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ABSTRACT

Ensuring factuality is essential for the safe use of Large Language Models (LLMs)
in high-stakes domains such as medicine and law. Conformal inference provides
distribution-free guarantees, but existing approaches are either overly conserva-
tive, discarding many true-claims, or rely on adaptive error rates and simple linear
models that fail to capture complex group structures. To address these challenges,
we reformulate conformal inference in a multiplicative filtering setting, modeling
factuality as a product of claim-level scores. Our method, Multi-LLM Adaptive
Conformal Inference (MACI), leverages ensembles to produce more accurate fac-
tuality scores, which in our experiments led to higher retention, while validity is
preserved through group-conditional calibration. Experiments show that MACI
consistently achieves user-specified coverage with substantially higher retention
and lower time cost than baselines. Our anonymized repository is available at
https://github.com/Anonymous2026conf/MACI.git.

1 INTRODUCTION

As the performance of Large Language Models (LLMs) continues to advance, attempts to directly
utilize their responses in high-stakes domains such as medicine and law are increasing. However,
studies continue to report that LLM responses may contain false information (Wang et al., 2024).
Therefore, to use LLMs reliably in these critical fields, guaranteeing the factuality of their responses
has emerged as an important challenge.

Various methods have been proposed to guarantee the factuality of LLMs, but some are difficult
to apply to black-box models (Meng et al., 2023; Quevedo et al., 2024; Chen et al., 2024a) or
require access to large external databases or online databases (Chen et al., 2024b; Lee & Yu, 2025).
Sampling-based methods (Manakul et al., 2023; Sawczyn et al., 2025) are relatively free from the
constraints, but the process of repeatedly checking for response consistency incurs considerable
time and financial costs, and they face difficulties in rigorously providing a statistical guarantee at a
user-specified error rate.

Recently, studies applying Conformal Inference (CI) (Papadopoulos et al., 2002; Vovk et al., 2005;
Lei et al., 2017; Angelopoulos & Bates, 2022) to guarantee the factuality of LLMs have been pro-
posed. For instance, Mohri & Hashimoto (2024) apply the concept of CI to the existing framework
of decomposing LLM responses into independent claims and assigning a factuality-score to each
one. Their method proposes filtering out claims that do not pass a predetermined threshold. How-
ever, because this single, global threshold is applied uniformly to all data, it provides only marginal
coverage and can be overly conservative, resulting in the removal of a lot of true information. To
improve upon this, Cherian et al. (2024) introduce conditional conformal inference. Instead of a
single static threshold for all data, this method employs a threshold function that allows it to change
based on the characteristics of a given sample. But it relies on adaptive error rates that are unsuit-
able for high-stakes applications requiring a fixed guarantee. Its threshold function also struggles to
capture the characteristics of the complex grouping criteria of LLM responses that are separated by
their semantic properties.

In this context, we propose a new methodology called Multi-LLM Adaptive Conformal Inference
(MACI). The core objective of MACI is to preserve as much factual information as possible while
strictly adhering to a high user-specified error rate. To achieve this, we theoretically demonstrate
that, assuming an ideal Oracle factuality score, the optimal false-claim filtering method is expressed
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Figure 1: Comparison of Conformal Inference Methods. T (true) and F (false) denote ground-
truth labels per claim. Basic Conformal Inference (Mohri & Hashimoto, 2024) attains coverage
by aggressive filtering, yielding low retention. Conditional Conformal Inference (Cherian et al.,
2024) proposes adaptive thresholds but relaxes guarantees; MACI achieves both high coverage and
retention.

as a cumulative probability product. Inspired by this finding, we design a new adaptive CI framework
that uses a conformity score in the form of a cumulative probability product. We further theoretically
prove that the quality of the factuality-score directly impacts the retention ratio. Accordingly, we
adapt our strategy to maximize factuality-score quality through a multi-LLM ensemble. As a result,
MACI not only theoretically guarantees group-conditional coverage but also empirically demon-
strates robust group-conditional coverage across diverse datasets, all while showing a substantially
higher retention ratio than existing methodologies.

Our main contributions are:

• We introduce a multiplicative filtering framework that models factuality as the product of
claim-level scores (factuality-score) while preserving finite-sample guarantees.

• We provide the first retention theoretical analysis in conformal inference to our knowledge,
linking oracle–estimator deviations to true-claim preservation and motivating ensemble de-
sign.

• We extend conformal inference with group-conditional calibration and a multi-LLM en-
semble, ensuring group-conditional coverage and showing substantially higher retention
than conformal baselines in high-stakes domains.

