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Abstract

We study the intriguing connection between visual data, deep networks, and the1

brain. Our method creates a universal channel alignment by using brain voxel2

fMRI response prediction as the training objective. We discover that deep net-3

works, trained with different objectives, share common feature channels across4

various models. These channels can be clustered into recurring sets, correspond-5

ing to distinct brain regions, indicating the formation of visual concepts. Tracing6

the clusters of channel responses onto the images, we see semantically meaning-7

ful object segments emerge, even without any supervised decoder. Furthermore,8

the universal feature alignment and the clustering of channels produce a picture9

and quantification of how visual information is processed through the different10

network layers, which produces precise comparisons between the networks.11

1 Introduction12

Introducing a novel approach, Yang et al. (2024) has successfully established a method of computing13

a mapping between the brain and deep-nets, effectively linking two black boxes. The brain fMRI14

prediction task allows for visualizing information flow from layer to layer, using the brain as an15

analysis tool.16
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Figure 1: Transform the hidden channel activation
of deep-nets into visual brain voxels’ response.

If a picture is worth a thousand words, the17

main idea is that the brain’s thousands of voxels18

can be thought of as alphabets for these words19

that describe an image. Just as alphabets must20

be combined to form words and phrases with21

meanings, we need to find the grouping of brain22

voxels and their network channel counterparts23

to understand their meaning (Figure 1).24

Our main discovery is that while the network25

layer structure differs, channel feature corre-26

spondence exists across networks with a shared27

encoding of reoccurring visual concepts. This paper builds upon the idea of ‘Rosetta stone’ neurons28

(Dravid et al., 2023), which find channels across networks that share similar image responses in bi-29

nary segmentation. If channels are alphabets, ‘Rosetta stone’ provides an alphabet-level translation30

between networks.31

Individual channel-level analysis could miss feature correspondence across networks at finer and32

coarser levels. On a finer level, because the channels are invariant up to a linear transformation, we33

might miss a reconstituted feature constructed from a composition of existing channels. On a coarse34

level, the channels can be combined and clustered to form a bigger ‘Rosetta’ concept.35
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To address fine-level channel analysis, we use brain voxel response as a reference signal and linearly36

transform channels for each network into a shared space sufficient for brain fMRI prediction. This37

process produces a universal feature space that aligns channel features across the layers and models.38

To find bigger visual concepts, one can start with Neuroscience knowledge of brain regions (ROIs)39

with specific brain functionality, i.e., V1, V4, and EBA. While tracing the mapping of the ROIs to40

channels can produce visual concepts (Figure 2), brain regions don’t function in isolation.41
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Figure 2: From the 768D feature on CLIP layer-6, we extract different levels of segmentation by
restricting the use of a subset of channels. Left: Channel activation on example image patches. The
ordering of channels is sorted from the early brain to the late brain by their weights for brain voxels.
Right: Spectral clustering on each subset of channels filtered by each brain ROI (V1, V4, EBA),
image pixels colored by 3D spectral-tSNE of top 10 eigenvectors.

Instead of searching through all possible channel grouping combinations, our first insight is that42

we can create a channel grouping hypothesis by examining channels from each pixel’s perspective.43

Think of the pixels and channels forming a bipartite graph; each channel produces a per-pixel re-44

sponse (image activation map), defining the graph edge between the pixels and channels. Taking the45

perspective of pixels, one can collect graph edges incident on each pixel into a vector, which can be46

thresholded to produce a hypothesis grouping over channels.47

Our second insight is that if a channel grouping hypothesis repeats across images, layers, and mod-48

els, it is highly unlikely to be accidental and, therefore, signals meaningful visual concepts.49

We formulate this clustering problem as a graph partition task. The graph nodes are the product50

space of pixels and layers. We apply spectral clustering to produce k-top eigenvectors. We take51

advantage of two properties of spectral clustering: it makes 1) soft-cluster embedding space in the52

form of eigenvectors and 2) hierarchical clustering by varying the number of eigenvectors.53

We made the following discoveries. First, shared channel sets, reoccurring across layers and models,54

predict response in distinct brain regions. By tracing the channel activation to the known brain ROI55

properties, we observe that the channel cluster encodes visual concepts at various levels of visual56

abstraction.57

Second, meaningful object segments can emerge by tracing the channel cluster responses onto each58

image. We observed that some channel clusters produce figure/ground separation while others pro-59

duce fine-grained category classification. Our image segmentation requires no additional segmenta-60

tion decoder and uses only a simple distance measure over the eigenvectors.61

Finally, the universal feature alignment and the spectral clustering of channels produce a picture and62

quantification of how visual information is processed through the different network layers.63

While these discoveries are promising, there are two main technical hurdles to overcome to verify64

them on a large scale. Our method rests upon a crucial assumption: the channels across the different65

layers and models can be mapped into a shared space. While brain prediction over thousands of66

voxels can provide strong guidance for this alignment, an additional constraint would be needed67

when the shared space has a large dimension (suitable for expressiveness). We use clustering as68

a constraint, ensuring alignment linear transformation preserves spectral clustering eigenvectors.69

Furthermore, the graph size is enormous as it is a product space over pixels, layers, images, and70

models; therefore, computing eigenvectors over their pairwise affinity matrix can be computationally71

infeasible. We developed a Nystrom-like approximation to ensure efficient computation.72

2



In summary, our key contributions are:73

1. We constructed a universal channel-aligned space using brain encoding as supervision and spec-74

tral clustering eigenvector constraints to ensure minimal channel signal loss. Brain encoding asso-75

ciates the aligned channel space to brain regions and gives them meanings.76

2. Models trained with different objectives learned similar visual concepts: corresponding channel77

patterns exist across different models. The resulting visual concepts can be validated by unsuper-78

vised segmentation benchmarks on ImageNet-segmentation and PASCAL VOC.79

3. Models show divergent computation paths over the visual concept space formed by the top-k80

spectral eigenvectors. Different models differ in trajectories and pace of movement layer-to-layer.81

2 Methods: AlignedCut82
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Figure 3: Cosine similarity of channel activa-
tion on the same image inputs.

