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ABSTRACT

Offline reinforcement learning (RL) is crucial for real-world applications where
exploration can be costly. However, offline learned policies are often suboptimal
and require online finetuning. In this paper, we tackle the fundamental dilemma
of offline-to-online finetuning: if the agent remains pessimistic, it may fail to
learn a better policy, while if it becomes optimistic directly, performance may
suffer from a sudden drop. We show theoretically that the agent should adopt
neither optimistic nor pessimistic policies during the offline-to-online transition.
Instead, we propose a Bayesian approach, where the agent acts by sampling from its
posterior and updates its belief accordingly. We demonstrate that such an agent can
avoid a sudden performance drop while still being guaranteed to find the optimal
policy. Based on our theoretical findings, we introduce a novel algorithm that
outperforms existing methods on various benchmarks, demonstrating the efficacy
of our approach. Overall, the proposed approach provides a new perspective on
offline-to-online finetuning that has the potential to enable more effective learning
from offline data.

1 INTRODUCTION
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Figure 1: Fine-tuning dilemma in offline-to-
online setting. Pessimistic offline methods
have a slow performance improvement (green),
while optimistic agents suffer from initial
performance drop (orange). We develop
a Bayesian-based approach to attain a fast
improvement with a smaller performance
drop (blue).

Reinforcement learning (RL) has shown impres-
sive success in solving complex decision-making
problems such as board games (Silver et al., 2016)
and video games (Mnih et al., 2013), and has been
applied to many real-world problems like plasma
control (Degrave et al., 2022), and human prefer-
ence alignment (Ouyang et al., 2022). However,
RL algorithms often rely on a significant amount
of exploration, which can be time-consuming and
expensive. Offline RL (Levine et al., 2020) tack-
les such a problem by utilizing previously collected
data and has gained increasing attention in recent
years, with the potential to leverage large-scale and
diverse datasets (Kumar et al., 2022). However, of-
fline learned policies can be suboptimal and general-
ize poorly due to insufficient data and hallucination,
necessitating further online fine-tuning.

To address this challenge, a hybrid approach (Nair
et al., 2020; Lee et al., 2022; Song et al., 2022) has
been proposed, enabling sample-efficient learning
utilizing both previously collected data and online environments. However, previous methods do not
fully address the fundamental dilemma in offline-to-online (off-to-on) RL. That is, if the algorithm
remains pessimistic as it does in offline algorithms, the agent learns slowly due to a lack of exploration.
Conversely, when the algorithm is optimistic, the agent’s performance may suffer from a sudden
drop due to inefficient use of offline knowledge and radical exploration, as shown in Figure 1. This
naturally leads to the question:
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Can we design a offline-to-online algorithm that can effectively leverage offline data while exploring
efficiently in a principled way?

To answer this question, we integrate information-theoretic concepts into the design and analysis of
RL algorithms. Our results show that the Bayesian approach has strong guarantees and is superior
over both optimism (e.g., UCB) and pessimism (e.g., LCB) in off-to-on settings. Intuitively, by
sampling from the posterior rather than taking the most optimistic one or the most pessimistic one, it
achieves a balance between reusing known experiences and exploring the unknowns. We derive a
concrete bound in linear MDPs and conduct experiments in didactic bandits to further demonstrate
the superiority of the Bayesian approach in off-to-on settings. Based on the theoretical results, we
design an efficient offline-to-online algorithm by leveraging the idea of bootstrapping (Osband et al.,
2016). Experiments show that our algorithm effectively resolves the dilemma, which effectively
explores while avoiding a sudden drop in performance. Also, our algorithm is generally compatible
with off-the-shelf offline RL methods for off-to-on transition.

Our contribution is threefold: (1) we provide an information-theoretic characterization of RL algo-
rithms’ performance that links online and offline performance with the agent’s gained information
about the environment, (2) we demonstrate the superiority of the Bayesian approach in offline-to-
online RL theoretically, and (3) we develop a practical approach with bootstrapping for offline-
to-online RL and achieve superior performance on various tasks. Overall, our proposed approach
provides a new perspective on offline-to-online fine-tuning that has the potential to enable more
effective learning from offline data.

1.1 RELATED WORKS

Offline-to-Online RL. On the empirical side, Nair et al. (2020) is among the first to propose a
direct solution to off-to-on RL. Prior works like(Lee et al., 2022; Zhang et al., 2023) propose various
approaches, including balanced relay buffer and policy expansion, to reuse offline knowledge more
efficiently. Nakamoto et al. (2023) observes an optimistic-pessimistic dilemma similar to ours and
proposes calibrating the offline and online learned value function. However, they do not formally
point out such a dilemma nor analyze it in a principled way.

On the theoretical side, Xie et al. (2021) shows the importance of online exploration when the offline
dataset only has partial coverage. Song et al. (2022) demonstrates cases where a purely offline dataset
can fail while a hybrid approach succeeds, and Xie et al. (2022) shows an interesting connection
between offline concentration coefficient and online learning efficiency.

Bayesian RL and Information-Theoretic Analysis. Osband & Van Roy (2017); Russo & Van Roy
(2014) theoretically justify the effectiveness of Bayesian methods like Thompson sampling. Uehara
& Sun (2021) analyzes the performance of Bayesian methods in the offline setting. Lu & Van Roy
(2019) derives an information-theoretical formulation to analyze the regret bound of online learning
algorithms like UCB and TS. Our work extends their work to offline and off-to-on settings.

On the empirical side, (Osband et al., 2016) first adopts a Bayesian view into the exploration of deep
RL. (Chua et al., 2018) proposes a model-based approach for Bayesian exploration. Ghosh et al.
(2022) adopts the Bayesian principle in the offline setting. Our work extends these works to the
off-to-on setting.

2 PRELIMINARIES

2.1 EPISODIC REINFORCEMENT LEARNING

We consider finite-horizon episodic Markov Decision Processes (MDPs), defined by the tuple
(S,A, H,P, r), where S is a state space, A is an action space, H is the horizon and P =
{Ph}Hh=1, r = {rh}Hh=1 are the transition function and reward function, respectively.

A policy π = {πh}Hh=1 specifies a decision-making strategy in which the agent chooses its actions
based on the current state, i.e., ah ∼ πh(· | sh). The value function V π

h : S → R is defined as the
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sum of future rewards starting at state s and step h ∈ [H], and similarly, the Q-value function, i.e.

V π
h (s) = Eπ

[ H∑
t=h

rt(st, at)
∣∣∣ sh = s

]
, Qπ

h(s, a) = Eπ

[ H∑
t=h

rh(st, at)
∣∣∣ sh = s, ah = a

]
. (1)

where the expectation is w.r.t. the trajectory τ induced by π. We define the Bellman operator as

(Bhf)(s, a) = E
[
rh(s, a) + f(s′)

]
, (2)

for any f : S → R and h ∈ [H]. The optimal Q-function Q∗, optimal value function V ∗ and optimal
policy π∗ are related by the Bellman optimality equation

V ∗
h (s) = max

a∈A
Q∗

h(s, a), Q∗
h(s, a) = (BhV

∗
h+1)(s, a), π∗

h(· | s) = argmax
π

Ea∼πQ
∗
h(s, a). (3)

We define the suboptimality, or the per-episode regret as the performance difference of the optimal
policy π∗ and the current policy πk given the initial state s1 = s. That is

∆k = SubOpt(πk; s) = V π∗

1 (s)− V πk
1 (s).