2 RELATED WORKS

2.1 BASIC CONFORMAL INFERENCE

Mohri & Hashimoto (2024) generalize CI methods to guarantee the factuality of LLM responses,
providing distribution-free, model-free guarantees above user-specified error rates α. Their ap-
proach, called Basic Conformal Inference (BCI), applies calibration procedures to decomposed
claims, defines factuality-scores, and filters claims likely to be false using thresholds learned from
held-out sets. BCI marginally guarantees no false-claims in test samples, but because it only pro-
vides marginal coverage, it can under- or over-cover specific subgroups. Moreover, since LLM
responses are mostly factual with only slight false information, high target coverage yields conser-
vative thresholds that remove many true-claims.

2.2 CONDITIONAL CONFORMAL INFERENCE

Cherian et al. (2024) propose conditional conformal inference (CCI) to address BCI’s limits. Extend-
ing conditional conformal methods (Gibbs et al., 2024), CCI trains functions that output sample-wise
thresholds from calibration sets, ensuring group-conditional rather than marginal coverage. Groups
can be defined by prompt or response characteristics, such as the length of the prompt. Beyond
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this, CCI preserves more claims through adaptive error rates and conditional boosting, though the
practicality of adaptive α in high-stakes settings and the linearity of the threshold function remain
open challenges.

3 BACKGROUND AND PRELIMINARIES

Document structure and factuality-scores. Let P denote the space of prompts and C the space
of claims. Each document D = (P,C, Y ) consists of a prompt P ∈ P , a set of claims C =
{c1, . . . , c|C|} ⊆ C, and labels Y ∈ {0, 1}|C| indicating which claims are factual. We assume
documents are drawn i.i.d. from a distribution P, which implies exchangeability of calibration and
test data. A factuality-score function p : P × C → [0, 1] assigns each (P, c) the probability of being
factual, with oracle p∗ and estimator p̂.

Filtering operator. Given a score function p, a threshold τ ∈ [0, 1], and optional randomization
U , the filtering operator F (p, τ, U ;P,C) ⊆ C returns the claims retained under τ . Calibrating τ on
held-out data yields the conformal inference rule Fn,α, the central object of our analysis.

Group-Conditional coverage. Exact instance-level coverage is infeasible in a distribution-free
setting (Vovk, 2012; Barber et al., 2020). Instead, we require validity within subgroups, reflecting
meaningful categories such as domains, topics, or user populations. Formally, a grouping function
g : P × C → {1, . . . ,K} assigns each (Pi, Ci) to one of K groups, and we demand

P
(
∀cn+1,j ∈ Fn,α(Pn+1, Cn+1), yn+1,j = 1 | g(Pn+1, Cn+1) = k

)
≥ 1− α, (1)

for all k ∈ {1, . . . ,K}. This mirrors Mondrian conformal prediction (Vovk et al., 2005) but applies
to prompt–claim pairs. In experiments, we instantiate g with high-level dataset-specific categories
(e.g., medical question types, entity groups).

4 MACI: MULTI-LLM ADAPTIVE CONFORMAL INFERENCE

Building on Section 3, our goal is to design a filtering rule F that satisfies the group-conditional
coverage guarantee (1). The baseline BCI method applies one global threshold, which is simple but
ignores group heterogeneity and relies on a single predictor.

Following adaptive conformal inference (Romano et al., 2020), we propose MACI (Multi-LLM
Adaptive Conformal Inference). MACI aggregates scores from multiple LLMs and calibrates group-
conditional thresholds, improving retention while preserving coverage guarantees.

4.1 ORACLE FACTUALITY

Building on the definition of a factuality-score function in Section 3, we first consider an ideal-
ized regime where the factuality-score coincides with the true conditional probability. In this ora-
cle setting, the model has complete distributional knowledge of claim correctness, so that for any
prompt–claim pair (P, c) it can evaluate P(y = 1 | P, c) exactly.

Definition 1 (Oracle factuality-score). For any prompt–claim pair (P, c) with binary factuality label
y ∈ {0, 1}, the oracle factuality-score is defined as p∗(P, c) := P(y = 1 | P, c). For a document
Di = (Pi, Ci, Yi) and ci,j ∈ Ci, we denote

p∗i (ci,j) := p∗(Pi, ci,j) = P(yi,j = 1 | Pi, ci,j).

We assume conditional independence: given (Pi, Ci), the labels yi,j are independent Bernoulli
variables with success probabilities p∗i (ci,j). This allows the joint distribution to decompose into
marginals, simplifying the analysis of validity. While this assumption may be unrealistic for real
LLM outputs, it provides a clean baseline and highlights the role of marginal conditional probabili-
ties in our framework.