Just as human languages might consist of distinct83

alphabets, features across different models appear84

superficially in embedding spaces as almost mutu-85

ally orthogonal (Figure 3). However, the underly-86

ing information that they represent can be similar.87

To jointly analyze features across models and lay-88

ers, we proposed the channel align transform that89

linearly projects features to a universal space.90

The learning signal for the channel align transform91

is provided by brain response prediction. Learn-92

ing from brain prediction offers two advantages.93

First, brain response covers rich representations from all levels of semantics; the channel alignment94

removes irrelevant information while preserving the necessary and sufficient visual image features.95

Second, knowledge of brain regions provides an interpretable understanding of their corresponding96

channels derived from the alignment.97

Our visual concept discovery is formulated as a graph partitioning task using spectral clustering.98

We term our approach for this channel align and graph partitioning as AlignedCut. Furthermore, a99

major challenge in applying spectral clustering to large graphs is the complexity scaling issue. To100

address this, we developed a Nystrom-like approximation to reduce the computational complexity.101

2.1 Brain-Guided Universal Channel Align102

Brain Dataset We used the Algonauts competition (Gifford et al., 2023) release of Nature Scenes103

Dataset (NSD) (Allen et al., 2022). Briefly, NSD provides an fMRI brain scan when watching104

COCO images. Each subject viewed 10,000 images over 40 hours of scanning. We used the first105

subject’s publicly shared pre-processed and denoised (Prince et al., 2022) data.106

Channel Align Let V = {V1,V2, · · · ,Vn|Vi ∈ RP×Di} be the set of image features, extracted107

from each layer of pre-trained ViT models, where P = (H×W+1) is image patches and class token,108

Di is the hidden dimension. In particular, we used the attention layer output for each Vi without109

adding residual connections from previous layers. Let V ′ be the channel-aligned features; the goal110

of channel alignment is to learn a set of linear transform W = {W1,W2, · · · ,Wn|Wi ∈ RDi×D′}.111

In the new D′ dimensional space, channels are aligned.112

V ′ = V ⊙W = {V1W1,V2W2, · · · ,VnWn|ViWi ∈ RP×D′
} (1)

Brain Prediction To produce a learning signal for channel align W , features from V ′ are summed113

(not concatenated) to do brain prediction. Let Y ∈ R1×N be the brain prediction target, where N is114

the number of flattened 3D brain voxels, and 1 indicates that each voxel’s response is a scalar value.115

Let Fθ : RP×D′ ⇒ R1×N be the learned brain encoding model; without loss of generalizability, we116

set Fθ as global average pooling then linear weight βθ ∈ RD′×N and bias ϵθ ∈ R1×N :117 [
Avg Pool

p∈P
(
1

n

n∑
i=1

(ViWi))× βθ + ϵθ

]
⇒ Y (2)
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Channel in the Brain’s Space Let B = {B1,B2, · · · ,Bn|Bi ∈ RP×N} be the set of channel118

activations in the brain’s space. By defining Bi := ViWi×βθ, we have the brain response prediction119

Y = Avg Poolp∈P (
1
n

∑n
i=1 Bi) + ϵθ (Eq. (2)). Intuitively, we linearly transformed the activation120

to the brain’s space, such that the activation from all slots sum up to the brain response prediction.121

2.2 Graph Spectral Clustering122

Spectral Clustering We use spectral clustering for visual concepts discovery and image-channel123

analysis; it provides 1) soft-cluster embedding space and 2) unsupervised hierarchical image seg-124

mentation. Normalized Cut (Shi and Malik, 2000) partitions the graph into sub-graphs with minimal125

cost of breaking edges. It embeds the graph into a lower dimensional eigenvector representation,126

where each eigenvector is a hierarchical sub-graph assignment.127

Let A ∈ RM×M be the symmetric affinity matrix, where M denotes the total number of image128

patches. Given channel aligned features V ′ ∈ RM×D′
, we define Aij := exp(cos(V ′

i ,V
′
j ) − 1)129

such that Aij > 0 measures the similarity between data i and j. The spectral clustering embedding130

X ∈ RM×C is solved by the top C eigenvectors of the following generalized eigenproblem:131

(D−1/2AD−1/2)X = XΛ (3)

where D is the diagonal degree matrix Dii =
∑

j Aij , Λ is diagonal eigenvalue matrix.132

Nystrom-like Approximation Computing eigenvectors for A ∈ RM×M is prohibitively expen-133

sive for enormous M with a time complexity of O(M3). The original Nystrom approximation134

method (Fowlkes et al., 2004) reduced the time complexity to O(m3 +m2M) by solving eigenvec-135

tors on sub-sampled graph A′ ∈ Rm×m, where m ≪ M . In particular, the orthogonalization step136

of eigenvectors introduced the time complexity of O(m2M). Because our Nystrom-like approxi-137

mation trades the O(m2M) orthogonalization term with the K-nearest neighbor, our Nystrom-like138

approximation reduced the time complexity to O(m3 +mM).139

Our Nystrom-like Approximation first solves the eigenvector X ′ ∈ Rm×C on a sub-sampled graph140

A′ ∈ Rm×m using Equation (3), then propagates the eigenvector from the sub-graph m nodes141

to the full-graph M nodes. Let X̃ ∈ RM×C be the approximation X̃ ≈ X . The eigenvector142

approximation X̃i of full-graph node i ≤ M is assigned by averaging the top K-nearest neighbors’143

eigenvector X ′
k from the sub-graph nodes k ≤ m:144

Ki = KNN(A∗i;m,K) = argmax
k≤m

K∑
k=1

Aki

X̃i =
1∑

k∈Ki
Aki

∑
k∈Ki

AkiX
′
k

(4)

where KNN(A∗i;m,K) denotes KNN from full-graph node i ≤ M to sub-graph nodes k ≤ m.145

2.3 Affinity Eigen-constraints as Regularization for Channel Align146

Table 1: Affinity eigen-constraints improved
brain score (R2: variance explained).

