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Abstract—We propose a system for privacy-aware machine
learning. The data provider encodes each record in way that
avoids revealing information about the record’s field values or
about the ordering of values from different records. A data
center stores the encoded records and uses them to perform
classification on queries consisting of encoded input field values.
The encoding provides privacy for the data provider from the
data center and from a third party issuing unauthorized queries.
But the encoding makes regression-based and many tree-based
classifiers impossible to implement. It does allow histogram-type
classifiers that are based on category membership, and we present
one such classification method that ensures data sufficiency on a
per-classification basis.

Index Terms—machine learning, privacy, big data, local clas-
sifier

I. PRIVACY-PRESERVING MACHINE LEARNING

There are increasing concerns about data privacy [1], [2].
When a client uses a remote service to provide machine
learning, the client provides data (machine learning examples),
and the remote service provider uses the data to classify
example inputs received from clients as queries. Risks to
privacy include interception of client-server communications,
data theft from or unauthorized analysis by the service
provider, and information leaks through responses to queries
from unauthorized clients.

Privacy-preserving machine learning techniques [3]–[5] can
mitigate these risks. In many privacy-preserving machine
learning schemes, instead of using data examples directly, the
service provider receives encoded versions of the data, and
must use the encoded data for classification tasks. The type
of encoding determines which operations can be used and the
speed of those operations.

Fully homomorphic encoding [6] maps values to encoded
values in a way that allows addition and multiplication to
be performed on the encoded values to produce the encoded
sums and products. This allows classification methods that use
arithmetic operations, such as regression and curve-fitting. The
drawback is very slow computation, making it inappropriate
for big-data settings.

Order-preserving encoding [7] allows classification us-
ing decision trees, since each split depends on determining
whether a field value is above a threshold. Order-preserving
encoding preserves less information about the data than fully
homomorphic encoding. It enables faster operations and with-
holds more information from the service provider. However,

order-preserving encoding still releases information about or-
dering (as it must), and some methods can also leak other
information over time [8].

This paper outlines the potential for encodings that preserve
neither arithmetic value nor ordering. Each value is mapped
to an encoded value in a manner that allows neither arithmetic
operations nor order comparison. This withholds more infor-
mation from the service provider, and it limits classification
methods. It allows for equality comparison, at full speed. This
enables histogram-type classification, such as voting over in-
sample examples that share all field values with the input
example being classified.

Due to a combinatorial explosion, with a moderate or large
number of fields per record, even a huge data set is likely to
have no examples that match the inputs of many examples
to be classified. So we propose a classification method that
iteratively decreases the number of field-value matches needed
to be a voting example until a pre-specified number of voting
examples are found. The method is a local classifier, like a
k-nearest neighbors classifier [9]–[11], and it allows modified
forms of k-nn metric learning [12], [13] and validation [14].

II. ENCODING

The data provider encodes data record-by-record before
sending it to the data center. Let a record be a sequence of
field values: (x1, . . . , xr). The values xi include both the input
values for machine learning and the output or outputs (also
called labels). The encoding process for data insertion is:

1) Convert the values in each non-categorical field into
categorical values. For example, if a field’s values are
real numbers, then partition the range of values into
subranges, and replace the field value by a value rep-
resenting its subrange. (***later convert a single field
into a sequence of categorical fields – hierarchy, rolling
windows.***)

2) Encode each field value xi to an encoded value x′
i, using

a mapping that is one-to-one from field and value to
encoded value: (i, xi)− > x′

i.
3) Randomly shuffle (x′

1, . . . , x
′
r) to form the encoded

record: set X ′.
The encoded record is sent to the data center, which collects

encoded records to answer queries. Queries are also encoded,
but field values to be used as inputs are separated from field
values that constitute a ”positive” label. For example, if fields 1
to 25 are inputs and values a, b, and c of field 32 are considered



positive labels, then the encoded query has two components:
a random shuffle of (x′

1, . . . , x25
′) and a random shuffle of

the encodings of (32, a), (32, b), and (32, c). Refer to the set
of encoded inputs as Q′ and the set of positive labels as Y ′.
(***later – multi-class, just give sets of yi’s that label each
class***).

III. CLASSIFICATION

(***later – classify based on a random sample of the data
set, and mention reservior sampling***) The machine learning
service provider responds to each query with a frequency k
of positive labels and a number n of samples used to find
the frequency. For example, k = 100 and n = 101 indicates
that the algorithm found 100 examples in the data set with a
positive label, i.e. having some x′

i ∈ Y ′, of the 101 examples
used. The classification algorithm has a parameter nmin, which
is the minimum acceptable value for n. For query (Q′, Y ′) and
examples X ′, the algorithm attempts to use all examples with
all members of Q′ in X ′ (i.e., Q′ ⊆ X ′). If there are fewer
than nmin such examples in the data set, then the algorithm
also includes examples with all but one of the members of Q′

in X ′ (|Q′ − X ′| ≤ 1), and continues to expand the set of
examples if there are fewer than nmin:

1) ∀X ′:
a) d = |Q′−X ′| # ”Distance” is number of elements

of Q′ not in X ′.
b) nd+ = 1 # Add to number of distance d samples.
c) if |X ′ ∩ Y ′| ≥ 1 then kd+ = 1 # If positive label,

then add to successes.
2) sk = 0, sn = 0 # Sum of k and n over distances.
3) For d in 0, 1, 2, . . .:

a) sk+ = kd
b) sn+ = nd

c) if nd ≥ nmin then return (sk, sn)
For additional privacy, k and n can be encoded (for example,

using public-key cryptography [?]) before being sent as a
response to the query. The value k

n is an estimate of the
probability that the query example has a positive label. The
value nmin mediates a tradeoff: a higher value generally causes
more examples to be used for classification; a lower value
generally causes more-similar examples to be used.

***HERE***How to use k and n to get a classification.
(Can go with majority, and can also compare to overall k / n
over whole data set for the positive labels – if it was stored
while sending data, or if it is returned from data center.) What
do k and n mean? confidence.

IV. VALIDATION

Can validate overall error rate using histogram methods
and/or k-nn methods. (Or something similar.) Cross-validation.
(Use two holdout sets, bound the error rate over both, then
use each to bound the probabilities that each set is changes
a classification by being added to the non-holdout examples,
and add those probabilities to the error bound.)

Can also say how much more likely the samples are to be
positive than all samples.

Can weight different differences – not havind some q’s in
Q’ in X’ makes X’ more ”distant” from Q’ than other q’s.
Weight by q. Learn a metric: Gert Lanckriet, UCSD.

Can use multiple labels and values to obfuscate. Need not
all be real data.

Can use data with non-overlapping values to obfuscate
which values are actually used. (Will never have values in
common with ”real” queries.)
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