global model’s ability to per-
ceive objectives. Our experimental analysis has shown that, under
task orientation, detection models extract more detailed structural
information, which represents the biggest difference from classifi-
cation models in their patterns of image feature extraction. In FL,
heterogeneous data impacts the performance of feature extractors,
and further diminishes the global model’s capacity to perceive ob-
jects. This aspect has been overlooked by many previous researches.
On the other hand, the issue of data heterogeneity reduces the
model’s accuracy in object classification and localization. Beyond

https://doi.org/XXXXXXX.XXXXXXX
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perceiving objects, detection networks must not only classify them
but also accomplish localization. However, existing federated algo-
rithms lack consideration for localization accuracy. Thus, achieving
satisfactory performance in federated object detection remains a
challenge. We further explain these challenges in Figure 1.

To tackle the two aforementioned challenges, we propose our ef-
ficient federated learning method tailored for object detection with
adaptive hierarchical aggregation: 1) Hierarchical aggregation
from shallow-to-deep.We divide the model into two parts: the
feature extractor and the detection head. For each part, we design
targeted aggregation strategies, achieving hierarchical aggregation
from shallow to deep layers. Our method achieves a thorough in-
tegration from texture features to semantic features, effectively
addressing the two challenges posed by heterogeneity in federated
object detection. 2) Structure-aware Aggregation. Due to the
drift phenomenon [19] between different feature extractors from
client models, which leads to a decline in the common model’s
ability to perceive objects, we introduce a new weighting approach,
namely Structure-aware Aggregation, to enhance the consistency of
aggregation. Based on image processing and information theory, by
combining structural coefficients and informational measures, we
design a metric to gauge the consistency among different feature ex-
tractors. Through dynamically assigning weights to different client
feature extractors based on the consistency measure, our method
ensures the stability of the aggregation process, thereby enhancing
the global model’s ability to perceive objects. 3) Convex Semantic
Calibration. To achieve accurate classification and localization,
we need to accomplish high-precision semantic aggregation. In-
spired by convex function theory, our focus shifts to averaging the
semantic outcomes of the detection head, rather than the parameter
averages. Simultaneously, we conduct a detailed analysis of the loss
function in object detection, proving that our method is supported
by solid and reliable theoretical foundations in mathematics. This
strategy not only achieves semantic alignment but also effectively
circumvents the problem of client models converging towards di-
verse local-convex domains, thereby enhancing the performance
and robustness of the global model. The main contributions of our
paper are as follows:

• Starting from a task-driven perspective, we investigate the
unique challenges posed by data heterogeneity in federated
learning to object detection tasks. We propose an adaptive
hierarchical federated aggregation algorithm that progresses
from shallow-to-deep.
• Following rigorous experimental analysis and theoretical
validation, we design two modules, Structure-aware Aggre-
gation (SAA) and Convex Semantic Calibration (CSC). SAA
enhances the model’s object perception capabilities, while
CSC improves the model’s classification and localization
accuracy. Both complement each other effectively.
• We conduct numerous experiments in various datasets, in-
cluding natural images, remote sensing images and medical
images——each representing a valuable federated learning
application scenario. Our method achieves superior perfor-
mance over the state-of-the-art algorithms, and ablation
study on core modules validates the efficacy.

• We construct a real federated learning system using Rasp-
berry Pi to authentically verify that our algorithm, by shift-
ing computational overhead to the server side, achieves an
excellent trade-off between performance and efficiency.

2 RELATEDWORK
2.1 Object Detection
Object detection has always been a critically important and chal-
lenging task in the field of computer vision. In recent years, the rapid
development of deep learning techniques has greatly promoted the
progress of object detection. Initially, deep learning-based object
detection networks were two-stage, such as R-CNN [9] and its
variants, Fast R-CNN [8], and Faster R-CNN [36]. Subsequently,
end-to-end one-stage networks were proposed. Thanks to their
fast detection speed and ease of deployment, they have become the
mainstream algorithms in object detection, receiving widespread at-
tention from both the academic and industrial communities. YOLO
(You Only Look Once) [34] is a typical representative among them.
It was the first one-stage detector in the deep learning era. YOLOv5
[17], as a successor to YOLO, has become one of the most popu-
lar object detection networks due to its high accuracy and speed.
Recently, YOLOv7 [41], a follow-up work from the YOLOv4 [2]
team, has been proposed. It outperforms most existing object detec-
tors in terms of speed and accuracy. In addition, with the growing
popularity of Transformer, a Transformer-based object detection
network, DETR [3], has been proposed. Transformer discards the
traditional convolution operator in favor of attention-alone calcu-
lation in order to overcome the limitations of CNNs and obtain a
global-scale receptive field. RT-DETR [32], a real-time end-to-end
detector based on the DETR architecture, achieves state-of-the-art
(SOTA) performance in both speed and accuracy.

