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Abstract

Modern neural networks often activate all neurons for every input, leading to un-
necessary computation and inefficiency. We introduce Matrix-Interpolated Dropout
Layer (MID-L), a novel module that dynamically selects and activates only the
most informative neurons by interpolating between two transformation paths via
a learned, input-dependent gating vector. Unlike conventional dropout or static
sparsity methods, MID-L employs Top-k masking with straight-through gradi-
ent estimation (STE), enabling per-input adaptive computation while preserving
end-to-end training. MID-L is model-agnostic and integrates seamlessly into ex-
isting architectures. Extensive experiments on six benchmarks, including MNIST,
CIFAR-10, CIFAR-100, SVHN, UCI Adult, and IMDB, show that MID-L achieves
up to 55% reduction in active neurons, 1.7 x FLOPs savings, and maintains or
exceeds baseline accuracy. We further validate the informativeness and selectivity
of the learned neurons via Sliced Mutual Information (SMI) and observe improved
robustness under overfitting and noisy data conditions. From a systems perspective,
MID-L’s conditional sparsity reduces memory traffic and intermediate activation
sizes, yielding favorable wall-clock latency and VRAM usage on GPUs (and is
compatible with mixed-precision/Tensor Core execution). These results position
MID-L as a general-purpose, plug-and-play dynamic computation layer, bridging
the gap between dropout regularization and GPU-efficient inference.

1 Introduction

Deep neural networks (DNN5s) have transformed vision [25], NLP [39], and speech [17], but inference
cost grows with model depth/width [14, 36]. Fully connected layers evaluate all neurons for every
input, creating redundant computation and energy use [9]. This motivates dynamic/conditional
computation, where only a subset of components is activated. Prior work—Conditional Computation
[3], Adaptive Computation Time [13], and Mixture-of-Experts (MoE) [37, 7]—shows sparse, data-
dependent routing can preserve accuracy while reducing cost. On GPUs, dense FC layers also cause
unnecessary memory traffic and underutilize Tensor Cores. Neuron-level sparsity can thus improve
algorithmic efficiency and GPU throughput, memory usage, and energy.

Regularization and pruning reduce overfitting but do not offer input-aware sparsity at test time:
dropout [38] is stochastic during training, while structured pruning [8, 15] permanently removes
capacity. We propose MID-L (Matrix-Interpolated Dropout Layer), a dynamic block that learns
input-conditioned interpolation between a lightweight path and a full-capacity path. Each neuron is
modulated by a per-input gating score «; inspired by the concept of dropout, MID-L adopts selective
deactivation in an input-conditioned manner. To enforce sparsity, we keep only the Top-k entries of «
per input, focusing computation on the most informative neurons.
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MID-L differs from prior art in three ways: (1) deterministic Top-k gating trained via a straight-
through estimator (STE) rather than random masking; (2) per-neuron interpolation between two paths,
enabling a learned speed—expressiveness trade-off; and (3) per-input Top-k selection akin to token
routing in sparse transformers [5]. Across MLP and CNN backbones on MNIST, CIFAR-10 and 100,
SVHN, UCI Adult, and IMDB, MID-L improves generalization, reduces overfitting, and activates
fewer neurons on average. Using Sliced Mutual Information (SMI) [12], we verify that selected
neurons are more informative.

From a systems perspective, MID-L’s conditional sparsity reduces FLOPs, intermediate tensor
sizes, and memory bandwidth pressure, yielding measurable gains in GPU latency, VRAM usage,
and energy. Our contributions are: (i) a drop-in, neuron-wise layer performing learned Top-k
interpolation; (ii) a full mathematical formulation and sparsity analysis versus FC and dropout; (iii)
extensive experiments on six datasets with ablations of Fy, F5, and «; (iv) SMI-based validation
of informativeness; and (v) overfit stress tests showing superior generalization. MID-L bridges
dropout-style regularization and dynamic inference for efficient, scalable deployment.

2 Related Work

Our proposed MID-L block builds on a growing body of research in neural network sparsification,
conditional computation, and regularization strategies, particularly dropout and its recent evolutions.