ROI Brain Score R2 (± 0.001)
λeigen V1 V4 EBA all

1.0 0.170 0.181 0.295 0.196
0.1 0.167 0.179 0.294 0.193
0 0.155 0.166 0.296 0.188

While brain prediction can provide strong supervi-147

sion for the learned channel align operation, we ob-148

served that the quality of unsupervised segmentation149

dropped after the channel alignment. To address this150

issue, a regularization term is added:151

Leigen = ∥XbX
T
b −XaX

T
a ∥ (5)

where Xb and Xa ∈ Rm̃×c are affinity matrix152

eigenvectors before and after channel alignment, re-153

spectively; m̃ = 100 are randomly sampled nodes154

in a mini-batch and c = 6 are the top eigenvectors. The eigen-constraint preserves spectral clus-155

tering eigenvectors in dot-product space, invariant to random rotations in eigenvectors. We found156

adding eigen-constraints improved both the performance of segmentation (Figure 5) and the brain157

prediction score (Table 1).158
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3 Results159

Our spectral clustering analysis aims to discover visual concepts that share the same pattern of160

channel activation across different models and layers. However, implementing spectral clustering161

analysis comes with two main challenges. First, the models sit in different feature spaces, so direct162

clustering will not reveal their overlap and similarities. Second, when scaling up to a large graph,163

spectral clustering is computationally expensive.164

To address the first challenge, we developed our channel align transform to align features into a165

universal space. We extracted features from all 12 layers of the CLIP (ViT-B, OpenAI) (Radford166

et al., 2021), DINOv2 (ViT-B with registers) (Darcet et al., 2024), and MAE (ViT-B) (He et al.,167

2022) and then transformed features from each layer into the universal feature space.168

To address the second challenge, we developed our Nystrom-like approximation to reduce the com-169

putational complexity. We extracted features from 1000 ImageNet (Deng et al., 2009) images, with170

each image consisting of 197 patches per layer. The entire product space of all images and fea-171

tures totaled M = 7e+6 nodes, from which we applied our Nystrom-like approximation with sub-172

sampled m = 5e+4 nodes and KNN K = 100, computing the top 20 eigenvectors.173

To visualize the affinity eigenvectors, the top 20 eigenvectors were reduced to a 3-dimensional space174

by t-SNE, and a color value was assigned to each node by the RGB cube. We call this approach175

AlignedCut color.176
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Figure 4: Spectral clustering in the universal channel aligned feature space. The image pixels are
colored by our approach AlignedCut, the pixel RGB value is assigned by the 3D spectral-tSNE of
the top 20 eigenvectors. The coloring is consistent across all images, layers, and models.

In Figure 4, we displayed the analysis, AlignedCut color, and made the following observations:177

1. In CLIP layer-5, DINO layer-6, and MAE layer-8, there is class-agnostic figure-ground sepa-178

ration, with foreground objects from different categories grouped into the same AlignedCut color.179

2. In CLIP layer-9, there is a class-specific separation of foreground objects, with foreground180

objects grouped into AlignedCut colors with associated semantic categories.181

3. Before layer-3, CLIP and DINO produce the same AlignedCut color regardless of the image182

input. From layer-4 onwards, the AlignedCut color smoothly changes over layers.183
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3.1 Figure-ground representation emerge before categories184

In this section, we benchmark each layer in CLIP with unsupervised segmentation. The key findings185

from this benchmarking are: 1) The figure-ground representation emerges at CLIP layer-4 and is186

preserved in subsequent layers; 2) Categories emerge over layers, peaking at layer-9 and layer-10.187
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Figure 5: Unsupervised segmentation scores from spectral clustering on each CLIP layer. ImageNet-
segmentation dataset is used with binary figure-ground labels, and the mIoU score peaks plateau
from layer-4 to layer-10. In PASCAL VOC with 20 class labels, the mIoU score peaks at layer-9.

From which layers did the figure-ground and category representations emerge? We conducted188

experiments that compared the unsupervised segmentation scores across layers, tracing how well189

each representation is encoded at each layer. We used two datasets: a) ImageNet-segmentation190

(Guillaumin et al., 2014) with binary figure-ground labels, and b) PASCAL VOC (Everingham et al.,191

2010) with 20 category labels. The results are presented in Figure 5. On the ImageNet-segmentation192

benchmark, the score peaks at layer-4 (mIoU=0.6) and plateaus in subsequent layers, suggesting that193

the figure-ground representation is encoded and preserved from layer-4 onwards. On the PASCAL194

VOC benchmark, the score peaks at layer-9 and layer-10 (mIoU=0.5) even though it is low at layer-4195

(mIoU=0.2), indicating that category information is encoded at layer-9 and layer-10. Overall, we196

conclude that the figure-ground representation emerges before the category representation.197

3.2 Visual concepts: class-agnostic figure-ground198

In this section, we use brain activation heatmaps and image similarity heatmaps to describe figure-199

ground visual concepts. The key findings from these heatmaps are: 1) The figure vs. ground pixels200

activate different channels; 2) The figure-ground visual concept is class-agnostic; 3) The figure-201

ground visual concept is consistent across models.202

foreground background

ref.

bg
fg

Figure 6: The figure-ground visual concepts in CLIP layer-5. Left: Mean activation of foreground
or background pixels, linearly transformed to the brain’s space. Right: Cosine similarity from one
reference pixel marked. The figure-ground visual concepts are agnostic to image categories.

How can the channel activation patterns of the figure-ground visual concept be described? We203

averaged the channel activations from foreground and background pixels, using the ground-truth204

labels from the ImageNet-segmentation dataset. The averaged channel activations were transformed205

into the brain’s space. In Figure 6, foreground pixels exhibit positive activation in early visual brain206

ROIs (V1 to V4) and the face-selective ROI (FFA), while negatively activating place-selective ROIs207

(OPA and PPA). Interestingly, background pixels activate the reverse pattern compared to foreground208

pixels. Overall, the figure and ground pixels activate distinct brain ROIs.209

Is the figure-ground visual concept class-agnostic? We manually selected one pixel and computed210

the cosine similarity to all of the other image pixels. In Figure 6, the results demonstrate that one211

pixel (on the human) could segment out foreground objects from all other classes (shark, dog, cat,212

rabbit). The same result holds true for one background pixel. We conclude that the figure-ground213

visual concept is class-agnostic.214
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Figure 7: The same figure-ground visual concepts are found in CLIP, DINO and MAE. Left: Mean
activation of all foreground (top) and background (bottom) pixels; the three models exhibit similar
activation patterns. Right: AlignedCut, pixels colored by 3D spectral-tSNE of the top 20 eigenvec-
tors; the three models show similar grouping colors for foreground pixels.

Is the figure-ground visual concept consistent across models? We performed the channel analysis215

for CLIP, DINO, and MAE. In Figure 7, the foreground or background pixels activates similar216

brain ROIs across the three models. Additionally, spectral clustering grouped the representations of217

foreground objects into similar colors for CLIP and DINO (light blue), the grouping for MAE is less218

similar (dark blue). Overall, the figure-ground visual concept is consistent across models.219

3.3 Visual concepts: categories220

In this section we use AlignedCut to discover category visual concepts. The key findings from the221

category visual concepts are: 1) Class-specific visual concepts activate diverse brain regions; 2)222

Visual concepts with higher channel activation values are more consistent.223

Figure 8: Category visual concepts in CLIP layer-9. Left: Mean activation of all pixels within an
Euclidean sphere centered at the visual concept in the 3D spectral-tSNE space; the concepts activate
different brain regions. Middle: The standard deviation negatively correlates with absolute mean
activations. Right: AlignedCut, pixels colored by 3D spectral-tSNE of the top 20 eigenvectors.