2.2 Federated Learning
McMahan [33] introduced the concept of federated learning and
proposed FedAvg, a pioneering work. The initial design intent
of federated learning was to learn information from other data
owners without exposing one’s own data. In recent years, with
increasing attention on privacy concerns, federated learning has
gained widespread attention. At the same time, numerous studies
have explored the application of federated learning in the field of
computer vision, encompassing both CNN and Transformer ar-
chitectures [1, 16, 22, 28, 45]. He et al. [13] proposed a federated
learning library and benchmarking framework and evaluated FL
on the representative computer vision tasks. It pointed out that
in the computer vision domain, model performance in FL is be-
hind centralized training due to the heterogeneity. To mitigate this
impact, numerous studies have focused on improving federated
learning algorithms. Li et al. [24] enhanced the FedAvg algorithm
by optimizing the loss function for local client updates and incor-
porating constraints of the global model on local models. Fang et
al. [7] optimized the aggregation strategy based on the knowledge
distribution of the client models. Zhou et al. [47] proposed fea-
ture anchors to align the feature mappings and calibrate classifiers
across clients during local training. However, all of the above works
for the heterogeneity problem are limited to the classification task,
and have not been effectively explored on object detection models.
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Figure 2: Illustration of FedAHA, which addresses the heterogeneity issue in federated learning for object detection via shallow-
to-deep adaptive aggregation. The Texture Aggregation enhances the global model’s perceptual capabilities by dynamically
assigning weights to different client models based on mutual information. The Semantic Calibration leverages convex function
theory for semantic alignment, enhancing overall coherence.

Currently, there has been some preliminary exploration in fed-
erated object detection [14, 29, 30, 39, 43]. FedVision [29] proposed
an engineering platform to support the development of federated
learning powered computer vision applications, which is the first
real application of FL in computer vision-based tasks. Hegiste et
al. [14] proposed a FL algorithm for object detection in quality
inspection tasks using YOLOv5. However, both of them merely
integrate the FedAvg algorithm with object detection tasks, lacking
attention to the issue of heterogeneity. Yu et al. [43] improved Fe-
dAvg based Abnormal Weights Supression, reducing the influence
of the weights divergence caused by non-IID and unbalanced data.
However, the method of discarding abnormal weights leads to the
global model losing some useful information, showing a lack of
in-depth solution to the heterogeneity issue. Lu et al. [30] and Su et
al. [39] investigated the issue of cross-domain adaptation in object
detection. However, the essence of cross-domain problem still lies
in data heterogeneity, and they focused solely on the scenario of
autonomous driving, neglecting the algorithm’s generalizability.

2.3 Discussion
In summary, despite the rich progress made in the field of federated
learning within computer vision, there is a lack of effective and
in-depth solutions to the issue of heterogeneity in the domain of
object detection. Compared to related work, we conduct an in-
depth analysis of the specific challenges that heterogeneity poses to
object detection, and subsequently, we propose targeted solutions
to address these challenges. Additionally, supported by rigorous
experiments and theoretical underpinnings, our method exhibits
better performance and generalizability.

3 METHOD
3.1 Problem Setup
Under the standard federated learning setting, there are 𝐾 clients
participating in training, alongside a server that coordinates the
aggregation process. Each client trains a local model 𝜃𝑘 using their
private dataset 𝐷𝑘 = {(𝑥𝑖

𝑘
, 𝑦𝑖
𝑘
)}𝑁𝑘

𝑖=1, where 𝑁𝑘 denotes the size of
the 𝑘𝑡ℎ local dataset, and (𝑥𝑖

𝑘
, 𝑦𝑖
𝑘
) represents the inputs and labels,

respectively. After every 𝐸 epochs of local training, all the client
models will be transmitted to the central server and aggregated to
form a global model. Our objective is to develop a global model with
a generalized representation, which can be formulated as follows:

argmin
𝑤

𝐿(𝑤) =
𝐾∑︁
𝑘=1

𝑁𝑘

𝑁
𝐿𝑘 (𝑤,𝐷𝑘 ), (1)

where 𝑁 =
∑
𝑘∈𝐾 𝑁𝑘 , and𝑤 denotes the parameters of the global

model, 𝐿𝑘 is the loss function of the 𝑘𝑡ℎ client. In real-world sce-
narios, private datasets are often heterogeneous, primarily char-
acterized by two factors: an uneven distribution of categories and
disparities in data quantities. Given that the server cannot directly
access client-side data, to effectively mitigate this issue, similar to
FedMD [21] , FedDF [25] and RHFL [7], we deploy an unlabeled
public dataset 𝐷0 = {𝑥𝑖 }𝑁0