Dropout as Regularization. Originally introduced as a technique to prevent overfitting by randomly
deactivating neurons during training [38], dropout has since evolved into a family of strategies
targeting various forms of structured sparsity and dynamic activation. For example, Cho [6] proposed
auxiliary stochastic neurons to generalize dropout in multilayer perceptrons, while Gal and Kendall
[10] introduced Concrete Dropout for uncertainty estimation in Bayesian neural networks.

Modality-aware and Targeted Dropout. More recent work explores dropout in multimodal settings.
Rachmadi et al. [34] studied spatially targeted dropout for cross-modality person re-identification,
and Shaeri et al. [35] applied dropout for robustness in multimodal fusion. However, these approaches
do not provide input-aware sparsity at inference time, leaving computational cost largely unchanged.
Li et al. [27] introduced Modout for multi-modal fusion; Nguyen et al. [32] proposed Multiple
Hypothesis Dropout; and Korse et al. [22] showed that modality dropout improves robustness in
speaker extraction. These works suggest dropout can encode modality importance and uncertainty,
but they do not explicitly optimize inference efficiency.

Dynamic Sparsity and Conditional Computation. Selective activation has been widely explored
via Mixture-of-Experts (MoE) and related routing methods [37, 7], which route tokens to a subset of
experts. Other lines include the Lottery Ticket Hypothesis [9], structured/channel pruning [14, 8],
and input-conditioned nonlinearities such as Dynamic ReLU [4]. In vision transformers, token/chan-
nel pruning and token selection (e.g., DynamicViT and related methods) sparsify computation by
discarding less-informative tokens early, improving efficiency without large accuracy loss.

Learning Discrete Selection. Because discrete Top-£ selection is non-differentiable, prior work
often uses straight-through estimators (STE) [3] or continuous relaxations such as Concrete/Gumbel-
Softmax [20, 30] and Lg / hard-concrete gates [28]. MID-L follows this tradition: we apply a hard
Top-k mask in the forward pass and use STE to pass gradients through the underlying soft gate during
backpropagation.

Dropout in Structured and Sparse Layers. Several works study dropout as a mechanism for
sparse or structured computation. Bank and Giryes [1] connect dropout to equiangular tight frames;
Kimura and Hino [21] analyze dropout dynamics via information geometry; Inoue [19] proposed
multi-sample dropout; and DropGNN [33] uses node-level dropout to improve graph expressiveness.

MID-L combines learned per-neuron gating with a hard Top-k mask (trained via STE) and interpolates
two paths of different capacity (F) low-rank/shallow, F; full). Unlike standard dropout, which is
random and active only during training, MID-L provides input-aware sparsity at inference. Unlike
MoE and token-routing systems, MID-L operates at a finer (neuron-wise) granularity and can be
inserted into standard MLP/CNN blocks without additional routing infrastructure. This makes MID-L
a general-purpose sparsification module that improves both efficiency and generalization, especially
under limited data.



3 Method

3.1 Block Architecture

Given an input tensor X € RB*P (batch size B, feature dimension D), MID-L processes X through
two parallel transformation paths:

* F1(X): alightweight transformation (e.g., low-rank or shallow MLP),

* F5(X): a full-capacity transformation (e.g., standard-width MLP or deeper nonlinear
module).

A gating vector is computed via a linear projection with sigmoid:
a = o(XW,]), a € [0,1]8%P, 1)

To enforce input-conditioned sparsity, we keep the Top-k entries of each row of « and zero the rest.
Let Myop1;(cr) € {0,1}5*P be the corresponding binary mask and define the hard-masked gate

Ohard = @ ® Mmp_k(a), ©® denotes element-wise multiplication. 2)

Since Top-k is discrete and non-differentiable, we adopt a straight-through estimator (STE). Let sg(-)
denote the stop-gradient operator. We use
& = a + Sg(ahard - 0[), (3)

so the forward pass equals an,q (hard mask), while the backward pass follows the gradient of the
underlying soft gate a.

The MID-L output is a per-neuron interpolation of the two paths:
Y = a0 Fi(X) + (1-a) 06 R(X). 4

3.2 Formulation

We present the forward/backward forms of a standard fully connected (FC) layer, FC with dropout,
and MID-L.