2.2 LINEAR FUNCTION APPROXIMATION

To derive a concrete bound for Bayesian offline-to-online learning, we consider the linear MDP (Jin
et al., 2020; 2021) as follows, where the transition kernel and expected reward function are linear
with respect to a feature map, which indicate that the value function is also linear.
Definition 2.1 (Linear MDP). MDP(S,A,H,P, r) is a linear MDP with a feature map ϕ : S ×A →
Rd, if for any h ∈ [H], there exist d unknown (signed) measures µh = (µ

(1)
h , . . . , µ

(d)
h ) over S and

an unknown vector θh ∈ Rd, such that for any (s, a) ∈ S ×A, we have

Ph(· | s, a) = ⟨ϕ(s, a), µh(·)⟩, rh(s, a) = ⟨ϕ(s, a), θh⟩. (4)

Without loss of generality, we assume ||ϕ(s, a)|| ≤ 1 for all (s, a) ∈ S × A, and
max{||µh(S)||, ||θh||} ≤

√
d for all h ∈ [H].

2.3 INFORMATION GAIN AND BAYESIAN LEARNING

Let Hk,h = (s1,1, a1,1, r1,1, . . . , sk,h−1, ak,h−1, rk,h−1, sk,h) be all the history up to step h of
episode k. We use subscript k, h to indicate quantities conditioned on Hk,h, i.e. Pk,h =
P(·|Hk,h),Ek,h[·] = E[·|Hk,h]. The filtered mutual information is defined as

Ik,h(X;Y ) = DKL(Pk,h(X,Y )||Pk,h(X)Pk,h(Y )),

which is a random variable of Hk,h. For a horizon dependent quantity fk,h, we define Ek[fk] =∑H
h=1 Ek,h[fk,h] and similarly for Pk. We use t instead of k, h for simplicity when it does not lead

to confusion, e.g., It
∆
= Ik,h.

We also define the information ratio (Russo & Van Roy, 2016) as the ratio between the expected
single step regret and the expected reduction in entropy of the unknown parameter as follows
Definition 2.2 (Information Ratio). The information ratio Γt given history Ht is the supremum value
Γ such that

Pk

(
|Qw(s, a)− EkQw(s, a)| ≤

Γ

2

√
It(wh; rt,a, st+1,a),∀h ∈ [H], s ∈ S, a ∈ A

)
> 1− δ

2
.

From a Bayesian point of view, we assume that the MDP can be described by an unknown model
parameter w = {wh}Hh=1, which governs the outcome distribution. The agent’s belief over the
environment at the t-th timestep is represented as a distribution βt over w. We reload π as an
algorithm that generates a sequence of functions {π}Kk=1 that map histories and current states to
distributions over actions. We define the Bayesian regret of an algorithm π over T periods

BayesRegret(T, π) = E[Regret(T, π)] =
K∑

k=1

Ek,βk
[∆k],
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where T = HK and the expectation is taken over the randomness in outcomes, algorithm π, as
well as the posterior distribution βk,h over w. We also use BayesRegret(N,T, π) to denote the
offline-to-online regret of an algorithm π that uses an offline dataset of size N = LH and interacts
online for T = HK steps.

Similar to the definition of the concentration coefficient in offline RL literature (Jin et al., 2021;
Uehara & Sun, 2021), we can generalize such a concept by taking the expectation over the belief β.
Specifically, we have the following definition (Uehara & Sun, 2021).

Definition 2.3. The Bayesian concentration coefficient with respect to the feature map ϕ(s, a) and
posterior β is defined as

C†
β = max

h∈[H]
Ew∼β sup

∥x∥=1

x⊤Σπ∗
w,hx

x⊤Σρh
x

, (5)

where Σπ∗
w,h = E(s,a)∼dπ∗

w,h(s,a)[ϕ(s, a)ϕ(s, a)
⊤],Σρh

= Eρh
[ϕ(s, a)ϕ(s, a)⊤].

Bayesian concentration coefficient is a natural generalization of normal concentration coefficient
(Uehara & Sun, 2021; Jin et al., 2021; Rashidinejad et al., 2021) in Baysian settings and has appeared
in previous work (Uehara & Sun, 2021).

3 THEORETICAL ANALYSIS

It is known that we should adopt optimistic algorithms (e.g., UCB (Auer, 2002)) in online settings to
avoid missing optimal strategies, and we should adopt pessimistic algorithms (e.g., LCB (Rashidinejad
et al., 2021)) to avoid overconfidence in unknown regions. However, it is unclear what is the
principled way for offline-to-online settings where both an offline dataset and an online environment
are available. As Figure 1 demonstrates, optimistic online algorithms (e.g., TD3 (Fujimoto et al.,
2018)) can mismanage prior knowledge in the dataset, leading to a sudden drop in performance. On
the other hand, pessimistic offline algorithms (e.g., TD3+BC (Fujimoto & Gu, 2021)) can be too
conservative in exploration, which leads to slow learning.

We conduct an information-theoretic analysis with a Bayesian point of view in Section 3.1 to
understand how we can use both the dataset and the environment properly. Specifically, we cast
the dataset as priors and the online interaction as updating posteriors. From such a point of view,
we show that optimistic algorithms like UCB can utilize their posterior to make quick adaptations,
and pessimistic algorithms like LCB can utilize their posterior to avoid risky trials, which aligns
with prior findings. More interestingly, we show that a Bayesian agent (e.g., Thompson Sampling;
TS) can utilize its posterior to do both and outperform optimistic and pessimistic agents. Intuitively,
uniformly sampling from the posterior rather than acting according to the most optimistic or the most
pessimistic estimation strikes a proper balance between efficient exploration and safe exploitation.
Such property leads to a concrete performance bound for Bayesian agents in offline-to-online settings
with linear MDPs, which is probably better than UCB and LCB agents as illustrated in Section 3.2.
Such theoretical prediction matches well with empirical observations on didactic bandit settings, as
shown in Figure 2. Overall, our insight is concluded in Table 1, indicating that we should adopt
neither optimism nor pessimism in the offline-to-online setting but a “realist” approach that samples
from the posterior uniformly.

3.1 INFORMATION-THEORETIC ANALYSIS

What are good exploration and exploitation strategies, information-theoretically? Lu & Van Roy
(2019) gives a nice answer for the case of online exploration. That is, a good exploration strategy
incurs a suboptimality only when it can learn a lot from the environment. Therefore, the suboptimality
at each step should be proportional to the possible information gain. Similarly, for offline exploitation,
a good exploitation strategy should incur a suboptimality only due to its uncertainty about the
environment after learning from the offline dataset. This allows us to redefine abstract exploration
and exploitation strategies like UCB, LCB, and TS in an abstract and information-theoretic manner,
with details shown in Appendix A.1. For the above abstract algorithms, we have the following
performance guarantees.
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Theorem 3.1. Suppose

Pk

(∣∣Qt,w(s, a)− Q̄t,w(s, a)
∣∣ ≤ Γt

2

√
It(wh; rt,a, st+1,a),∀h ∈ [H], s ∈ S, a ∈ A

)
(6)

is greater than 1 − δ/2, where Q̄t,w(s, a) is the Bayesian average value, i.e., Q̄t,w(s, a) =
Ew∼βt

[Qt,w(s, a)].