How does each class-specific concept activate the channels? To answer this question, we sam-224

pled class-specific concepts from CLIP layer-9. First, we used farthest point sampling to identify225

candidate centers in the 3D spectral-tSNE space. Then, each candidate center was grouped with its226

neighboring pixels within an Euclidean sphere in the spectral-tSNE space. Finally, the channel acti-227

vations of the grouped pixels were averaged to produce the mean channel activation for each visual228

concept. In Figure 8, Concept 1 (duck, goose) negatively activates late brain regions; Concept 2229
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(snake, turtle) positively activates early brain regions and also FFA; Concept 3 (dog) negatively ac-230

tivates early brain regions. Overall, category-specific visual concepts activate diverse brain regions.231

How do we quantify the consistency of each visual concept? Qualitatively, Concept 1 exhibits more232

consistent coloring (Figure 8, pink) than Concept 3 (purple). To further quantify this observation, we233

computed the mean and standard deviation of channel activations for each Euclidean sphere centered234

on a concept. In Figure 8, there is a reverse U-shape relation between magnitude and standard235

deviation. The reverse U-shape implies that larger absolute mean channel activation corresponds236

to lower standard deviation. Overall, higher channel activation magnitudes suggest more consistent237

visual concepts.238

3.4 Transition of visual concepts over layers239

In this section, instead of using 3D spectral-tSNE, we use 2D spectral-tSNE to trace the layer-to-240

layer feature computation. The key findings of spectral-tSNE in 2D are: 1) The figure vs. ground241

pixels are encoded in separate spaces in late layers; 2) The representations for foreground and back-242

ground bifurcate at CLIP layer-4 and DINO layer-5.243

Layer

person
unsupervised

horse
car

grass

sky

road

Figure 9: Trajectory of feature progression in layers for six example pixels. Left: 2D spectral-tSNE
plot of the top 20 eigenvectors, jointly clustered across all models; the foreground and background
pixels bifurcate at CLIP layer-4 and DINO layer-5. Right: Pixels colored by unsupervised segmen-
tation.

How does the network encode figure and ground pixels in each layer? We performed spectral244

clustering and 2D t-SNE on the top 20 eigenvectors to project all layers into a 2D spectral-tSNE245

space. In Figure 9, we found that all foreground and background pixels are grouped together in246

each early layer. Each early layer (dark dots) forms an isolated cluster separate from other layers,247

while late layers (bright dots) are grouped in the center. In the late layers, there is a separation248

where foreground pixels occupy the upper part of 2D spectral-tSNE space, while background pixels249

occupy the middle part. Overall, foreground and background pixels are encoded in separate spaces250

in late layers.251

How does the network process each pixel from layer to layer? In the 2D spectral-tSNE plot,252

we traced the trajectory for each pixel from layer-3 to the last layer. In Figure 9, we found that253

the trajectories for foreground and background pixels bifurcate: foreground pixels (person, horse,254

car) traverse to the upper side and remain within the upper side; background pixels (grass, road,255

sky) jump between the middle right and left sides. The same bifurcation is consistently observed256

for CLIP from layer-3 to layer-4 and DINO from layer-4 to layer-5. Furthermore, to quantify the257

bifurcation for foreground and background pixels, we first sampled 5 visual concepts from CLIP258

layer-3 and layer-4. Then, we measured the transition probability between visual concepts, defined259

as the proportion of pixels that transited from an Euclidean circle around concept A to a circle260

around concept B. In Figure 10, the transition probability of foreground pixels to the upper side261

(A1 to B0) is higher than that of background pixels (0.44 vs. 0.16), while the transition probability262

of background pixels to the right side (A4 to B4) is higher than that of foreground pixels (0.36 vs.263

0.06). Overall, this suggests a bifurcation of figure and ground pixel representations at the middle264

layers of both CLIP and DINO.265
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Figure 10: Transition probability of visual concepts from CLIP layer-3 to layer-4. Left: Five visual
concepts sampled from CLIP layer-3 and layer-4. Right: Transition probability measured separately
for foreground and background pixels; a bifurcation occurs where foreground pixels have more
traffic to concept B0, while background pixels have more traffic to concepts B3 and B4.

4 Related Work266

Mechanistic Interpretability is a field of study that intends to understand and explain the inner267

working mechanisms of deep networks. One approach is to interpret individual neurons (Bau et al.,268

2017; Dravid et al., 2023) and circuit connections between neurons (Olah et al., 2020). Another ap-269

proach is to interpret transformer attention heads (Gandelsman et al., 2024) and circuit connections270

between attention heads (Wang et al., 2023a). Other approaches also looked into the role of patch271

tokens (Sun et al., 2024). These approaches made the assumption that channels are aligned within272

the same model; we compare across models by actively aligning the channels to a universal space.273

Spectral Clustering is a graphical method to analyze data grouping in the eigenvector space. Spec-274

tral methods have been widely used for unsupervised image segmentation (Shi and Malik, 2000;275

von Luxburg, 2007; Wu et al., 2018; Wang et al., 2023b). One major challenge for applying spectral276

clustering to large graphs is the complexity scaling issue. To solve the scaling issue, the Nystrom277

approximation (Fowlkes et al., 2004) approaches solve eigenvectors on sub-sampled graphs and then278

propagate to the full graph. Another approach is the gradient-based eigenvector solver (Zhang et al.,279