3.2.1 Fully Connected Layer

For z € R4,
d

zi = ZWij$j+bi, a; = ¢(2), )

Jj=1

with weights W € R%«*4 bias b € R%u«, and nonlinearity ¢. The gradient of the loss £ w.r.t. each
weight is
oL oL

oW = a—Zi-xj, (6)

i.e., all weights are updated.

3.2.2 Fully Connected Layer with Dropout

With a training-time mask m; ~ Bernoulli(p) and &; = m;x;,

d d
o= Y Wik +b = 3 Wilmy ) +bi, i = 6(z). )
Jj=1 j=1
Gradients flow only through active inputs:
oL oL
oW, g, T (®)



3.2.3 MID-L: Matrix-Interpolated Dropout Layer
For z € RY, we write the two paths as final affine maps (the implementation uses MLPs; see §3.3):
Fy (LL') = Wiz +b; (lightweight), Fy (l‘) = Wsyx 4+ by (rich). ©)]

The gate is a = o (W, ), the hard Top-k mask yields an,q, and the STE gate & is given by (3). The
element-wise interpolation produces

z = a0 Fi(z) + (1-4a) o F(z), a = ¢(z). (10)
Gradients are selectively weighted by the gate:
oL oL oL oL
— = |di A — " —— = [diag(1 — &)] ==z" 11
aIIrI [ lag(a)] az € ) 8‘172 [ 1a‘g( Oé)] 82 €T 3 ( )
and for the gating projection W,
oL oL Oa
= [ — F - F C— 12
P 5, © [Fi(z) 2(x)]> PR (12)

where the path difference F () — F»(x) mediates the learning signal for the gate.

GPU Efficiency Considerations. MID-L induces conditional sparsity at the neuron level, reducing
effective multiplications per input. On GPUs, this lowers memory traffic and the VRAM footprint
of intermediate activations. In practice, both paths are computed during training for stability; at
inference, one can optionally prune computation for non-selected neurons (e.g., via gather/scatter
or fused kernels), which reduces FLOPs and latency (see Section X). The lightweight path F} is
amenable to mixed-precision/Tensor Core execution. Overall, under Top-k sparsity MID-L improves
throughput-per-watt relative to dense baselines.

3.3 Implementation Notes

In experiments, F} is a low-rank or shallow MLP (e.g., R? - R" — R? with r <« d), while F, is a
standard 2-layer MLP (e.g., R — R" = R? with h &~ d). The gating projection is a small linear layer
followed by a sigmoid. Top-k is applied per sample to produce the hard mask; the STE formulation in
(3) is used during backpropagation. Apart from the discrete Top-k (handled by STE), all operations
use standard differentiable PyTorch ops. The block is plug-and-play for MLP and CNN backbones.
During training, a modest dropout (e.g., p = 0.1) applied to & can further regularize learning. The
Top-k level is a hyperparameter that can be fixed or annealed over epochs. Overall, MID-L can
replace standard FC layers with minimal code changes, providing input-aware sparse activation at
inference.

4 Experiments and Results

We evaluate MID-L across three modalities: image classification on MNIST [26], CIFAR-10/100
[23, 24], CIFAR-10-C [16] (common corruptions), and SVHN [31]; tabular prediction on UCI Adult
[2]; and sentiment analysis on IMDB [29]. For each dataset we report predictive performance
(accuracy or F1, chosen based on class balance) and efficiency metrics including FLOPs per inference,
wall-clock latency on CPU and GPU, and peak memory (MB). To quantify sparsity, we measure
Active Neuron Ratio (ANR)—the fraction of neurons that contribute non-zero computation per
input—and to assess informativeness we compute Sliced Mutual Information (SMI) between selected
activations and labels. Baselines span regularization, dynamic activation, and routing methods:
MLP+Dropout [38], Dynamic ReLU [4], Concrete Dropout [11], Switch Transformer (MoE) [7],
LoRAMOoE-style token routing [18], plus a Random Top-k ablation that omits the learned gate.
All results use standardized preprocessing and are averaged over five random seeds with standard
deviations reported.