Then the per-episode regret of Thompson Sampling and UCB agents satisfies

Ek[∆k] ≤
H∑

h=1

ΓtEk

[√
It(wh; at, rt, st+1)

]
+ 2δH2. (7)

Similarly, the per-episode regret of Thompson Sampling and LCB agents satisfies

Ek[∆k] ≤
H∑

h=1

ΓtEπ∗

[√
It(wh; a∗t , rt, st+1)

]
+ 2δH2. (8)

Proof. Please refer to Appendix C.1 for detailed proof.

Equation (6) abstracts away specific structures of MDPs (e.g., linear MDP, etc.) and only assumes that
the uncertainty in the Q-value function can be reduced at a certain rate as we gain more information
about the environment. Equation (6) generally holds in various settings, including linear MDPs (Jin
et al., 2020), factored MDPs (Lu & Van Roy, 2019), and kernel MDPs (Yang & Wang, 2020). Please
refer to Lu & Van Roy (2019) for a detailed derivation.

Theorem 3.1 leads to an information-theoretic performance bound. Equation (7) indicates an online
Õ(

√
T )-regret bound using the chain rule of mutual information, as depicted in Proposition B.1.

With additional assumption on the coverage of the dataset, Equation (8) implies an Õ(
√

C/N)
offline performance bound where C is the coverage coefficient. Note that Thompson sampling enjoys
both regret bounds in Equation (7) and Equation (8), which indicates that Thompson sampling is
suitable for both offline and online settings. Moreover, it indicates that a Bayesian approach enjoys
better guarantees in offline-to-online settings since it can avoid sudden performance drop (due to
Equation (8)) and explore efficiently (due to Equation (7)). This is summarized in Table 1, where
we provide a classification of existing settings and corresponding doctrines. Table 1 suggests that
the Bayesian approach is consistent across different settings and recommends a realist approach in
offline-to-online settings, as opposed to optimism or pessimism.

Setting Doctrine Algorithm

Online Learning Optimism TS, UCB
Offline Learning Pessimism TS, LCB
Offline-to-online Realism TS

Table 1: A taxonomy of the doctrines in different settings of reinforcement learning. a Bayesian
approach like TS is generally suitable for online, offline and offline-to-online settings, and is the only
one that works in the offline-to-online setting.

3.2 SPECIFICATION IN LINEAR MDPS

In this section, we provide specific regret bounds for Bayesian methods in linear MDPs when both
offline data and online interactions are available. Applying Theorem 3.1 to linear MDPs as defined in
Definition 2.1, we have the following theorem.
Theorem 3.2 (Regret of Bayesian Agents in Linear MDPs, informal). Given an offline dataset D of
size N , the regret of Thompson sampling during online interaction satisfies the following bound:

BayesRegret(N,T, π) ≤ c
√
d3H3ι

(√
N

C†
β

+ T −
√

N

C†
β

)
, (9)

where ι is a logarithmic factor and c is an absolute constant.
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Figure 2: Theoretical prediction of Theorem 3.2 and experiments on multi-arm bandits. The
performance of a Bayesian approach matches the performance of LCB at an early stage by using
prior knowledge in the dataset properly and matches the performance of UCB in the run by allowing
efficient exploration. Therefore, a Bayes agent performs better than both UCB and LCB agents.
Experiments on multi-arm bandits match well with our theoretical prediction.

Proof. Please refer to Appendix C.2 for detailed proof.

Theorem 3.2 demonstrates that the Bayesian approach provides a robust regret guarantee. From
simple algebraic observations that

√
a+ b−√

a ≤
√
b and

√
a+ b−√

a ≤ b/(2
√
a), Theorem 3.2

indicates that Bayes agent can have a jump start with low regret (i.e., Õ(
√
C†

β/N)) and converges to

the optimal policy at an Õ(
√
T ) rate, a feat neither naive online nor offline approaches can accomplish

alone. This is further formalized in Propositions 3.3 and 3.4. To further verify our theoretical findings,
we conducted an experiment on didactic bandit settings; the result is shown in Figure 2. Experiment
results align well with our theoretical predictions in Equation 15. Please refer to Appendix E for
more experiment details on the didactic bandits.
Proposition 3.3. Under the same assumption of Theorem 3.2, the expected one-step suboptimality of
UCB can be unbounded (i.e. Õ(1)), while the expected suboptimality of Thompson sampling satisfies

SubOpt(N,T, π) ≤ c

√
C†

βd
3H3ι

N
= Õ


√

C†
βd

3H3

N

 .

Proposition 3.4. Under the same assumption of Theorem 3.2, the regret of LCB can be unbounded
(i.e. Õ(T )), while the regret of Thompson sampling satisfies

BayesRegret(N,T, π) ≤ 2c
√
d3H3Tι = Õ(

√
d3H3T ).

Theorem 3.2 is a significant departure from previous findings. Xie et al. (2021) analyzes the benefit of
online exploration when offline data only has partial coverage, while Song et al. (2022) proposes Hy-
Q which has an oracle property (O(

√
T ) regret compared with any policy πe) and is computationally

efficient by incorporating offline data. Different from previous result, our result shows that using
offline data with full coverage can improve over the O(

√
T ) online regret bound by adopting a

Bayesian method. Moreover, our performance bound incorporates both the number of online
interactions T and the offline dataset size N , demonstrating that both elements play a key role in
minimizing (amortized) regret.

4 ALGORITHM

Based on the theoretical analysis in Section 3, we propose a simple yet effective Bayesian Offline-to-
Online Reinforcement Learning (BOORL) method to address the dilemma in offline-to-online RL.
The algorithm procedure is shown in Appendix A.2.
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4.1 OFFLINE-TO-ONLINE THOMPSON SAMPLING

We adopt the bootstrapped mechanism as the natural adaptation of the Thompson Sampling heuristic
to offline-to-online RL. In the offline phase, we modify the offline RL algorithm to approximate a
distribution over policy via the bootstrap. Specifically, we randomly initialize N policy networks and
corresponding Q-value networks {πϕi

, Qθi}Ni=1. We use the independent mask m1,m2, · · · ,mN ∈
M for each policy to implement an offline bootstrap. These flags are stored in the memory replay
buffer Doff

i and identify which policies are trained on which data. Next, each one of these offline
policies is trained against its own pessimistic Q-value network and bootstrapped dataset with the
offline RL loss (e.g., TD3+BC (Fujimoto & Gu, 2021)):

Lcritic(θi) = E(s,a,r,s′,mi)∼Doff
i

[(
r + γQθ′

i
(s′, ã)−Qθi(s, a)

)2 ∗mi

]
(10)

Lactor(ϕi) = −E(s,a,mi)∼Doff
i

[(
λQθi(s, πϕi

(s))− (πϕi
(s)− a)2

)
∗mi

]
, (11)

where ã = πϕ′
i
(s′) + ϵ is the target plicy smoothing regularization and λ is the hyper-parameter for

behavior cloning. As for the online phase, we first load the offline pre-trained model. Then, we
approximate a bootstrap sample by selecting n ∈ {1, · · · , N} uniformly at random at each time step
and following πn to collect online data. Each loaded policy and Q-value network is continued to be
trained with the online RL loss (e.g., TD3 (Fujimoto et al., 2018)):

Lcritic(θi) = E(s,a,r,s′)∼Doff∪Don

[(
r + γQθ′

i
(s′, ã)−Qθi(s, a)

)]2
(12)

Lactor(ϕi) = −E(s,a)∼Doff∪Don [Qθi(s, πϕi(s))] , (13)

The method above with deep bootstrapping (Osband et al., 2016) is a natural implementation of
Thompson sampling in the offline-to-online setting. Note that BOORL can also be combined with
most offline methods with minor modifications.