2023), which solves the eigenvectors in mini-batches. Our proposed Nystrom-like approximation280

achieves a computational speedup over the original Nystrom approximation, albeit at the expense of281

weakened orthogonality of the eigenvectors.282

Brain Encoding Model is widely used by the computational neuroscience community (Kriegeskorte283

and Douglas, 2018). They have been using deep nets to explain the brain’s function. One approach284

is to use the gradient of the brain encoding model to find the most salient image features (Sarch285

et al., 2023). Another approach generate text caption for brain activation (Luo et al., 2024). Other286

approaches compare brain prediction performance for different models (Schrimpf et al., 2020). The287

field focused on using deep nets as a tool to explain the brain’s function; we go in the opposite288

direction by using the brain to explain deep nets.289

5 Conclusion and Limitations290

We present a novel approach to interpreting deep neural networks by leveraging brain data. Our291

fundamental innovation is twofold: First, we use brain prediction as guidance to align channels from292

different models into a universal feature space; Second, we developed a Nystrom-like approximation293

to scale up the spectral clustering analysis. Our key discovery is that recurring visual concepts exist294

across networks and layers; such concepts correspond to different levels of objects, ranging from295

figure-ground to categories. Additionally, we quantified the information flow from layer to layer,296

where we found a bifurcation of figure-ground visual concepts.297

Limitations. While the learned channel align transformation projects all features onto a universal298

feature space, the nature of learned transformation does not preserve all the information. There299

is a small drop in unsupervised segmentation performance after channel alignment, which is not300

fully addressed by our proposed eigen-constraint regularization. Secondly, as a trade-off for faster301

computation, our Nystrom-like approximation does not produce strictly orthogonal eigenvectors. To302

produce expressive eigenvectors, our approximation relies on using larger sub-sample sizes than the303

original Nystrom method.304
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A Appendix overview377

1. Appendix B summarizes background of brain ROIs.378

2. Appendix C is implementation details379

2.1. Additional regularization terms380

2.2. Brain encoding model training loss function381

2.3. Unsupervised segmentation evaluation pipeline382

2.4. Nystrom-like approximation for t-SNE383

3. Appendix D lists more image examples from the 3D spectral-tSNE.384

4. Appendix E lists figure-ground channel activation for every model and layer.385

5. Appendix F lists more example category-specific visual concepts.386

6. Appendix G lists more example pixels from the 2D spectral-tSNE information flow.387
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B Brain Region Background Knowledge388

Figure 11: Brain Region of Interests (ROIs). V1v: ventral stream, V1d: dorsal stream.

Table 2: Known function and selectivity of brain region of interests (ROIs).
ROI name V1 V2 V3 V4 EBA FBA OFA FFA OPA PPA OWFA VWFA
Known Function/Selectivity primary visual mid-level body face navigation scene words

This section briefly summarizes the known functions of key brain regions of interest (ROIs). Fig-389

ure 11 provides an overview of these brain ROIs. Table 2 lists the known functions and selectivities390

for each ROI.391

In brief, V1 to V3 are the primary visual stream, which is further divided into ventral (lower) and dor-392

sal (upper) streams. V4 is a mid-level visual area. EBA (extrastriate body area) and FBA (fusiform393

body area) are selectively responsive to bodies, while FFA (fusiform face area) and OFA (occipital394

face area) show selectivity for faces. OWFA (occipital word form area) and VWFA (visual word395

form area) are selective for written words. PPA (parahippocampal place area) exhibits selectivity for396

scenes and places, and OPA (occipital place area) is involved in navigation and spatial reasoning.397

Visual information processing in the brain follows a hierarchical, feedforward organization. Be-398

ginning in the primary visual cortex (V1) and progressing through higher visual areas like V2, V3,399

and V4, neurons exhibit increasingly large receptive fields and represent increasingly abstract visual400

concepts. While neurons in V1 encode low-level features like edges and orientations within a small401

portion of the visual field, neurons in V4 synthesize more complex patterns and object representa-402

tions across a larger area of the visual input.403
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C Implementation Details404

C.1 Additional Regularization for Channel Align Transformation405

Additional Regularization are added to the channel align transform to ensure good properties of the406

aligned features: 1) zero-centered, 2) small covariance between channels, and 3) focal loss.407

Zero-centered regularization. We did not apply z-score normalization to the extracted features;408

instead, we added a regularization term to ensure the transformed features are zero-centered. Recall409

that the channel-aligned transformed feature V ′ ∈ RM×D′
, where M is the number of data points410

and D′ is the hidden dimension. The zero-center loss is defined as:411

Lzero =
1

D′
1

M

∑
i≤M,j≤D′

v′ij (6)

Covariance regularization. We used the covariance loss to minimize the off-diagonal elements in412

the covariance matrix of the transformed feature C(V ′), aiming to bring them close to 0. Recall413

that channel align transformed feature V ′ ∈ RM×D′
, where M is number of data, D′ is the hidden414

dimension. The covariance loss is defined as:415

Lcov =
1

D′

∑
i̸=j

[C(V ′)]2i,j , where C(V ′) =
1

M − 1

M∑
i=1

(
v′i − v̄′

) (
v′i − v̄′

)T
, v̄′ =

1

M

M∑
i=1

v′i.

(7)
Focal Loss. Lin et al. (2017) introduced focal loss, which dynamically assigns smaller weights to416

the loss function for hard-to-classify classes. In our scenario, we apply spectral clustering on the417

affinity matrix Aa ∈ RM×M after performing the channel alignment transform, where M represents418

the number of data points. Due to the characteristics of spectral clustering, disconnected edges419

play a more critical role than connected edges. Adding an edge between disconnected clusters420

significantly reshapes the eigenvectors, while adding edges to connected clusters has only a minor421

impact. Therefore, we aim to assign larger weights to disconnected edges in the loss function:422

Leigen = ∥(XbX
T
b −XaX

T
a ) ∗ exp(−Ab)∥ (8)

where Ab ∈ RM×M is the affinity matrix before the channel alignment transform, element wise dot-423

product to exp(−Ab) assigned larger wights for disconnected edges. Xb ∈ RM×C ,Xa ∈ RM×C424

are eigenvectors before and after channel align transform, respectively.425

C.2 Brain Encoding Model Training Loss426

Let Y ∈ R1×N represent the brain prediction target, where N is the number of flattened 3D brain427

voxels, and the 1 indicates that each voxel’s response is a scalar value. Ŷ is the model’s predicted428

brain response. The brain encoding model training loss is the L1 loss:429

Lbrain = ∥Y − Ŷ ∥ (9)

C.3 Total Training Loss430

The total training loss is a combination of the following components: 1) brain encoding model loss,431

2) eigen-constraint regularization, 3) zero-centered regularization, and 4) covariance regularization:432

L = Lbrain + λeigenLeigen + λzeroLzero + λcovLcov (10)

where we set λeigen = 1, λzero = 0.01, λcov = 0.01.433
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C.4 Oracle-based Unsupervised Segmentation Evaluation Pipeline434