4.1 Benchmark Results Discussion

Table 1 shows that MID-L reliably induces input-conditioned sparsity (ANR ~40-50% vs. 100% for
baselines), which in turn yields sizable drops in compute and runtime while keeping the model accu-
rate. Across datasets, MID-L typically maintains or slightly improves clean accuracy (e.g., MNIST,



CIFAR-10, SVHN, UCI Adult, IMDB) and consistently boosts robustness under noise/corruption,
all while cutting FLOPs and reducing latency/memory. The main trade-off appears on CIFAR-100,
where accuracy is modestly lower but efficiency and robustness still improve; in this harder regime,
increasing the Top-k budget or the capacity of F5 is a straightforward way to recover the small gap
without giving up most efficiency gains. Overall, the results support the intended mechanism: learned
Top-k neuron selection concentrates computation on informative units, delivering better throughput
and resource use with equal or better performance

Table 1: Benchmark results across models and datasets.

Dataset Model \ Accuracy (%) Fl-score (%) ANR (%) FLOPs(M) Latency(ms) Memory (MB) Robust Acc (%)
MNIST MLP + Dropout 97.7 97.7 100.0 15.2 34 120 72.1
MNIST MID-L (Ours) 97.8 97.8 41.2 8.5 2.1 90 83.9
CIFAR-10 CNN + MLP 82.4 824 100.0 64.0 8.9 240 59.4
CIFAR-10 MID-L (Ours) 83.1 83.1 41.8 35.2 53 180 68.3
CIFAR-100 CNN + MLP 55.2 55.1 100.0 80.3 9.8 300 30.2
CIFAR-100 MID-L (Ours) 54.0 54.0 43.1 42.1 5.8 220 334
CIFAR-10C CNN + MLP 58.7 58.5 100.0 64.0 8.9 240 43.1
CIFAR-10C  MID-L (Ours) 60.9 60.9 40.9 35.2 53 180 50.7
SVHN CNN + MLP 89.2 89.2 100.0 55.1 8.3 210 70.3
SVHN MID-L (Ours) 90.1 90.1 40.5 29.6 4.7 160 78.5
UCI Adult MLP + Dropout 85.1 85.1 100.0 6.4 1.5 85 75.0
UCI Adult MID-L (Ours) 85.7 85.7 42.3 31 0.9 70 82.4
IMDB LSTM + Dropout 89.0 89.0 100.0 112.3 23.1 360 70.5
IMDB MID-L (Ours) 89.3 89.3 49.5 56.4 134 290 79.1

4.2 Robustness Under Data Corruption and Noise

We also assessed MID-L’s robustness to input data corruption and noisy labels. We evaluated on
CIFAR-10-C, which introduces 15 common corruptions at severity level 3, and on noisy label
scenarios where symmetric noise is injected into the labels at 20%, 40%, and 60% rates.

Table 2 shows that MID-L consistently outperforms the baseline MLP with Dropout under all
conditions. Notably, MID-L exhibits a much slower degradation in performance under increasing label
noise, indicating its ability to focus on reliable patterns even when the training data contains significant
noise. On CIFAR-10-C, MID-L achieves 4.2% higher accuracy than the baseline, demonstrating
improved robustness against data perturbations.

Table 2: Accuracy under data corruption and noisy labels

Model Clean 20% noise 40% noise CIFAR-10-C
Baseline 82.4 62.5 43.7 58.7
MID-L (Ours)  83.1 70.3 55.8 60.9

4.3 Ablation Studies

We conducted extensive ablation studies to isolate the contributions of each MID-L component on
CIFAR-10 (Top-k = 50%). Table 3 reveals that both the dual-path design and the sparse gating
mechanism are crucial. Using only the lightweight F} or the full F, degrades performance, while
combining them through static interpolation or random Top-k selection provides modest gains. MID-
L with learned sparse gating (our proposed method) achieves the highest accuracy and lowest ANR,
validating the effectiveness of its adaptive, data-dependent sparsity.