In the online phase, sample selection is essential for fine-tuning. A naive approach is using a single
replay buffer for both offline and online samples, then sampling uniformly at random, In that case, the
agent does not use enough online samples for updates, especially when the large offline dataset leads
to slow fine-tuning. We adopt a simple yet efficient sample selection method Ross & Bagnell (2012);
Ball et al. (2023) to incorporate prior data better. For each batch, we sample 50% of the data from
the online replay buffer Don, and the remaining 50% from the offline replay buffer Doff . Further, we
increase the UTD ratio G to make the Bellman backups perform as sample-efficiently as possible.

The overall algorithm is summarized in Algorithm 4 and Algorithm 5 in Appendix A.2. We
highlight elements important to our approach in Purple. In practice, we use the Bernoulli mask
m1,m2, · · · ,mN ∈ Ber(p) to each offline policy, where p is the mask ratio.

5 EXPERIMENTS

We design our experiments to answer the following questions: (1) Whether BOORL can effectively
solve the dilemma in offline-to-online RL? (2) How does BOORL compare with other state-of-the-art
approaches for finetuning pre-trained policies? (3) Whether BOORL is general and can be effectively
combined with other off-the-shelf offline RL algorithms?

To answer the questions above, we conduct experiment to test our proposed approach on the D4RL
benchmark (Fu et al., 2020), which encompasses a variety of dataset qualities and domains. We adopt
the normalized score metric proposed by the D4RL benchmark (Fu et al., 2020), averaging over five
random seeds with standard deviation.

Answer of Question 1: We compare BOORL with the online version of TD3+BC (Fujimoto & Gu,
2021), named TD3+BC (online), as well as directly using TD3 for finetuning, named TD3 (finetune).
For the fair and identical experimental evaluation, these three methods are pre-trained based on
TD3+BC for 1 million time steps and adopt the TD3 algorithm for online learning.

The results in Figure 6 in Appendix F show TD3+BC exhibits safe but slow performance improvement,
resulting in worse asymptotic performance. On the other hand, TD3 suffers from initial performance
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Task Type ODT Off2On Cal-QL BOORL

Hopper

random 10.1→30.8 6.9→18.6 9.3→11.9 8.8→75.7
medium 66.9→97.5 65.8→104.6 75.8→100.6 61.9→109.8

medium-replay 86.6→88.8 89.8→106.5 95.4→106.1 75.5→111.1
medium-expert 107.6→111.1 83.8→111.3 85.0→111.6 89.0→103.4

expert 108.1→110.7 109.2→92.2 94.8→110.3 111.5→109.2

Walker2d

random 4.6→8.8 2.1→9.8 14.8→17.3 4.8→93.6
medium 72.1→76.7 82.1→105.6 80.8→89.6 83.6→107.7

medium-replay 68.9→76.8 81.8→104.2 83.8→94.5 69.1→114.4
medium-expert 108.1→108.7 111.2→119.0 106.8→111.0 110.8→116.2

expert 108.2→107.6 108.4→117.6 108.8→109.2 110.0→118.6

Halfcheetah

random 1.1→2.2 28.4→94.0 22.0→45.1 10.7→97.7
medium 42.7→42.1 47.8→83.3 48.0→72.3 47.9→98.7

medium-replay 39.9→40.4 46.9→88.0 46.5→59.5 44.5→91.5
medium-expert 86.8→94.1 45.3→94.4 48.0→90.2 77.7→97.9

expert 87.3→94.3 95.9→93.7 64.5→92.1 97.5→98.4

Antmaze

umaze 55.0→85.0 75.0→0.0 80.0→100.0 80.0→100.0
medium-replay 0.0→0.0 0.0→0.0 60.0→90.0 50.0→100.0
medium-diverse 0.0→0.0 0.0→0.0 70.0→85.0 60.0→85.0

large-play 0.0→0.0 0.0→0.0 25.0→55.0 60.0→75.0
δsum (0.2M) 121.6 258.7 331.9 650.7

Table 2: Normalized score before and after the online fine-tuning with five random seeds. We
pre-trained each method for 1M steps and then fine-tuned 0.2M environment steps. Since offline
algorithms’ performance differs, we focus on performance improvement within a limited time,
δsum (0.2M), which denotes the sum of performance improvement on all tasks within 0.2M steps.

degradation, especially in narrow distribution datasets (e.g., expert datasets). Differently, BOORL
attains a fast performance improvement with a smaller regret. Due to the offline bootstrap, the initial
performance in the online phase between BOORL and baselines exits a small difference, while it
does not change the conclusion.

Answer of Question 2: We compare BOORL with several strong offline-to-online algorithms,
inclduing ODT (Zheng et al., 2022), Off2On (Lee et al., 2022), AWAC (Nair et al., 2020), PEX (Zhang
et al., 2023) and Cal-QL (Nakamoto et al., 2023). We re-run the official implementation to offline
pre-train for 1 million steps. Then we report the fine-tune performance for 200k online steps. As for
BOORL, we use TD3+BC and TD3 as the backbone of offline and online algorithms. The results in
Table 2 show that our algorithm achieves superior fine-tuning performance and notable performance
improvement δsum compared with other fine-tuning approaches. The results in Figure 3 show our
method achieves better learning efficiency and stability compared with these baselines. AWAC has
limited efficiency due to a lack of online adaptability, and PEX is not as stable as ours. The concurrent
work, Cal-QL, achieves comparable stability due to calibration, but our method demonstrates better
sample efficiency in general.

Answer of Question 3: We incorporate BOORL with another offline RL algorithm, IQL, and
evaluate it on the sparse reward task in the D4RL benchmark, Antmaze. Consistent with the previous
experimental setup, we first offline train IQL for 1 million time steps and then load the same pre-
trained weight for BOORL. The experimental results in Table 2 show that BOORL achieves superior
performance and higher sample efficiency than other baselines. This demonstrates that BOORL can
be easily extended to various offline RL algorithms.

Ablation Study: To delved deeper into the performance of Bayesian methods, we enforced a
strict offline → online transition. Specifically, we exclusively loaded the offline-trained policy and
Q-network module, omitting the offline data during the online phase. We refer to this setup as
"Thompson Sampling". Furthermore, we examined the naive offline-to-online (TD3+BC → TD3)
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Figure 3: Experiments between several baselines and BOORL. The reference line is the performance
of TD3+BC. The experimental results are averaged with five random seeds.