𝑖=1 on the server side as a bridge for com-
munication between client models. The public dataset facilitates
the implementation of our algorithm, and in practical scenarios, it
can be easily acquired through publicly available datasets, thereby
not introducing additional privacy risks. Moreover, we decompose
the detection model parameterized by 𝑤 = {𝜃, 𝜙} into a feature
extractor and a detection head. Specifically, the feature extractor ex-
tracts shallow texture features of the image and the detection head,
given the texture maps, further extracts semantic information and
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Figure 3: Visualization of the feature maps from the feature extractor for classification and detection tasks: (a) input image, (b)
and (c) are output by the classification network, (d) and (e) are output by the detection network. The features are upsampled to
the same scale as the input image for comparison. (b) and (d) are low-level features, (c) and (e) are high-level features. As can be
seen, the feature maps output by object detection networks contain more image structural information, such as the contours of
objects and the edge details of foregrounds and backgrounds.

predicts results by performing classification and regression. Our
work takes into account both the feature extractor and the detection
head, achieving a hierarchical federated learning aggregation via
shallow-to-deep, as illustrated in Figure 2.

3.2 Structure-aware Aggregation
For an in-depth study of the detection task, we visualize the process
of the feature extractor extracting texture features and compare it
with the classification task, as illustrated in Figure 3. Specifically,
for the classification network, we select ResNet50, which boasts
a accuracy of 75.99% on the ImageNet dataset. And for the detec-
tion network, we use YOLOv5s, which achieves a𝑚𝐴𝑃50 precision
of 56.8% on the MS COCO dataset. Both networks are thoroughly
trained, and the feature extractor employ the same residual network
structure. Through the results of visualization, we note that the
detection network encompasses more detailed structured image
information. This is because detection networks need to detect as
fully objects as possible, rather than simply outputting a single
result like in classification tasks, which is exactly the unique chal-
lenge for the object detection. Unfortunately, in federated learning
with data heterogeneity, this challenge is amplified. The feature
extractors of heterogeneous client models lead to instability in the
aggregation process. To tackle this challenge, taking into account
the characteristics of object detection networks, we introduce the
Structure-aware Aggregation.

The purpose of themodule is to adaptively assignweights to each
client model considering their feature extractors, to achieve consis-
tency in model aggregation and mitigate the impacts arising from
heterogeneity issues. Inspired by SSIM [42], through combining
structural coefficients and informational measures, we implement
the measurement of the consistency of feature extractors:

𝑀 (𝜃𝑡
𝑘
) = 𝑆 (𝜃𝑡

𝑘
)𝐼 (𝜃𝑡

𝑘
) . (2)

Here, 𝑡 represents the current round of communication, and𝑀 (𝜃𝑡
𝑘
)

represents the measure of consistency in feature extraction between

the 𝑘𝑡ℎ client model and the global model, which, in other words,
is positively correlated with its corresponding weight.

By comparing the feature maps extracted by client models with
those of the global model, we can obtain the structural coefficients
𝑆 (𝜃𝑡

𝑘
) and informational measures 𝐼 (𝜃𝑡

𝑘
), respectively. Suppose x

and y are two non-negative feature signals from the global and
client models, respectively, which have been aligned with each
other (e.g., spatial patches extracted from each feature maps). We
associate the two normalized vectors (x− 𝜇𝑥 )/𝜎𝑥 and (y− 𝜇𝑦)/𝜎𝑦 ,
with the structure of two images, where 𝜇 and 𝜎 respectively rep-
resent the mean and standard deviation. The correlation (inner
product) between these is a simple and effective measure to quan-
tify the structural similarity. Notice that the correlation between
(x − 𝜇𝑥 )/𝜎𝑥 and (y − 𝜇𝑦)/𝜎𝑦 is equivalent to the correlation coef-
ficient between x and y. Thus we design the structural coefficients
as follows:

𝑆 (x, y) =
𝜎𝑥𝑦 + 𝜖
𝜎𝑥𝜎𝑦 + 𝜖

, (3)

where the small constant 𝜖 is introduced to avoid division by zero
scenarios, specially we set 𝜖 = 0.01. 𝜎𝑥𝑦 is the covariance of x and
y, which can be estimated:

𝜎𝑥𝑦 = E[(x − 𝜇𝑥 ) (y − 𝜇𝑦)] . (4)

As for information measure, naturally, we think of utilizing mu-
tual information (MI) in information theory, which quantifies the
amount of information one variable provides about another. The
MI between x and y can be calculated as:

𝐼 (x, y) = E𝑝 (x,y) [𝑙𝑜𝑔(
𝑝 (x, y)
𝑝 (x)𝑝 (y) )], (5)

where 𝑝 (x) and 𝑝 (y) are the marginal probability distributions
of x and y, and 𝑝 (x, y) is their joint probability distribution. By
combining the previously obtained structural coefficients and in-
formational measures, we arrive at the final𝑀 (𝜃𝑘 ):

𝑀 (𝜃𝑡
𝑘
) = E(x,y𝑘 ) [𝑆 (x, y𝑘 )𝐼 (x, y𝑘 )] . (6)
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Considering the contribution of the number of client datasets to
model aggregation, we redefine the aggregation process as follows:

𝛼𝑘𝑡 =
𝑒𝑥𝑝 (𝑁𝑘𝑀 (𝜃𝑡𝑘 ))∑𝐾
𝑖=1 𝑒𝑥𝑝 (𝑁𝑖𝑀 (𝜃𝑡𝑖 )

, (7)

𝜃𝑡 =

𝐾∑︁
𝑘=1

𝛼𝑡
𝑘
𝜃𝑡
𝑘
. (8)

3.3 Convex Semantic Calibration
To improve the model’s precision in classification and localization,
we analyze the problem from the perspective of convex optimization
theory and introduce a semantic calibration module.