Our unsupervised segmentation pipeline aims to benchmark and compare the performance across435

each single layer of the CLIP model. The evaluation pipeline is oracle-based:436

1. Apply spectral clustering jointly across all images, taking the top 10 eigenvectors.437

2. For each class of object (plus one background class), use ground-truth labels from the dataset438

to mask out the pixels and their eigenvectors, and then use the mean of the eigenvectors to define a439

center for each class.440

3. Compute the cosine similarity of each pixel to all class centers.441

4. For each pixel, if the maximum similarity to all classes is less than a threshold value, assign442

this pixel to the background class.443

5. Assign pixels (with a similarity greater than the threshold value) to the class with the maximum444

similarity.445

There’s one hyper-parameter, the threshold value that requires different optimal value for each layer446

of CLIP. To ensure a fair comparison across all layers, the threshold value is grid-searched from 10447

evenly spaced values between 0 and 1, the maximum mIoU score in the grid search is taken for each448

layer.449

C.5 Nystrom-like approximation for t-SNE450

To visualize the eigenvectors, we applied t-SNE to the eigenvectors X ∈ RM×C , where the number451

of data points M span the product space of models, layers, pixels, and images. Due to the enormous452

size of M = 7e+6 nodes, t-SNE suffered from complexity scaling issues. We again applied our453

Nystrom-like approximation to t-SNE, with sub-sampled m = 10e+4 nodes and KNN K = 1.454

It’s worth noting that, since the non-linear distance adjustment in t-SNE, it’s crucial to use only one455

nearest neighbor K = 1 for t-SNE.456

C.6 Computation Resource457

All of our experiments are performed on one consumer-grade RTX 4090 GPU. The brain encoding458

model training took 3 hours on 4GB of VRAM, spectral clustering eigen-decomposition on large459

graph took 10 minutes on 10GB of VRAM and 60GB of CPU RAM.460

C.7 Code Release461

Our code will be publicly released upon publication.462
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3D Spectral-tSNE

D 3D spectral-tSNE463
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Figure 12: Spectral clustering in the universal channel aligned feature space. The image pixels are
colored by our approach AlignedCut, the pixel RGB value is assigned by the 3D spectral-tSNE of
the top 20 eigenvectors. The coloring is consistent across all images, layers, and models.
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Figure 13: Spectral clustering in the universal channel aligned feature space. The image pixels are
colored by our approach AlignedCut, the pixel RGB value is assigned by the 3D spectral-tSNE of
the top 20 eigenvectors. The coloring is consistent across all images, layers, and models.
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3D Spectral-tSNE
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Figure 14: Spectral clustering in the universal channel aligned feature space. The image pixels are
colored by our approach AlignedCut, the pixel RGB value is assigned by the 3D spectral-tSNE of
the top 20 eigenvectors. The coloring is consistent across all images, layers, and models.
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Figure 15: Spectral clustering in the universal channel aligned feature space. The image pixels are
colored by our approach AlignedCut, the pixel RGB value is assigned by the 3D spectral-tSNE of
the top 20 eigenvectors. The coloring is consistent across all images, layers, and models.
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Figure-ground Channel Activation

E Figure-ground Channel Activation from All Layers and Models464
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Figure 16: Mean activation of foreground or background pixels at each layer of CLIP, DINO and
MAE. Channel activations are linearly transformed to the brain’s space. Large absolute activation
value means more consistent visual concepts.
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Visual Concepts: Category-specific

F Visual Concepts: Categories465

Figure 17: Category visual concepts in CLIP Layer 9. Left: Mean activation of all pixels within an
Euclidean sphere centered at the visual concept in the 3D spectral-tSNE space; the concepts activate
different brain regions. Middle: The standard deviation negatively correlates with absolute mean
activations. Right: Spectral clustering, colored by 3D spectral-tSNE of the top 20 eigenvectors.
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2D Spectral-tSNE Space Information Flow

G Layer-to-Layer Feature Computation Flow in 2D spectral-tSNE space466

Figure 18: Trajectory of feature progression in from layer to layer, in the 2D spectral-tSNE space.
Arrows displayed for 10 randomly sampled example pixels. Top Right: Pixels are colored by unsu-
pervised segmentation.
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2D Spectral-tSNE Space Information Flow

Figure 19: Trajectory of feature progression in from layer to layer, in the 2D spectral-tSNE space.
Arrows displayed for 10 randomly sampled example pixels. Top Right: Pixels are colored by unsu-
pervised segmentation.
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2D Spectral-tSNE Space Information Flow

Figure 20: Trajectory of feature progression in from layer to layer, in the 2D spectral-tSNE space.
Arrows displayed for 10 randomly sampled example pixels. Top Right: Pixels are colored by unsu-
pervised segmentation.
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2D Spectral-tSNE Space Information Flow

Figure 21: Trajectory of feature progression in from layer to layer, in the 2D spectral-tSNE space.
Arrows displayed for 10 randomly sampled example pixels. Top Right: Pixels are colored by unsu-
pervised segmentation.
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2D Spectral-tSNE Space Information Flow

Figure 22: Trajectory of feature progression in from layer to layer, in the 2D spectral-tSNE space.
Arrows displayed for 10 randomly sampled example pixels. Top Right: Pixels are colored by unsu-
pervised segmentation.
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NeurIPS Paper Checklist467

1. Claims468

Question: Do the main claims made in the abstract and introduction accurately reflect the469

paper’s contributions and scope?470

Answer: [Yes]471

Justification:472

Guidelines:473

• The answer NA means that the abstract and introduction do not include the claims474

made in the paper.475

• The abstract and/or introduction should clearly state the claims made, including the476

contributions made in the paper and important assumptions and limitations. A No or477

NA answer to this question will not be perceived well by the reviewers.478

• The claims made should match theoretical and experimental results, and reflect how479

much the results can be expected to generalize to other settings.480

• It is fine to include aspirational goals as motivation as long as it is clear that these481

goals are not attained by the paper.482

2. Limitations483

Question: Does the paper discuss the limitations of the work performed by the authors?484

Answer: [Yes]485

Justification:486

Guidelines:487

• The answer NA means that the paper has no limitation while the answer No means488

that the paper has limitations, but those are not discussed in the paper.489

• The authors are encouraged to create a separate ”Limitations” section in their paper.490