Task Type BOORL Thompson Sampling δ Hybrid RL δ

Hopper
random 75.7±1.3 85.4±3.3 -9.7 75.2±3.9 0.5
medium 109.8±1.6 109.6±1.5 0.2 91.4±1.2 18.4

medium-replay 111.1±0.3 110.6±0.6 0.5 103.5±2.7 7.6

Walker2d
random 93.6±4.4 92.4±4.7 1.2 15.4±0.8 78.2
medium 107.7±0.5 96.5±3.5 11.2 86.4±0.4 21.3

medium-replay 114.4±0.9 103.7±2.1 10.7 99.7±2.4 14.7

Halfcheetah
random 97.7±1.1 94.5±4.2 3.2 85.2±0.5 12.5
medium 98.7±0.3 97.7±0.5 1.0 80.3±0.2 18.4

medium-replay 91.5±0.9 90.5±0.5 1.0 84.8±1.0 6.7

Table 3: Ablation results on Mujoco tasks with the normalized score metric, averaged over five
random seeds with standard deviation.

with the Hybrid RL framework to examine the effects of integrating offline data, termed "Hybrid
RL". Results in Table 3 reveal that Thompson Sampling exhibits a large performance difference in
the majority of tasks. We conduct addition ablation studies to understand the behavior of BOORL.
Please refer to Appendix H for detailed experimental details and results.

6 CONCLUSION

Our work presents a novel perspective on off-to-on RL, effectively tackling the inherent challenge
of balancing exploration efficiency and utilizing offline data. Based on the information-theoretic
analysis, we show that Bayesian methods can be efficaciously applied for offline-to-online transitions.
By leveraging the concept of bootstrapping, our algorithm outperforms previous methods by resolving
the dichotomy between exploration and performance and demonstrating superior outcomes across
various tasks. It is an interesting future direction to design more efficient algorithms from the Bayesian
point of view for off-to-on transition.
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7 REPRODUCIBILITY

A comprehensive description of our algorithm implementation is provided in Section 4. The hyper-
parameter configurations are detailed in Appendix J. The code necessary to reproduce BOORL is
available in our supplementary materials. Our theoretical findings are expounded upon in Section 3,
with a detailed proof presented in Appendix B.
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A ALGORITHM DETAILS

A.1 DETAILS OF ABSTRACT ALGORITHMS

In this section, we provide an information-theoretic abstraction of the UCB, LCB and Thompson
Sampling algorithm when both offline dataset and online environment are present. Here we use t to
represent (k, h) for simplicity.

Algorithm 1 Upper Confidence Bound

1: Require: offline dataset Doff , online interaction episodes K, exploration coefficient Γt,
2: Initialize prior β0 with the offline dataset Doff .
3: for k = 1, · · · ,K do
4: for h = 1, · · · , H do
5: Calculate posterior mean Q̄w,t(·, ·) = Ew∼βt

[Qt,w(·, ·)].
6: Calculate optimistic value function Q̂(·, ·) = Q̄w,t(·, ·) + Γt

2

√
It(w; ·, ·).

7: Execute at = argmaxat
Q̂(st, a) and receive feedback st+1, rt.

8: Update posterior βt with evidence (at, rt, st+1).
9: end for

10: end for

Algorithm 2 Lower Confidence Bound

1: Require: offline dataset Doff , online interaction episodes K, exploration coefficient Γt,
2: Initialize prior β0 with the offline dataset Doff .
3: for k = 1, · · · ,K do
4: for h = 1, · · · , H do
5: Calculate posterior mean Q̄w,t(·, ·) = Ew∼βt

[Qt,w(·, ·)].
6: Calculate pessimistic value function Q̂(·, ·) = Q̄w,t(·, ·)− Γt

2

√
It(w; ·, ·).

7: Execute at = argmaxat
Q̂(st, a) and receive feedback st+1, rt.

8: Update posterior βt with evidence (at, rt, st+1).
9: end for

10: end for

Algorithm 3 Thompson Sampling

1: Require: offline dataset Doff , online interaction episodes K, exploration coefficient Γt,
2: Initialize prior β0 with the offline dataset Doff .
3: for k = 1, · · · ,K do
4: for h = 1, · · · , H do
5: Sample parameter wt from posterior βt.
6: Calculate corresponding value function Q̂(·, ·) = Qwt,t(·, ·).
7: Execute at = argmaxat

Q̂(st, a) and receive feedback st+1, rt.
8: Update posterior βt with evidence (at, rt, st+1).
9: end for

10: end for
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A.2 DETAILS OF THE BOORL ALGORITHM

Algorithm 4 BOORL, Offline Phase

1: Require: Ensemble size N , offline dataset Doff , masking distribution M
2: Initialize parameters of N independent TD3+BC agents {Qθi , πϕi

}Ni=1
3: for i = 1, · · · , N do
4: Sample bootstrap mask m ∼ M
5: Add m to Doff as Doff

i
6: for each training iteration do
7: Sample a random minibatch {τj}Bj=1 ∼ Doff

i

8: Calculate Loffline
critic (θi) and update θi

9: Calculate Loffline
actor (ϕi) and update ϕi

10: end for
11: end for
12: Return {Qθi , πϕi

}Ni=1

Algorithm 5 BOORL, Online Phase

1: Require: {Qθi , πϕi
}Ni=1, offline dataset Doff

2: Initialize empty online replay buffer Don

3: for each iteration do
4: Obtain initial state from environment s0
5: for step t = 1, · · · , T do
6: Pick an policy to act at ∼ πϕn(· | st) using n ∼ Uniform{1, · · · , N}
7: Store transition (st, at, rt, st+1) in Don

8: Sample minibatch b from Doff and Don

9: for i = 1, · · · , N do
10: With b, calculate Lonline

critic (θi) and update θi
11: end for
12: for i = 1, · · · , N do
13: With b, calculate Lonline

actor (ϕi) and update ϕi

14: end for
15: end for
16: end for
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B ADDITIONAL PROPOSITIONS

Proposition B.1. Suppose the following equation for each episode holds with Γt ≤ Γ for all
k ∈ [K], h ∈ [H],

Ek[∆k] ≤
H∑

h=1

Γt

√
It(wh; at, rt, st+1) + ϵt. (14)

Then

E[Regret(T, π)] ≤ Γ
√

TI(w;HT ) + E
K∑

k=1

H∑
h=1

ϵt.

Proof. By leveraging the chain rule of mutual information, i.e.

I(X;Y1, . . . , YN ) =

N∑
i=1

I(X;Yi|Y1, . . . , Yi−1),

and the Cauchy-Schwartz inequality, we have the result immediately.

C MISSING PROOFS

C.1 PROOF OF THEOREM 3.1

Proof. By regret decomposition in Lemma D.1, we have

Ek[∆k] =

H∑
h=1

Eπ∗ [⟨Qt(sh, ·), π∗
h(· | sh)− πh,k(· | sh)⟩] +

H∑
h=1

(Eπ∗ [ιt(s, a)]− Ek[ιt(s, a)])

≤
H∑

h=1

(Eπ∗ [ιt(s, a)]− Ek[ιt(s, a)]) ,

where ιt(s, a) = rt(s, a) + (BhVt+1)(s, a)−Qt+1(s, a). The inequality is due to the fact that πt is
the greedy policy with respect to Qt.

Let Wk be the confidence set of w such that Equation (6) holds, we have

Pk(w ∈ Wk) ≥ 1− δ

2
.