Beyond perceiving objects, the model also needs to process se-
mantic information such as categories and localization. In federated
learning, heterogeneous client datasets often lead client models into
different local convex domains, which can be formulated as:

𝑤𝑘 = argmin
𝑤𝑘

𝐿𝑘 (𝑤𝑘 ;𝐷𝑘 ). (9)

However, since DNN is indeed a highly non-convex model, the
weighted arithmetic average of 𝐾 local optima does not yield good
results, and even the global model might perform even worse than
the individual client models. Nevertheless, the loss functions we
commonly use, such as cross entropy loss, square loss, and hinge
loss, are convex. We will demonstrate the convex properties of
the loss function in object detection models in the next section to
provide support for our method. Therefore, averaging the semantic
information output by client models, rather than their parameters,
can guarantee that the global model’s performance is at least as
good as their average performance, as shown in Figure 4. This is
because, when 𝐿(·) is a convex function:

𝐿( 1
𝐾

𝐾∑︁
𝑘=1

𝐹 (𝑤𝑡
𝑘
;𝑥), 𝑦) ≤ 1

𝐾

𝐾∑︁
𝑘=1

𝐿(𝐹 (𝑤𝑡
𝑘
;𝑥), 𝑦), (10)

where 𝐹 (𝜃 ;𝑥) represents the semantic information output by the
model. To this end, we propose to ensemble the client models from
the perspective of semantic information. In other words, we aim
for the semantic information output by the global model to be as
close as possible to the average of the semantic information output
by the client models:

𝜙𝑡 = argmin
𝜙𝑡

| |𝐹 (𝑤𝑡 ;𝑥), 1
𝐾

𝐾∑︁
𝑘=1

𝐹 (𝑤𝑡
𝑘
;𝑥) | |. (11)

In order to achieve the effectmentioned above, we design the convex
semantic (CS) loss to constrain the semantic information output by
the global model as follows:

𝐿𝐶𝑆 (𝜙𝑡 ) =
1
𝐷0

∑︁
𝑥∈𝐷0

1
𝐾

𝐾∑︁
𝑘=1
| |𝐹 (𝑤𝑡 ;𝑥), 𝐹 (𝑤𝑡

𝑘
;𝑥) | |𝐹 , (12)

where | | · | |𝐹 is Frobenius norm. During the aggregation process,
the update of the global model can be denoted as:

𝜙𝑡 ← 𝜙𝑡 − 𝛼∇𝜙𝐿𝐶𝑆 (𝜙𝑡 ), (13)

where 𝛼 represents the learning rate.

Non-Convex Convex

local  optima
aggregated point

From Parameter Space 
to Semantic Space

semantic output
aggregated point

Figure 4: Illustration of the difference between parameter
aggregation and semantic calibration. With the excellent
properties of convex functions, semantic calibration enables
better performance and generalisation of the model

3.4 Proof of Convex Functions
In this section, we analyze the loss function in object detection to
verify convex function property. Specifically, in object detection
models, the loss function generally comprises three parts:

𝐿 = 𝜆𝑜𝑏 𝑗𝐿𝑜𝑏 𝑗 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠 + 𝜆𝑙𝑜𝑐𝐿𝑙𝑜𝑐 . (14)

Here, Equation14 contains confidence loss 𝐿𝑜𝑏 𝑗 (judging whether
there is an object), classification loss 𝐿𝑐𝑙𝑠 , and location loss 𝐿𝑙𝑜𝑐 ,
and the weights 𝜆𝑜𝑏 𝑗 , 𝜆𝑐𝑙𝑠 , and 𝜆𝑙𝑜𝑐 regulate error emphasis among
box coordinates, box dimensions, objectness, no-objectness and
classification. We will analyze these three parts separately.

Confidence Loss assesses the accuracy of themodel’s prediction
regarding the presence of an object within the predicted bound-
ing box. For each predicted box, the model provides a probability
prediction of object presence. Since this is a binary classification
problem, the commonly used loss function is the cross-entropy:

𝐿𝑜𝑏 𝑗 (𝑝,𝑦) = −[𝑦𝑙𝑜𝑔𝑝 + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝)] . (15)

Here, 𝑦 is the true label, typically 0 or 1, and 𝑝 is the probability of
being predicted as the positive class, ranging between 0 and 1. In the
binary cross-entropy function, for some fixed 𝑦, the second-order
partial derivative with respect to 𝑝 is:

𝜕2𝐿𝑜𝑏 𝑗

𝜕𝑝2
=
𝑦

𝑝2
+ (1 − 𝑦)
(1 − 𝑝)2

. (16)

This derivative is always positive within the domain of 𝑝 , indicating
that the function is convex with respect to 𝑝 .