Table 3: Ablation on CIFAR-10 (Top-k=50%)

Variant Accuracy (%) ANR (%)
F; only 77.7 100
F; only 80.0 100
Fixed « = 0.5 80.4 50
No « gating (random Top-k) 81.2 50
Gumbel-Softmax gating 82.0 50
Full MID-L (ours) 83.1 41.8




4.4 Wall-clock Efficiency and Complexity Analysis

To assess the practical efficiency of MID-L, we profiled its FLOPs, latency, and memory consumption
on both CPU and GPU, using CIFAR-10 with a batch size of 64. As shown in Table 4, MID-L
achieves the lowest FLOPs and latency while using less memory compared to popular alternatives like
Concrete Dropout and Switch Transformer. These results highlight MID-L’s potential for deployment
in resource-constrained settings where inference speed and memory footprint are critical.

Table 4: Wall-clock efficiency and complexity (CIFAR-10, batch size 64)

Model FLOPs (M) Latency (CPUms) Latency (GPU ms) Memory (MB)
CNN + MLP (Dropout) 64.0 14.8 8.9 240
Concrete Dropout 65.5 15.2 9.3 250
Switch Transformer 128.0 28.5 16.4 420
MID-L (Ours) 35.2 9.1 53 180

A detailed Sliced Mutual Information (SMI) analysis and qualitative plots are provided in Table 7
and Figure 1, showing that MID-L attains higher SMI than Dropout and Random Top-k while
activating fewer neurons; Figure 1 visualizes SMI vs. activation frequency on MNIST and CIFAR-10.
Additional t-SNE embeddings plot (Figure 2) illustrates clearer separation on MNIST and more
entangled clusters on CIFAR-10/SVHN, consistent with dataset difficulty.

MID-L delivers consistent gains in compute efficiency, robustness, and generalization across vision,
tabular, and text tasks, typically matching or surpassing baselines even under corruption, label noise,
and severe overfitting. Its input-conditioned sparsity lowers ANR and FLOPs—translating to reduced
latency and memory—while SMI analyses confirm that the selected neurons are highly informative.
Overall, MID-L proves more resilient than MLPs, Dropout, and even Switch Transformers, making it
a practical choice for scalable models in resource-constrained and safety-critical settings.

5 Conclusion

Across vision, tabular, and text benchmarks, MID-L delivers input-conditioned sparsity with minimal
loss of expressiveness: by interpolating per neuron between a lightweight path (F1) and a full-capacity
path (F») using a Top-k gate trained via a straight-through estimator, it achieves substantially lower
Active Neuron Ratio (ANR) and FLOPs while maintaining, and in several cases improving, accuracy
and robustness. Under data corruption and label noise, MID-L often outperforms standard dropout
baselines, and our Sliced Mutual Information (SMI) analyses indicate that the selected units are more
informative than those chosen by random or purely stochastic schemes. From a systems perspective,
conditional sparsity reduces intermediate tensor sizes and memory traffic, yielding favorable latency
and VRAM profiles on GPUs, especially when inference-time pruning is enabled.

Limitations. (i) MID-L adds a gating projection and a second path, increasing parameter count; (ii)
during training we compute both F and F5 (most savings materialize at inference when pruning/skip-
ping is applied); (iii) Top-k relies on an STE, introducing estimator bias and sensitivity to the k
schedule; (iv) our current evaluation focuses on small/medium-scale settings—Ilarge pretrained models
are not yet included; and (v) although we report efficiency metrics, equal-FLOPs/parameter-matched
comparisons to stronger sparse-activation baselines remain limited.

Future Work. We plan to (i) scale to ImageNet and Transformer backbones (e.g., ViT/ResNet)
and to large language/vision—language models; (ii) include matched-FLOPs/parameter studies and
stronger neuron-/token-sparsity baselines; (iii) develop GPU-friendly block/group Top-k and fused
segmented-matmul kernels to realize larger wall-clock gains; (iv) explore automatic or learned k-
schedules and gate regularization (entropy/load-balancing) to avoid branch collapse; and (v) combine
MID-L with pruning and quantization for compound efficiency benefits, as well as extensions from
neuron-wise to channel/head-wise routing.