For a UCB algorithm with upper confidence estimation Qt(s, a) = Q̄t,w(s, a) +
Γt

2

√
It(wh; rt,a, st+1,a), we have

−Γt

√
It(wh; rt,a, st+1,a) ≤ ιt(s, a) ≤ 0
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when w ∈ Wk.Then we have

H∑
h=1

(Eπ∗ [ιt(s, a)]− Ek[ιt(s, a)])

≤
H∑

h=1

{
1w∈Wk

{Eπ∗ [ιt(s, a)]− Ek[ιt(s, a)]}+
1

2
δ · 2H

}

≤
H∑

h=1

Ek

[∑
a∈A

P(at = a)Γt

√
It(wh; rt,a, st+1,a)

]
+ δH2

≤
H∑

h=1

Ek

Γt

√∑
a∈A

P(at = a)It(wh; rt,a, st+1,a)

+ δH2

=

H∑
h=1

Ek

Γt

√∑
a∈A

P(at = a)It(wh; rt,at
, st+1,at

| at = a)

+ δH2

=

H∑
h=1

Ek

[
Γt

√
It(wh; at, rt, st+1)

]
+ δH2.

Similarly, for a LCB algorithm with lower confidence functions Qt(s, a) = Q̄t,w(s, a) −
Γt

2

√
It(wh; rt,a, st+1,a), we have

0 ≤ ιt(s, a) ≤ Γt

√
It(wh; rt,a, st+1,a)

when w ∈ Wk.Then we have

H∑
h=1

(Eπ∗ [ιt(s, a)]− Ek[ιt(s, a)])

≤
H∑

h=1

{
1w∈Wk

{Eπ∗ [ιt(s, a)]− Ek[ιt(s, a)]}+
1

2
δ · 2H

}

≤
H∑

h=1

Eπ∗

[∑
a∈A

P(a∗t = a)Γt

√
It(wh; rt,a, st+1,a)

]
+ δH2

≤
H∑

h=1

Eπ∗

Γt

√∑
a∈A

P(a∗t = a)It(wh; rt,a, st+1,a)

+ δH2

=

H∑
h=1

Eπ∗

Γt

√∑
a∈A

P(a∗t = a)It(wh; rt,a∗
t
, st+1,a∗

t
| a∗t = a)

+ δH2

=

H∑
h=1

Eπ∗

[
Γt

√
It(wh; a∗t , rt, st+1)

]
+ δH2.

For Thompson Sampling, note that the probability matching property implies that Pk(ŵk ∈ Wk) =
Pk(w ∈ Wk) ≥ 1− δ

2 , we have
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H∑
h=1

(Eπ∗ [ιt(s, a)]− Ek[ιt(s, a)])

≤
H∑

h=1

{1w,ŵk∈Wk
{Eπ∗ [ιt(s, a)]− Ek[ιt(s, a)]}+ δ · 2H}

≤
H∑

h=1

Eπ∗

[∑
a∈A

P(a∗t = a)Γt

√
It(wh; rt,a, st+1,a)

]
+ 2δH2

=

H∑
h=1

Ek

[∑
a∈A

P(at = a)Γt

√
It(wh; rt,a, st+1,a)

]
+ 2δH2.

The last equality and the last equality is due to the fact that πk,h is the optimal policy under ŵk, and
w and ŵk have the same distribution. The rest of the proof is similar to the case of UCB and LCB
and is omitted for simplicity.

C.2 PROOF OF THEOREM 3.2

Theorem C.1 (Regret of Bayesian Agents in Linear MDPs, restatment). Given an offline dataset
D of size N , and a fixed posterior β during the online interaction phase, the regret of Thompson
sampling during online interaction satisfies the following bound:

BayesRegret(N,T, π) ≤ 4c
√
d3H3ι

(√
N

C†
β

+ T −
√

N

C†
β

)
, (15)

for sufficiently large N or T . Here ι is a logarithmic factor and c is an absolute constant.

Proof. At each online episode k, we have
H∑

h=1

ΓtEπ∗

[√
It(wh; a∗t , rt, st+1)

]
=

H∑
h=1

ΓtEπ∗

[
log (1 + ϕ(sh, ah)

⊤Λ−1
h ϕ(sh, ah))

1/2
]

≤ΓtEπ∗

[ H∑
h=1

(
ϕ(st, at)

⊤Λ−1
k ϕ(st, at)

)1/2]
=ΓtEπ∗

[ H∑
h=1

√
Tr
(
ϕ(s, a)ϕ(s, a)⊤Λ−1

k

)]
≤Γt

H∑
h=1

√
Tr
(
Edπ∗

h

[
ϕ(s, a)ϕ(s, a)⊤

]
Λ−1
t

)
=Γt

H∑
h=1

√
Tr
(
Σ⊤

π∗,hΛ
−1
t

)
, (16)

where Σπ∗,h
∆
= Edπ∗

h

[
ϕ(s, a)ϕ(s, a)⊤

]
. The first equality uses Lemma D.3, The first inequality uses

the fact that log(1 + x) ≤ x∀x ≥ 0. The second equality uses the trace trick and the last inequality
due to Jensen inequality and the linearity of the trace function.

By the definition of Bayesian coverage coefficient, we have

E

[
L∑

ℓ=1

ϕ(sℓ,h, aℓ,h)ϕ(sℓ,h, aℓ,h)
⊤

]
⪰ L

C†
β

Σπ∗
β ,h

,
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where Σπ∗
β ,h

∆
= Ew∼βEd

π∗
w

h

[
ϕ(s, a)ϕ(s, a)⊤

]
.

From the probability matching property of Thompson sampling method, we have

E

[
K∑

k=1

ϕ(st, at)ϕ(st, at)
⊤

]
= KΣπ∗

β ,h
.

From matrix concentration inequalities (Gittens & Tropp, 2011), with a probability 1 − ξ where

ξ = d
H e

−
4(L+KC

†
β
)

C
†
β
κ2
β , we have

L∑
ℓ=1

ϕ(sℓ,h, aℓ,h)ϕ(sℓ,h, aℓ,h)
⊤ +

K∑
k=1

ϕ(st, at)ϕ(st, at)
⊤ ⪰ 1

2
(
L

C†
β

+K)Σπ∗
β
. (17)

Here κβ = maxh∈[H]

λmax(Σπ∗
β
,h)

λmin(Σπ∗
β
,h)

is the condition number for the feature matrix under expert policy

π∗, λmax is the largest eigenvalue and λmin is the smallest non-zero eigenvalue. Let E be the event
such that Equation (17) holds, then we have

Eβ [∆k]

≤Eβ

[
H∑

h=1

ΓtEπ∗

[√
It(wh; a∗t , rt, st+1)

]]
+ 2δH2

≤Γ

H∑
h=1

√
Eβ Tr

(
Σ⊤

π∗,hΛ
−1
t

)
+ 2δH2

≤1E

{
Γ

H∑
h=1

√
Eβ Tr

(
Σ⊤

π∗,hΛ
−1
t

)}
+ ξH2 + 2δH2

≤Γ

H∑
h=1

√
Eβ Tr

(
Σ⊤

π∗,h

(
λ · I + 1

2
(
L

C†
β

+K)Σπ∗,h

)−1
)
+ ξH2 + 2δH2

≤Γ

H∑
h=1

√√√√√ d∑
j=1

λj(h)

λ+ 1
2 (

L

C†
β

+K) · λj(h)
+ (2δ + ξ)H2.