• The paper should point out any strong assumptions and how robust the results are to491

violations of these assumptions (e.g., independence assumptions, noiseless settings,492

model well-specification, asymptotic approximations only holding locally). The au-493

thors should reflect on how these assumptions might be violated in practice and what494

the implications would be.495

• The authors should reflect on the scope of the claims made, e.g., if the approach was496

only tested on a few datasets or with a few runs. In general, empirical results often497

depend on implicit assumptions, which should be articulated.498

• The authors should reflect on the factors that influence the performance of the ap-499

proach. For example, a facial recognition algorithm may perform poorly when image500

resolution is low or images are taken in low lighting. Or a speech-to-text system might501

not be used reliably to provide closed captions for online lectures because it fails to502

handle technical jargon.503

• The authors should discuss the computational efficiency of the proposed algorithms504

and how they scale with dataset size.505

• If applicable, the authors should discuss possible limitations of their approach to ad-506

dress problems of privacy and fairness.507

• While the authors might fear that complete honesty about limitations might be used by508

reviewers as grounds for rejection, a worse outcome might be that reviewers discover509

limitations that aren’t acknowledged in the paper. The authors should use their best510

judgment and recognize that individual actions in favor of transparency play an impor-511

tant role in developing norms that preserve the integrity of the community. Reviewers512

will be specifically instructed to not penalize honesty concerning limitations.513

3. Theory Assumptions and Proofs514

Question: For each theoretical result, does the paper provide the full set of assumptions and515

a complete (and correct) proof?516

Answer: [NA]517

27



Justification:518

Guidelines:519

• The answer NA means that the paper does not include theoretical results.520

• All the theorems, formulas, and proofs in the paper should be numbered and cross-521

referenced.522

• All assumptions should be clearly stated or referenced in the statement of any theo-523

rems.524

• The proofs can either appear in the main paper or the supplemental material, but if525

they appear in the supplemental material, the authors are encouraged to provide a526

short proof sketch to provide intuition.527

• Inversely, any informal proof provided in the core of the paper should be comple-528

mented by formal proofs provided in appendix or supplemental material.529

• Theorems and Lemmas that the proof relies upon should be properly referenced.530

4. Experimental Result Reproducibility531

Question: Does the paper fully disclose all the information needed to reproduce the main532

experimental results of the paper to the extent that it affects the main claims and/or conclu-533

sions of the paper (regardless of whether the code and data are provided or not)?534

Answer: [Yes]535

Justification: Experimental details are in the appendix536

Guidelines:537

• The answer NA means that the paper does not include experiments.538

• If the paper includes experiments, a No answer to this question will not be perceived539

well by the reviewers: Making the paper reproducible is important, regardless of540

whether the code and data are provided or not.541

• If the contribution is a dataset and/or model, the authors should describe the steps542

taken to make their results reproducible or verifiable.543

• Depending on the contribution, reproducibility can be accomplished in various ways.544

For example, if the contribution is a novel architecture, describing the architecture545

fully might suffice, or if the contribution is a specific model and empirical evaluation,546

it may be necessary to either make it possible for others to replicate the model with547

the same dataset, or provide access to the model. In general. releasing code and data548

is often one good way to accomplish this, but reproducibility can also be provided via549

detailed instructions for how to replicate the results, access to a hosted model (e.g., in550

the case of a large language model), releasing of a model checkpoint, or other means551

that are appropriate to the research performed.552

• While NeurIPS does not require releasing code, the conference does require all sub-553

missions to provide some reasonable avenue for reproducibility, which may depend554

on the nature of the contribution. For example555

(a) If the contribution is primarily a new algorithm, the paper should make it clear556

how to reproduce that algorithm.557

(b) If the contribution is primarily a new model architecture, the paper should describe558

the architecture clearly and fully.559

(c) If the contribution is a new model (e.g., a large language model), then there should560

either be a way to access this model for reproducing the results or a way to re-561

produce the model (e.g., with an open-source dataset or instructions for how to562

construct the dataset).563

(d) We recognize that reproducibility may be tricky in some cases, in which case au-564

thors are welcome to describe the particular way they provide for reproducibility.565

In the case of closed-source models, it may be that access to the model is limited in566

some way (e.g., to registered users), but it should be possible for other researchers567

to have some path to reproducing or verifying the results.568

5. Open access to data and code569

Question: Does the paper provide open access to the data and code, with sufficient instruc-570

tions to faithfully reproduce the main experimental results, as described in supplemental571

material?572
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Answer: [No]573

Justification: The data is provided as open-source from another study; our code is not yet574

released, it will be released upon publication.575

Guidelines:576

• The answer NA means that paper does not include experiments requiring code.577

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/578

public/guides/CodeSubmissionPolicy) for more details.579

• While we encourage the release of code and data, we understand that this might not580

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not581

including code, unless this is central to the contribution (e.g., for a new open-source582

benchmark).583

• The instructions should contain the exact command and environment needed to run to584

reproduce the results. See the NeurIPS code and data submission guidelines (https:585

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.586

• The authors should provide instructions on data access and preparation, including how587

to access the raw data, preprocessed data, intermediate data, and generated data, etc.588

• The authors should provide scripts to reproduce all experimental results for the new589

proposed method and baselines. If only a subset of experiments are reproducible, they590

should state which ones are omitted from the script and why.591

• At submission time, to preserve anonymity, the authors should release anonymized592

versions (if applicable).593

• Providing as much information as possible in supplemental material (appended to the594

paper) is recommended, but including URLs to data and code is permitted.595

6. Experimental Setting/Details596

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-597

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the598

results?599

Answer: [Yes]600

Justification: Experimental details are in the appendix601

Guidelines:602

• The answer NA means that the paper does not include experiments.603

• The experimental setting should be presented in the core of the paper to a level of604

detail that is necessary to appreciate the results and make sense of them.605

• The full details can be provided either with the code, in appendix, or as supplemental606

material.607

7. Experiment Statistical Significance608

Question: Does the paper report error bars suitably and correctly defined or other appropri-609

ate information about the statistical significance of the experiments?610

Answer: [Yes]611

Justification: We provided standard deviation in Table 1, measured over training with 3612

random seed.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-616

dence intervals, or statistical significance tests, at least for the experiments that support617

the main claims of the paper.618

• The factors of variability that the error bars are capturing should be clearly stated (for619

example, train/test split, initialization, random drawing of some parameter, or overall620

run with given experimental conditions).621

• The method for calculating the error bars should be explained (closed form formula,622

call to a library function, bootstrap, etc.)623

• The assumptions made should be given (e.g., Normally distributed errors).624
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• It should be clear whether the error bar is the standard deviation or the standard error625

of the mean.626

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-627

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of628

Normality of errors is not verified.629

• For asymmetric distributions, the authors should be careful not to show in tables or630

figures symmetric error bars that would yield results that are out of range (e.g. negative631

error rates).632

• If error bars are reported in tables or plots, The authors should explain in the text how633

they were calculated and reference the corresponding figures or tables in the text.634