Classification loss assesses the model’s ability to correctly
classify objects within bounding boxes. This part of the loss focuses
on the capability to accurately label detected objects. The multi-
class problem is an extension of the binary classification problem, so
the loss function here is quite similar to the previously mentioned
confidence loss:

𝐿𝑐𝑙𝑠 =

𝑀∑︁
𝑐=1

𝑦𝑐𝑙𝑜𝑔(𝑝𝑐 ), (17)

which𝑀 represents the number of categories. Therefore, 𝐿𝑐𝑙𝑠 can
be expressed as the sum of𝑀 convex functions. Assuming 𝑓1 and
𝑓2 are two convex functions and 𝑓 = 𝑓1 + 𝑓2, ∀𝜃 ∈ (0, 1) based on
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the properties of convex functions, we can conclude that:
𝑓 (𝜃𝑥1 + (1 − 𝜃 )𝑥2)

=𝑓1 [𝜃𝑥1 + (1 − 𝜃 )𝑥2] + 𝑓2 [𝜃𝑥1 + (1 − 𝜃 )𝑥2]
≤𝜃 𝑓1 (𝑥1) + (1 − 𝜃 ) 𝑓1 (𝑥2) + 𝜃 𝑓2 (𝑥1) + (1 − 𝜃 ) 𝑓2 (𝑥2)
=𝜃 𝑓 (𝑥1) + (1 − 𝜃 ) 𝑓 (𝑥2),

(18)

which can be easily extended to the sum of 𝑀 functions. This
indicates that 𝐿𝑐𝑙𝑠 , a function composed of𝑀 convex functions, is
also convex.

Location loss is used to measure the difference between the
predicted bounding boxes and the actual bounding boxes. It in-
cludes IoU loss, which measures the degree of overlap between
the predicted and actual boxes, and L2 loss, used to minimize the
squared error between the coordinates of the predicted and actual
boxes. L2 loss is a standard convex function, so we will not expand
on its analysis here. Instead, we focus our study on the IoU loss.

In the location process, the output of the object detection model
includes four normalized parameters, which we denote as 𝑥,𝑦, �̃�
and ℎ̃. Here, 𝑥 and 𝑦 represent the center coordinates of the pre-
dicted bounding box, while �̃� and ℎ̃ represent the width and height,
respectively. Inspired by previous research work on IoU loss [37, 46],
we decompose the localization problem into two fine-tuning sub-
problems: translation and scaling.

For the first sub-problem, we focus only on the impact of the out-
puts �̃� and ℎ̃. Considering that client models in federated learning
converge to local optima, it is ensured that there will be a signifi-
cant overlap between the predicted bounding boxes and the ground
truth. Therefore, we approximate the IoU as the ratio of the area
of the two of them, and the IoU is adjusted only within a small
range. Next, we need to analyze the two different expressions of
IoU separately. When the predicted bounding box is slightly larger
than the ground truth, we simplify the loss function based on this
assumption as follows:

𝐿1 (�̃�, ℎ̃) ≈ 1 − 𝑤ℎ
�̃�ℎ̃

, (19)

Here, 𝑤 and ℎ represent the width and height of the bounding
box in the ground truth, respectively. Assume 𝑝1 = (𝑤1, ℎ̃1) and
𝑝2 = (𝑤2, ℎ̃2) are two points in its domain of definition, and the
latter’s box is larger than the former’s, i.e., 𝑤2 > 𝑤1, ℎ̃2 > ℎ̃1.
Ignoring terms of third order and higher regarding 𝜃 and (1 − 𝜃 ),
we can obtain:
𝐿1 [𝜃𝑝1 + (1 − 𝜃 )𝑝2] − [𝜃𝐿1 (𝑝1) + (1 − 𝜃 )𝐿1 (𝑝2)]

=
𝜃𝑤ℎ

𝑤1ℎ̃1
+ (1 − 𝜃 )𝑤ℎ

𝑤2ℎ̃2
− 𝑤ℎ

[𝜃𝑤1 + (1 − 𝜃 )𝑤2] [𝜃ℎ̃1 + (1 − 𝜃 )ℎ̃2]
≈3𝜃 (𝜃 − 1)𝑤1ℎ̃1𝑤2ℎ̃2 ≤ 0.