Here {λj(h)}dj=1 are the eigenvalues of Σπ∗,h for all h ∈ [H]. The first inequality follows from
Lemma D.4, and the second to last inequality follows from the Jensen inequality and the definition of
event E .

Meanwhile, by definition, we have ∥ϕ(s, a)∥ ≤ 1 for all (s, a) ∈ S ×A. By Jensen’s inequality, we
have

∥Σπ∗,h∥op ≤ Eπ∗
[
∥ϕ(s, a)ϕ(s, a)⊤∥op

]
≤ 1 (18)

for all h ∈ [H]. As Σπ∗,h is positive semidefinite, we have λj(h) ∈ [0, 1] for all h ∈ [H] and all
j ∈ [d].
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Then we have

Eβ [∆k] ≤Γ

H∑
h=1

√√√√√ d∑
j=1

1

λ+ 1
2 (

L

C†
β

+K)
+ (2δ + ξ)H2

≤HΓ

√√√√ 2d
L

C†
β

+K
+ (2δ + ξ)H2

≤2c

√√√√ 2d3H3ι
L

C†
β

+K
+ (2δ + ξ)H2,

where ι = log 4dT
δ . For sufficiently large L and K such that ξ = ( L

C†
β

+ K)−1/2K−1and let

δ = ( L

C†
β

+K)−1/2K−1. Using the fact that

K∑
k=1

√
1

a+ bk
≤
∫ K

0

√
1

a+ bx
dx ≤ 2

b
(
√
a+ bK −√

a),

we have the desired result.

C.3 PROOF OF PROPOSITION 3.3

Proof. Let T = 1 in Theorem 3.2 and note that
√
x+ 1 − √

x ≤ 2/
√
x, we have the result

immediately.

C.4 PROOF OF PROPOSITION 3.4

Proof. Let N = 0 in Theorem 3.2, and we have the result immediately.

D AUXILIARY LEMMAS

Lemma D.1 (Regret Decomposition (Cai et al., 2020)). We define the model prediction error as
ιk,h(s, a) = rk,h(s, a) + (BhVk,h+1)(s, a)−Qk,h+1(s, a), (19)

which arises from estimating PhV
k
h+1 in the Bellman equation based on only finite historical data.

Also, we define the following filtration generated by the state-action sequence and reward functions.
Definition D.2 (Filtration). For any (t) ∈ [K]× [H], we define Ft,1 as the σ-algebra generated by
the following state-action sequence and reward functions,

{(sτ,i, aτ,i)}(τ,i)∈[k−1]×[H] ∪ {rτ}τ∈[k] ∪ {(sk,h, ak,h)}i∈[h],

and Ft,2 as the σ-algebra generated by

{(sτ,i, aτ,i)}(τ,i)∈[k−1]×[H] ∪ {rτ}τ∈[k] ∪ {(sk,h, ak,h)}i∈[h] ∪ {skh+1},
where, for the simplicity of discussion, we define skH+1 as a null state for any k ∈ [K].

It holds that

Regret(T ) =
K∑

k=1

(
V π∗,k
1 (sk1)− V πk,k

1 (sk1)
)

=

K∑
k=1

H∑
h=1

Eπ∗
[
⟨Qk

h(sh, ·), π∗
h(· | sh)− πk,h(· | sh)⟩

]
+MK,H,2

+

K∑
k=1

H∑
h=1

(
Eπ∗ [ιkh(sh, ah)]− ιkh(sk,h, ak,h)

)
. (20)

Here {Mt,m}(t,m)∈[K]×[H]×[2] is a martingale adapted to the filtration {Ft,m}(t,m)∈[K]×[H]×[2].
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Proof. See Lemma 4.2 in Cai et al. (2020) for a detailed proof.

Lemma D.3 (Mutual Information in Linear MDP). It hold that

It(wh; at, rt, st+1|D) =
1

2
log (1 + ϕ(st, at)

⊤Λ−1
t ϕ(st, at)).

Proof. Let the prior be wh ∼ N (0, λ · I), then we have the following closed form posterior

wh|D ∼ N (ŵh,Λ
−1
t ),

where

ŵh = Λ−1
h (

K∑
k=1

ϕ(st, at) · (rt + V̂h+1(st+1))),

Λh =

K∑
k=1

ϕ(st, at)ϕ(st, at)
⊤ + λ · I.

Note that this is equivalent to the regularized least-square solution for linear MDPs (Jin et al., 2021).
Then we have

It(wh; at, rt, st+1|D) = H(wh|D)−H(wh|D ∪ {(rt, at, st+1)})

=
1

2
log

det(Λ†
t)

det(Λt)

=
1

2
log det(I + Λ

−1/2
t ϕ(st, at)ϕ(st, at)

⊤Λ
−1/2
t )

=
1

2
log (1 + ϕ(st, at)

⊤Λ−1
t ϕ(st, at)).

where Λ†
t = Λt + ϕ(sh, ah)ϕ(sh, ah)

⊤.

Lemma D.4. Under linear MDP, we have

Pk

(∣∣Qt,w(s, a)− Q̄t,w(s, a)
∣∣ ≤ Γt

2

√
It(wh; rt,a, st+1,a),∀h ∈ [H], s ∈ S, a ∈ A

)
≥ 1− δ

2

With Γt ≡ Γ = 2cHd
√
log 4dT

δ , where c is an absolute constant and Q̄t,w(s, a) = rh,w(s, a) +

PhVh+1,w(s, a).

Proof. Following a similar argument in Lemma 5.2 in Jin et al. (2021), We have with probability
1− δ, ∣∣Qt,w(s, a)− Q̄t,w(s, a)

∣∣
≤β
√
ϕ(s, a)Λ−1

h ϕ(s, a)

≤β

√
log(1 + ϕ(s, a)Λ−1

h ϕ(s, a)) · ϕ(s, a)Λ−1
h ϕ(s, a)

log(1 + ϕ(s, a)Λ−1
h ϕ(s, a))

≤β
√
2 log(1 + ϕ(s, a)Λ−1

h ϕ(s, a))

≤2β
√
It(wh; rt,a, st+1,a),

where β = cHd
√
log 4dT

δ and Λh is defined as in Lemma D.3. The last inequality use the fact that

ϕ(s, a)Λ−1
h ϕ(s, a) ≤ 1 and 2 log(1 + x) ≥ x for x ∈ [0, 1]. The last step follows from Lemma D.3.
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E EXPERIMENTS ON MULTI-ARM BANDITS
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Figure 4: Theoretical prediction of Theorem 3.2 and experiments on multi-arm bandits.

We conducted experiments on a multi-arm bandit model with 10 arms, where each arm pull yielded a
reward based on probability pi. The ultimate objective was to identify the arm associated with the
maximum probability, p∗ = max{pi}ni=1. Data collection was facilitated by using a random policy
to pull the arms, generating an offline dataset. Statistical attributes calculated from this dataset were
employed to derive the Upper Confidence Bound (UCB) policy, πUCB; the Lower Confidence Bound
(LCB) policy, πLCB; and the Thompson Sampling (TS) policy, πTS.