Overall, our results point to a clear takeaway: input-aware sparsity is practical at scale. Across tasks,
MID-L reduces compute and memory while matching or improving accuracy and robustness, and
it integrates cleanly with modern GPU workflows. We intend this to encourage treating learned,
per-input activation as a first-class design choice in efficient, scalable neural systems.
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A Implementation Details and PyTorch Pseudocode

To facilitate reproducibility and ease of adoption, we provide a PyTorch-style pseudocode of our
MID-L block implementation:

Pseudo-code of F1 (LowRank) and F2 (Full) Paths

import torch, torch.nn as nn, torch.nn.functional as F

class LowRank(nn.Module):
"""F1: lightweight path (d ->r ->d) with GELU."""
def __init__(self, d, r):
super().__init__()
self.fcl, self.fc2 = nn.Linear(d, r), nn.Linear(r, d)
def forward(self, x): return self.fc2(F.gelu(self.fcl(x)))

class Full(nn.Module):
"""F2: full-capacity path (d -> h -> d) with GELU."""
def __init__(self, d, h=None):
super () .__init__()
h=hord
self.fcl, self.fc2 = nn.Linear(d, h), nn.Linear(h, d)
def forward(self, x): return self.fc2(F.gelu(self.fcl(x)))

class MIDLayer (nn.Module):

nnn

Matrix-Interpolated Dropout Layer (MID-L)

- F1: LowRank(d, r) | F2: Full(d, h)

- Top-k gating with Straight-Through Estimator (STE)

- Optional post-gate dropout (regularization)

- Optional inference pruning hook (illustrative)

nnn

def __init__(self, d, k, rank=None, hidden=None,

gate_dropout_p=0.0, inference_prune=False):

super (). __init__Q)
assert 1 <= k <= d, "k must be in [1, d]"

self.d, self.k = d, k

self.f1 = LowRank(d, rank or max(8, d//2)) # reduced capacity
self.f2 = Full(d, hidden or d) # full capacity
self.gate = nn.Linear(d, d) # gating projection

self.gate_drop = nn.Dropout(gate_dropout_p) # optional regularizer
self.inference_prune = inference_prune

@staticmethod
def topk_mask(alpha, k):
mnnn
alpha: (B, D) in [0,1]; returns binary mask (B, D).
Selects exactly Top-k entries per row.
Two equivalent strategies:
(1) Threshold-based: keep values >= k-th largest
(2) Index-based scatter: ensures exactly k ones, robust to ties.
We use (2) here for determinism.
nnn
B, D = alpha.shape
k = min(k, D) # safety: avoid k > D

# indices of top-k values per row

_, idx = torch.topk(alpha, k, dim=-1)

mask = torch.zeros_like(alpha, dtype=alpha.dtype)
mask.scatter_(1, idx, 1.0)

# (optional) detach to avoid gradients flowing into mask
return mask.detach()
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Continue: Pseudo-code of MID-L STE

def ste_hard_mask(self, alpha, mask):

Straight-Through Estimator (STE):
forward: use hard-masked alpha (alpha*mask)
backward: pass gradients as if soft (alpha)

return alpha + (alpha*mask - alpha).detach()

def forward(self, x):
x: (B, D)
y = alpha_hat * F1(x) + (1 - alpha_hat) * F2(x)
where alpha_hat is Top-k hard mask with STE.

assert x.shape[-1] == self.d, "Last dim must equal 4"

alpha = torch.sigmoid(self.gate(x)) # (B, D)

alpha = self.gate_drop(alpha) # optional regularization
mask = self.topk_mask(alpha, self.k) # (B, D) in {0,1}

alpha_hat = self.ste_hard_mask(alpha, mask) # STE

yl, y2 = self.f1(x), self.f2(x) # compute both paths
y = alpha_hat * y1 + (1.0 - alpha_hat) * y2

# Optional illustrative pruning path (inference only):
# Skips inactive coordinates per sample
if self.inference_prune and not self.training:
with torch.no_grad():
active = (mask > 0) # boolean (B, D)
y_pruned = torch.zeros_like(y)
for b in range(x.size(0)):
sel = active[b]

y_pruned[b, sel]l = yi[b, sell
y_pruned[b, ~“sel] = y2[b, “sel]
y = y_pruned
return y

def param_counts(self):
"""Small helper for fair-comparison tables."""
def count(m): return sum(p.numel() for p in m.parameters())
return dict(Fl=count(self.f1), F2=count(self.f2),
gate=count (self.gate), total=count(self))

This implementation allows seamless integration into existing architectures.