8. Experiments Compute Resources635

Question: For each experiment, does the paper provide sufficient information on the com-636

puter resources (type of compute workers, memory, time of execution) needed to reproduce637

the experiments?638

Answer: [Yes]639

Justification:640

Guidelines:641

• The answer NA means that the paper does not include experiments.642

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,643

or cloud provider, including relevant memory and storage.644

• The paper should provide the amount of compute required for each of the individual645

experimental runs as well as estimate the total compute.646

• The paper should disclose whether the full research project required more compute647

than the experiments reported in the paper (e.g., preliminary or failed experiments648

that didn’t make it into the paper).649

9. Code Of Ethics650

Question: Does the research conducted in the paper conform, in every respect, with the651

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?652

Answer: [Yes]653

Justification:654

Guidelines:655

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.656

• If the authors answer No, they should explain the special circumstances that require a657

deviation from the Code of Ethics.658

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-659

eration due to laws or regulations in their jurisdiction).660

10. Broader Impacts661

Question: Does the paper discuss both potential positive societal impacts and negative662

societal impacts of the work performed?663

Answer: [NA]664

Justification:665

Guidelines:666

• The answer NA means that there is no societal impact of the work performed.667

• If the authors answer NA or No, they should explain why their work has no societal668

impact or why the paper does not address societal impact.669

• Examples of negative societal impacts include potential malicious or unintended uses670

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations671

(e.g., deployment of technologies that could make decisions that unfairly impact spe-672

cific groups), privacy considerations, and security considerations.673
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• The conference expects that many papers will be foundational research and not tied674

to particular applications, let alone deployments. However, if there is a direct path to675

any negative applications, the authors should point it out. For example, it is legitimate676

to point out that an improvement in the quality of generative models could be used to677

generate deepfakes for disinformation. On the other hand, it is not needed to point out678

that a generic algorithm for optimizing neural networks could enable people to train679

models that generate Deepfakes faster.680

• The authors should consider possible harms that could arise when the technology is681

being used as intended and functioning correctly, harms that could arise when the682

technology is being used as intended but gives incorrect results, and harms following683

from (intentional or unintentional) misuse of the technology.684

• If there are negative societal impacts, the authors could also discuss possible mitiga-685

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,686

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from687

feedback over time, improving the efficiency and accessibility of ML).688

11. Safeguards689

Question: Does the paper describe safeguards that have been put in place for responsible690

release of data or models that have a high risk for misuse (e.g., pretrained language models,691

image generators, or scraped datasets)?692

Answer: [NA]693

Justification:694

Guidelines:695

• The answer NA means that the paper poses no such risks.696

• Released models that have a high risk for misuse or dual-use should be released with697

necessary safeguards to allow for controlled use of the model, for example by re-698

quiring that users adhere to usage guidelines or restrictions to access the model or699

implementing safety filters.700

• Datasets that have been scraped from the Internet could pose safety risks. The authors701

should describe how they avoided releasing unsafe images.702

• We recognize that providing effective safeguards is challenging, and many papers do703

not require this, but we encourage authors to take this into account and make a best704

faith effort.705

12. Licenses for existing assets706

Question: Are the creators or original owners of assets (e.g., code, data, models), used in707

the paper, properly credited and are the license and terms of use explicitly mentioned and708

properly respected?709

Answer: [Yes]710

Justification:711

Guidelines:712

• The answer NA means that the paper does not use existing assets.713

• The authors should cite the original paper that produced the code package or dataset.714

• The authors should state which version of the asset is used and, if possible, include a715

URL.716

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.717

• For scraped data from a particular source (e.g., website), the copyright and terms of718

service of that source should be provided.719

• If assets are released, the license, copyright information, and terms of use in the pack-720

age should be provided. For popular datasets, paperswithcode.com/datasets has721

curated licenses for some datasets. Their licensing guide can help determine the li-722

cense of a dataset.723

• For existing datasets that are re-packaged, both the original license and the license of724

the derived asset (if it has changed) should be provided.725
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• If this information is not available online, the authors are encouraged to reach out to726

the asset’s creators.727

13. New Assets728

Question: Are new assets introduced in the paper well documented and is the documenta-729

tion provided alongside the assets?730

Answer: [NA]731

Justification:732

Guidelines:733

• The answer NA means that the paper does not release new assets.734

• Researchers should communicate the details of the dataset/code/model as part of their735

submissions via structured templates. This includes details about training, license,736

limitations, etc.737

• The paper should discuss whether and how consent was obtained from people whose738

asset is used.739

• At submission time, remember to anonymize your assets (if applicable). You can740

either create an anonymized URL or include an anonymized zip file.741

14. Crowdsourcing and Research with Human Subjects742

Question: For crowdsourcing experiments and research with human subjects, does the pa-743

per include the full text of instructions given to participants and screenshots, if applicable,744

as well as details about compensation (if any)?745

Answer: [NA]746

Justification:747

Guidelines:748

• The answer NA means that the paper does not involve crowdsourcing nor research749

with human subjects.750

• Including this information in the supplemental material is fine, but if the main contri-751

bution of the paper involves human subjects, then as much detail as possible should752

be included in the main paper.753

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-754

tion, or other labor should be paid at least the minimum wage in the country of the755

data collector.756

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human757

Subjects758

Question: Does the paper describe potential risks incurred by study participants, whether759

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)760

approvals (or an equivalent approval/review based on the requirements of your country or761

institution) were obtained?762

Answer: [NA]763

Justification:764

Guidelines:765

• The answer NA means that the paper does not involve crowdsourcing nor research766

with human subjects.767

• Depending on the country in which research is conducted, IRB approval (or equiva-768

lent) may be required for any human subjects research. If you obtained IRB approval,769

you should clearly state this in the paper.770

• We recognize that the procedures for this may vary significantly between institutions771

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the772

guidelines for their institution.773

• For initial submissions, do not include any information that would break anonymity774

(if applicable), such as the institution conducting the review.775
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