Subsequent arm pulls leveraged these policies, updating statistical variables each iteration. The regret,
defined as the difference between p∗ and the chosen policy’s probability pπ, was computed in each
round. Accumulative regret was plotted and illustrated in Figure 4. The results confirmed the effective
alignment of the experimental outcome with the theoretical results expressed by Equation 15 in the
context of the multi-arm bandit model.

Specifically, in the bandit setting, we let each arm a has a probability θ to yield a reward of 1, and a
probability 1− θ to yield a reward of 0. the parameters θ are i.i.d. drawn from a Beta distribution for
all arms an. We use 10 arms, 1000 offline data points and the online phase lasts for 100000 steps.
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F COMPLETE EXPERIMENTAL RESULTS

The results in Figure 6 show TD3+BC exhibits safe but slow performance improvement, resulting in
worse asymptotic performance. On the other hand, TD3 suffers from initial performance degradation,
especially in narrow distribution datasets (e.g., expert datasets). Differently, BOORL attains a fast
performance improvement with a smaller regret. Due to the offline bootstrap, the initial performance
in the online phase between BOORL and baselines exits a small difference, while it does not change
the conclusion.
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Figure 5: Comparison between BOORL and baselines in the finetune phase. We adopt datasets of
various quality for offline training and then load same pre-trained weight for online learning. We
adopt normalized score metric averaged with five random seeds.
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G COMPARISON WITH PEX
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Figure 6: Comparison between BOORL and PEX in the finetune phase. We adopt datasets of various
quality for offline training and then load same pre-trained weight for online learning. We adopt
normalized score metric averaged with five random seeds.
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H ADDITIONAL EXPERIMENTS

H.1 ABLATION FOR BOORL

We aim to understand the behavior of BOORL by performing ablation studies. (1) We store the
offline and online data into the same buffer for uniform sampling, named BOORL (Uniform Buffer).
(2) We set the Ensemble Number to 1 to investigate the effect of the Thompson Sampling, named
BOORL (Ensemble Num=1). (3) Similarly, we set UTD ratio G to 1 to investigate the effect of UTD,
named BOORL (UTD=1). The experimental results in Figure 7 show that each module is essential to
the superior performance of our algorithm. In the ablation studies, we use TD3+BC and TD3 as the
backbone of offline and online algorithms.
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Figure 7: Module ablation study of BOORL.

H.2 ABLATION FOR MASK RATIO

In addition, we conduct ablation studies for mask ratio p. The experimental results in Figure 8 show
that the performance of our algorithm is robust to the changes of p. Similar results are also found
in Osband et al. (2016). Therefore, we select the uniform parameter p = 0.9 in all experiments.
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Figure 8: The performance comparison between various mask ratios p.

H.3 ABLATION FOR COMPUTATIONAL OVERHEAD

We aim to provide a comparison between the computational overhead of using an ensemble versus
not using an ensemble in our approach. Specifically, we train our method with various ensemble sizes
N on the same computational device (GeForce RTX 3090 GPU). The time required to complete 1M
training is shown in Table 4. Since we adopt the multi-head structure and share part of the network,
the computational overhead does not increase significantly as the number of N increases.
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Ensemble Size 1 5 10 20

Computational Overhead 2.5 h 2.7 h 2.9 h 3.2 h

Table 4: Ablation results for computational overhead.

I ADDITIONAL IMPLEMENTATION SPECS

We aim to make minimal modifications to existing offline algorithms while achieving maximum
performance improvement. The following method is general in the offline-to-online setting. As for
different offline algorithms, we just need to substitute corresponding critic and actor update loss.

Offline Phase We first randomly initialize N policy networks and corresponding Q-value networks
{πϕi , Qθi}Ni=1. Similar with Osband et al. (2016), we use the Bernoulli mask m1,m2, · · · ,mN ∈
Ber (p) for each policy to implement an offline bootstrap, where p = 0.9. These flags are stored in
the memory replay buffer Doff

i and identify which policies are trained on which data. Next, each
one of these offline policies is trained against its own pessimistic Q-value network and bootstrapped
dataset with the offline RL loss (e.g., TD3+BC (Fujimoto & Gu, 2021)):

Lcritic(θi) = E(s,a,r,s′,mi)∼Doff
i

[(
r + γQθ′

i
(s′, ã)−Qθi(s, a)

)2 ∗mi

]
(21)

Lactor(ϕi) = −E(s,a,mi)∼Doff
i

[(
λQθi(s, πϕi(s))− (πϕi(s)− a)2

)
∗mi

]
, (22)

where ã = πϕ′
i
(s′) + ϵ is the target plicy smoothing regularization and λ is the hyper-parameter for

behavior cloning.

Online Phase We first load the offline pre-trained model. Then, we approximate a bootstrap sample
by selecting n ∈ {1, · · · , N} uniformly at random at each time step and following πn to collect
online data. Each loaded policy and Q-value network is continued to be trained with the online RL
loss (e.g., TD3 (Fujimoto et al., 2018)):

Lcritic(θi) = E(s,a,r,s′)∼Doff∪Don

[(
r + γQθ′

i
(s′, ã)−Qθi(s, a)

)]2
(23)

Lactor(ϕi) = −E(s,a)∼Doff∪Don [Qθi(s, πϕi(s))] , (24)

As for the sample selection, we adopt a simple yet efficient sample selection method (Ball et al., 2023)
to incorporate prior data better. For each batch, we sample 50% of the data from the online replay
buffer Don, and the remaining 50% from the offline replay buffer Doff . Further, we increase the UTD
ratio G to make the Bellman backups perform as sample-efficiently as possible, where G = 5.
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J EXPERIMENTAL DETAILS

Experimental Setting. For TD3+BC (online), TD3 (finetune), and IQL (online), we first load the
offline dataset into the online replay buffer and add the online collected data into the buffer. Then, we
uniformly sample data to train from the online buffer.

Hyper-parameters. We adopt the TD3+BC and TD3 as the backbone of offline and online al-
gorithms. Therefore, we build BOORL based on the code of the TD3+BC. We outline the hyper-
parameters used by BOORL in Table 5.

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
TD3+BC parameter α 2.5
IQL parameter τ 0.9

Architecture Value

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

BOORL Parameters Value

Mask ratio p 0.9
Ensemble Number 5
UTD ratio G 5

Table 5: Hyper-parameters sheet of BOORL.

Baselines Implementation. We adopt the author-provided implementations from GitHub for TD3 1,
TD3+BC 2, CQL 3, IQL 4, Off2On 5, ODT 6, PEX 7 and Cal-QL 8. We use the official implementation
in the author-provided code for TD3+BC (online) and IQL (online). All experiments are conducted
on the same experimental setup, a single GeForce RTX 3090 GPU and an Intel Core i7-6700k CPU
at 4.00GHz.

1https://github.com/sfujim/TD3
2https://github.com/sfujim/TD3_BC
3https://github.com/aviralkumar2907/CQL
4https://github.com/ikostrikov/implicit_q_learning
5https://github.com/shlee94/Off2OnRL
6https://github.com/facebookresearch/online-dt
7https://github.com/Haichao-Zhang/PEX
8https://github.com/nakamotoo/Cal-QL
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