B Calibration Analysis

We assess model calibration using Expected Calibration Error (ECE) and Brier Score on CIFAR-
10. MID-L improves confidence calibration compared to baselines (Table 5).

Table 5: Calibration metrics on CIFAR-10. Lower is better.

Model ECE (%) Brier Score
CNN + MLP 7.8 0.084
MID-L (Ours) 4.9 0.072
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C Extended Experiments and Analysis

This appendix provides detailed results, ablations, and supplementary analyses supporting our main
paper.

C.1 Generalization under overfitting stress.

To probe robustness in low-data regimes, we train with 200 samples on CIFAR-10 and MNIST (20 per
class) and 1,000 samples on UCI Adult. MID-L achieves higher accuracy than MLP+Dropout while
substantially lowering ANR, indicating that input-conditioned sparsity acts as an implicit regularizer
that prioritizes informative neurons and mitigates memorization.

Table 6: Overfitting stress test (mean = std over 5 runs)

Model Dataset Accuracy (%) ANR (%)
MLP + Dropout CIFAR-10 60.1 = 1.5 100
MID-L CIFAR-10 74.3 £ 0.9 43.2
MLP + Dropout ~ MNIST 88.0+ 1.0 100
MID-L MNIST 948 + 0.4 39.5

C.2 SMI Informativeness Validation

To verify the informativeness of the neurons selected by MID-L, we computed the Sliced Mutual
Information (SMI) between the activated neurons and the target labels. Table 7 shows that MID-L
achieves significantly higher SMI scores compared to random Top-k selection or Dropout, while
using fewer active neurons. This confirms that MID-L not only reduces the computation load but also
prioritizes the most discriminative neurons.

Table 7: SMI comparison on CIFAR-10 Top-k neurons

Method SMI (nats)  Activation Freq (%)
Random Top-k 0.021 50
Dropout 0.019 100

MID-L (ours) 0.053 41.8

To further support these findings, we visualize the correlation between activation frequency and SMI
on MNIST and CIFAR-10 datasets in Figure 1. The plots illustrate that neurons selected by MID-L.
not only exhibit higher SMI but also tend to be activated more selectively, indicating effective sparse
selection of the most informative units.

SMIvs Activation Frequency (MNIST) SMI vs Activation Frequency (CIFAR-10, MID-L)
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Figure 1: Visualization of Sliced Mutual Information (SMI) vs activation frequency for neurons
selected by MID-L. On both MNIST and CIFAR-10, MID-L achieves a favorable balance of informa-
tiveness and sparsity, with selective activation of the most informative neurons.
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Figure 2: t-SNE visualization of last layer embeddings from MID-L on different datasets. MID-L
shows clear separability on MNIST, with more entangled clusters on CIFAR-10 and SVHN.

We further visualize the t-SNE of the embeddings from the last layer to explore the separability
and clustering behavior of MID-L on three datasets: MNIST, CIFAR-10, and SVHN. As shown in
Figure 2, MID-L produces well-separated and compact clusters in MNIST, while the separability
is lower for CIFAR-10 and SVHN due to their higher complexity and intra-class variability. This
illustrates how MID-L adapts its neuron activations and sparsity in response to dataset difficulty.

D Additional Notes on Implementation

All experiments were implemented in PyTorch 2.0 using standard dataloaders and augmentation
pipelines. MID-L was integrated as a modular PyTorch layer and will be released as part of our
open-source codebase. All hyperparameters are provided in Table 8.

Table 8: Hyperparameters used in experiments.

Parameter Value
Optimizer Adam
Learning Rate 0.001

Batch Size 64

Top-k Sparsity ~ 50% (unless stated)
Dropout after o 0.1
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