(20)

And when the predicted bounding box is slightly smaller than the
ground truth, the loss function can be written as:

𝐿1 (�̃�, ℎ̃) ≈ 1 − �̃�ℎ̃
𝑤ℎ

. (21)

Following Equation20, we can obtain:
𝐿1 [𝜃𝑝1 + (1 − 𝜃 )𝑝2] − [𝜃𝐿1 (𝑝1) + (1 − 𝜃 )𝐿1 (𝑝2)]

=
1
𝑤ℎ

𝜃 (1 − 𝜃 ) (𝑤1 −𝑤2) (ℎ̃2 − ℎ̃1) ≤ 0.
(22)

Up to this point, we have proven the convex property of the loss
function in the first sub-problem under two scenarios.

For the second sub-problem, we consider the prediction of the
bounding box center, focusing solely on the impact of the outputs
𝑥 and 𝑦. For convenience of description, we denote the offset be-
tween the predicted coordinates (𝑥,𝑦) and the ground truth (𝑥,𝑦)
as (Δ𝑥,Δ𝑦), then we have:

𝐿2 (𝑥,𝑦) =
(ℎ − Δ𝑦) (𝑤 − Δ𝑥)

𝑤ℎ + ℎΔ𝑥 +𝑤Δ𝑦 − Δ𝑥Δ𝑦 . (23)

Further, we can calculate its Hessian matrix:

𝐻 (𝐿2 ) =


4𝑤ℎ (ℎ−Δ𝑦)2
(𝑤ℎ+ℎΔ𝑥+𝑤Δ𝑦−Δ𝑥Δ𝑦)3

2𝑤ℎ (3𝑤ℎ−ℎΔ𝑥−𝑤Δ𝑦+Δ𝑥Δ𝑦)
(𝑤ℎ+ℎΔ𝑥+𝑤Δ𝑦−Δ𝑥Δ𝑦)3

2𝑤ℎ (3𝑤ℎ−ℎΔ𝑥−𝑤Δ𝑦+Δ𝑥Δ𝑦)
(𝑤ℎ+ℎΔ𝑥+𝑤Δ𝑦−Δ𝑥Δ𝑦)3

4𝑤ℎ (𝑤−Δ𝑥 )2
(𝑤ℎ+ℎΔ𝑥+𝑤Δ𝑦−Δ𝑥Δ𝑦)3

 ,
(24)

which is a positive-definite matrix. Overall, although the IoU loss is
not strictly a convex function, we have demonstrated that it exhibits
properties akin to those of a convex function within the context of
the problem we considered.

4 EXPERIMENTS
4.1 Experimental Setting
Datasets and Models. We extensively evaluate our method with
three public datasets: VOC 2007 [6], NWPU VHR-10 [4], BCCD [38].
These three datasets originate respectively from the realms of nat-
ural imagery, remote sensing imagery, and medical imagery, each
representing valuable federated learning application scenario. In
partitioning heterogeneous datasets, we refer to the commonly used
partitioning methods [23] within the federated learning commu-
nity and combined them with the characteristics and application
scenarios specific to each dataset. Specifically, for the natural
imagery VOC 2007, we adopt the ‘label distribution skew’ par-
titioning method. This involves partitioning data for each client
based on the labels of the samples. With 𝐾 clients and 𝑀 data
categories, each client is allocated 𝑀/𝐾 categories, ensuring no
overlap of samples among different clients. For the remote sens-
ing imagery NWPU VHR-10, we combine ‘feature distribution
skew’ and ‘quantity skew’ for data partitioning. Initially, images are
categorized and ordered based on the scene of capture (such as air-
ports, industrial areas, residential areas, green zones, oceans, etc.).
Subsequently, we introduce the Dirichlet distribution for quantity
partitioning, allowing us to flexibly alter the level of imbalance
by adjusting the parameter 𝛽 . For the medical imagery BCCD,
we implement the ‘quantity skew’ partitioning method using the
Dirichlet distribution. In addition, we conduct experiments in two
levels of heterogeneous scenarios, setting the number of clients
𝐾 , to 4 and 10, respectively, and the parameter 𝛽 in the Dirichlet
distribution to 0.5 and 0.1, respectively. Finally, for the models,
we select the YOLOv5s and RT-DETER-L, hereinafter abbreviated
respectively as YOLOv5 and RT-DETR.

Evaluation Metrics. We use mean Average Precision (mAP) to
evaluate the detection performance. The mAP is a comprehensive
indicator obtained by averaging AP values, which uses an integral
method to calculate the area enclosed by the precision-recall curve



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Adaptive Hierarchical Aggregation for Federated Object Detection MM’24, October 28 - November 1, 2024, Melbourne, Australia.

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Ablation study with four heterogeneous clients (𝛽 = 0.5) of different datasets.

Model SAA CSC VOC 2007 NWPU VHR-10 BCCD
mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95

YOLOv5

72.45 46.90 91.84 61.33 85.85 58.10
✓ 73.51 47.37 91.83 61.48 86.20 58.03

✓ 72.97 47.98 91.97 61.83 85.58 58.73
✓ ✓ 74.72 48.79 92.77 62.97 87.82 60.25

RT-DETR

73.53 48.20 90.57 60.27 84.23 57.89
✓ 74.72 49.67 90.86 61.02 85.66 58.18

✓ 73.88 48.55 90.41 61.11 84.81 59.07
✓ ✓ 76.34 50.12 91.49 61.51 86.50 61.81

and coordinate axis of all categories. The mAP can be calculated as:

𝑚𝐴𝑃 =
𝐴𝑃

𝑀
=

∫ 1
0 𝑝 (𝑟 )𝑑𝑟
𝑀

, (25)

where 𝑝 denotes Precision, 𝑟 denotes Recall, and𝑀 is the number
of categories. Typically, the mAP is calculated as the average at a
specific Intersection over Union (IoU) threshold. Consequently, we
employed two widely used thresholding approaches to calculate the
mAP: mAP50 represents for IoU=0.5 and mAP50:95 for increasing
IoU threshold values, from 0.5 to 0.95 by 0.05.

Implementation Details. Our proposed approach is imple-
mented in PyTorch and runs on a workstation with four NVIDIA
3090 GPUs, using PyTorch-1.8, running Ubuntu 18.04. In local learn-
ing process, all clients adopt the same hyper-parameter setting. The
input image is resized to 512×512. We use the SGD optimizer with
an initial learning rate of 𝑙𝑟 = 0.01 and the batch size of 256. For
each communication round, each client locally trains for 20 epochs.
During the local training, we use linear learning rate decay, and
after 20 epochs training, the learning rate decays to the original 0.1.

State-of-the-Art Methods. In order to prove the effectiveness
of our FedAHA, we compare FedAHAwith the heterogeneous FL al-
gorithm: FedProx [24], SCAFFOLD [19], FedDF [25], FedAvg(AWS)
[43] and FedDAD [30]. Among them, FedProx, SCAFFOLD, and
FedDF are classic algorithms targeted at data heterogeneity, while
FedAvg(AWS) and FedDAD are federated object detection algo-
rithms designed to mitigate issues of heterogeneity. It is notewor-
thy that both FedDF and our method incorporate a public dataset
within the framework. To ensure a fair comparison, we set aside
10% of the training data from the clients to form a public dataset
on the server, thereby guaranteeing that the total amount of data
used across all methods is consistent.

4.2 Ablation Study
Effect of Components. Table 1&2 present the ablation results of
our proposed components. Evidently, the SAA and CSC modules
each independently contribute to improving the model’s perfor-
mance to a certain extent. A noteworthy observation is that, typi-
cally, the use of SAA alone tends to yield a greater enhancement
in performance compared to the exclusive use of CSC. This sug-
gests that SAA plays a more fundamental and critical role, aligning
with our original design intentions. However, the contribution of

Table 2: Comparison with the state-of-the-art methods when
the number of clients is set to four (𝛽 = 0.5).

Model Method VOC 2007 NWPU VHR-10 BCCD
mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95

YOLOv5

FedAvg 72.45 46.90 91.84 61.33 85.85 58.10
FedProx 71.36 46.68 91.29 61.42 86.06 58.87

SCAFFOLD 71.48 46.51 89.30 60.59 85.49 59.02
FedDF 72.16 47.38 90.79 61.87 86.34 58.72

FedAvg(AWS) 71.14 46.36 91.30 61.99 86.88 59.25
FedDAD 72.40 47.39 91.09 61.02 86.42 58.63
Ours 74.72 48.79 92.77 62.97 87.82 60.25

RT-DETR

FedAvg 73.53 48.20 90.57 60.27 84.23 57.89
FedProx 72.53 47.63 90.25 60.32 84.71 57.45

SCAFFOLD 74.74 48.32 91.04 60.25 85.73 59.54
FedDF 74.99 49.26 91.52 61.36 84.07 59.53

FedAvg(AWS) 71.83 47.23 90.78 60.85 84.04 57.21
FedDAD 72.16 47.81 90.55 61.13 84.84 58.27
Ours 76.34 50.12 91.49 61.51 86.50 61.81

the CSC module cannot be overlooked. It fine-tunes the model’s
classification and localization capabilities, which is reflected in the
mAP50:95 metric. Furthermore, when both modules operate in tan-
dem, they lead to a significant improvement. For instance, when
𝐾 = 10, for the VOC 2007 dataset, the combined action of both mod-
ules resulted in a 6.51% increase in mAP50, which far exceeds the
3.02%, 1.77% enhancement observed with either module working
alone. Thus, the SAA and CSC complement each other effectively.

Impact of Heterogeneity. As shown in the Table 1&3, our
method can achieve great improvement under different hetero-
geneity rates, and the improvement will be more obvious at high
heterogeneity rates, especially on the VOC 2007 dataset. When the
number of clients is four, our method improves on the original base-
line by 2.27% mAP50 score and 2.81% mAP50 score for YOLOv5 and
RT-DETR, respectively. When the number of clients increased to
ten, our method results in a 6.12% and 6.51% mAP50 enhancement
over the baseline for YOLOv5s and RT-DETR, respectively. The
addition of the SAA component makes the knowledge of relatively
noisy clients be learned less in the process of collaborative learning,
so our approach demonstrates more significant effectiveness. This
demonstrates that the algorithm we proposed is highly effective in
mitigating issues related to heterogeneity.
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Table 3: Ablation study with ten heterogeneous clients (𝛽 = 0.1) of different dataset.

Model SAA CSC VOC 2007 NWPU VHR-10 BCCD
mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95

YOLOv5

54.61 34.58 83.25 53.91 73.37 43.42
✓ 58.41 36.81 85.97 55.21 76.20 45.03

✓ 56.59 36.17 84.65 54.74 76.77 45.27
✓ ✓ 60.73 39.48 87.66 56.63 78.30 46.92

RT-DETR

55.29 34.85 84.64 53.99 74.62 43.91
✓ 58.31 38.07 87.79 55.31 75.98 45.01

✓ 57.06 37.57 85.57 54.54 75.69 45.16
✓ ✓ 61.80 38.73 87.59 56.43 77.82 46.68

Table 4: Comparison with the state-of-the-art methods when
the number of clients is set to ten (𝛽 = 0.1).

Model Method VOC 2007 NWPU VHR-10 BCCD
mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95

YOLOv5

FedAvg 54.61 34.58 83.25 53.91 73.37 43.42
FedProx 53.12 33.95 84.36 54.63 74.35 43.82

SCAFFOLD 55.17 34.76 86.28 56.71 74.94 44.98
FedDF 56.88 36.10 85.37 54.13 76.48 45.44

FedAvg(AWS) 55.61 35.38 85.74 55.71 75.33 44.29
FedDAD 55.19 34.87 85.80 55.80 75.76 45.01
Ours 60.73 39.48 87.66 56.63 78.30 46.92

RT-DETR

FedAvg 55.29 34.85 84.64 53.99 74.62 43.91
FedProx 55.10 33.91 86.12 55.71 72.27 42.69

SCAFFOLD 56.86 34.04 85.48 56.02 74.72 44.71
FedDF 57.30 35.53 85.64 55.85 75.44 43.70

FedAvg(AWS) 55.39 34.38 85.26 55.78 74.46 43.28
FedDAD 55.62 35.76 85.08 55.53 74.31 44.72
Ours 61.80 38.73 87.59 56.43 77.82 46.68

4.3 Comparison with State-of-the-Art Methods
Performance Analysis.We provide comparison results with state-
of-the-art methods on two models with three types of data. The
comparisons on two heterogeneity rates (𝐾 = 4, 10) are shown
in Table 2&4. Experimental results indicate that our method out-
performs existing approaches in most performance metrics under
various degrees of heterogeneity. Particularly in scenarios with
stronger heterogeneity, our method surpasses other algorithms by
a greater margin.

Robustness Analysis. Thanks to its task-driven design, our
approach has shown both strong model generalization capabilities
and dataset generalization abilities. Specifically, our method pro-
vides strong support for two mainstream models: the CNN-based
YOLOv5 and the Transformer-based RT-DETER. Moreover, our
method is capable of handling a variety of datasets, including natu-
ral images, remote sensing images, and medical images, which vary
significantly in style.

Efficiency Analysis. In practical scenarios, the computational
capability of clients are typically quite limited. In contrast, servers
possess robust computational resource. Therefore, to enhance ef-
ficiency in the federated learning process, it is advisable to shift
computational overhead to the server as much as possible. Aim-
ing to authentically evaluate the runtime of each algorithm, we
utilize the FedML [12] open-source library to establish a small-
scale federated learning system composed of Raspberry Pis and
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Figure 5: The average normalized training time of different
algorithms in each round of federated learning. This demon-
strates that our algorithm achieves an excellent trade-off
between performance and efficiency

one workstation. To more intuitively compare the efficiency gaps
between different algorithms, as shown in Figure 5, we record the
training time of various algorithms during each training round and
normalize the data. Compared to algorithms like FedProx, SCAF-
FOLD, and FedDAD, which introduce additional computational or
communication overhead on clients, our method exhibits a clear
efficiency advantage. For FedDF and FedAvg(AWS), our method
can also achieve comparable efficiency performance in the case
of significant performance advantages. In summary, our approach
achieves a good trade-off between performance and efficiency.

5 CONCLUSION
In this paper, we introduce FedAHA, a pioneering federated learn-
ing algorithm specifically designed for object detection within het-
erogeneous scenarios. To address the distinctive challenges encoun-
tered in federated object detection, we have meticulously developed
two modules: SAA and CSC. Our approach is thoroughly backed
by comprehensive experimental analyses and robust theoretical
proofs. Extensive testing demonstrates that our method not only
outperforms current state-of-the-art methods but also achieves an
exceptional balance between performance and efficiency. We are
confident that our contributions will significantly broaden the scope
of federated learning applications in object detection.
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