Given a document Di = (Pi, Ci, Yi) with ni = |Ci|, we use the shorthand [n] := {1, . . . , n} for
a positive integer n. Let πi : [ni] → [ni] be a permutation ordering claims by decreasing oracle
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scores, p∗i (ci,πi(1)) ≥ · · · ≥ p∗i (ci,πi(ni)) (ties broken arbitrarily). Define Pk :=
∏k

j=1 p
∗
i (ci,πi(j))

with the convention P0 = 1 and Pni+1 = 0. For a threshold τ ∈ [0, 1], define the cutoff index and
filtered set

K∗
i (τ) := max

{
k ∈ [ni] :

k∏
j=1

p∗i (ci,πi(j)) ≥ τ
}
, F ∗

τ (Pi, Ci) := {ci,πi(j) : j ≤ K∗
i (τ)}.

with the convention max ∅ = 0. Thus F ∗
τ ensures coverage ≥ τ , is monotone in τ (τ1 ≤ τ2 ⇒

F ∗
τ2 ⊆ F ∗

τ1 ), But it is conservative since coverage typically exceeds τ . To obtain exact coverage,
we randomize at the boundary index K∗

i (τ). Let Pk =
∏k

j=1 p
∗
i (ci,πi(j)) and define γi(τ) =

PK∗
i
(τ)−τ

PK∗
i
(τ)−PK∗

i
(τ)+1

∈ [0, 1] (with γi(τ) = 0 if the denominator vanishes). With U ∼ Unif(0, 1), the

randomized oracle rule is

F oracle
τ (Pi, Ci) =

{
{ci,πi(j) : j ≤ K∗

i (τ)}, U > γi(τ),

{ci,πi(j) : j ≤ K∗
i (τ) + 1}, U ≤ γi(τ).

This randomization balances inclusion and exclusion at the boundary, achieving exact coverage at
level τ while maximizing expected retention.

4.2 ADAPTIVE CONFORMAL INFERENCE FOR FALSE-CLAIM FILTERING

The oracle procedure in Section 4.1 requires access to the true factuality-score p∗ and thus serves
as a theoretical benchmark for optimal filtering. In practice, however, p∗ is unknown and must
be replaced with an estimated score p̂, motivating our adaptive conformal inference (ACI) proce-
dure, which mirrors the oracle rule while relying only on estimated scores and preserves coverage
guarantees. Concretely, let a black-box classifier (e.g., an LLM) produce estimates p̂i(cj) of claim
factuality given (Pi, Ci), with any probabilistic classifier applicable. We then replace p∗ with p̂ and
calibrate τ using conformal quantiles on held-out data; with pre-trained LLMs, all available data
may be used, but the principle remains the same.

Inspired by the inverse-quantile scores of Romano et al. (2020), we design a conformity score
tailored to false-claim filtering. The goal is a score uniformly distributed under the oracle p∗,
so that calibration remains valid when p∗ is replaced by p̂. For each (Pi, Ci, Yi), let Ai =
ci,j ∈ Ci : yi,j = 1 be the set of true-claims and Ui ∼ Unif(0, 1). We define Ei = inf

{
τ ∈

[0, 1] : F (p̂, τ, Ui;Pi, Ci) ⊆ Ai

}
, the smallest threshold at which all retained claims are correct.

Each conformity score Ei reduces the filtering event to a one-dimensional statistic, directly suit-
able for conformal quantile calibration (Lemma 1 in Appendix A). Applying the standard quantile
argument then yields the following guarantee.
Theorem 1 (Marginal coverage guarantee). If the samples (Pi, Ci, Yi), for i ∈ {1, . . . , n+ 1}, are
exchangeable, the adaptive conformal inference rule (Algorithm 1) satisfies

P
(
∀cn+1,j ∈ Fn,α(Pn+1, Cn+1), yn+1,j = 1

)
≥ 1− α.

Furthermore, if the scores Ei are almost surely distinct, the marginal coverage is nearly tight:

P
(
∀cn+1,j ∈ Fn,α(Pn+1, Cn+1), yn+1,j = 1

)
≤ 1− α+

1

n+ 1
.

Marginal validity ensures that the overall error rate is controlled on average, but this may hide
differences between groups, with some subpopulations receiving weaker guarantees. To address this,
we extend adaptive conformal inference to a group-conditional setting, so that validity is enforced
separately for each group.

This extension follows the Mondrian conformal framework of Vovk et al. (2005). Instead of
pooling all scores, calibration is restricted to examples from the same group as the test in-
stance. For group k with calibration set Ik = {i : g(Pi, Ci) = k}, the threshold is Q̂

(k)
1−α =

Quantile({Ei : i ∈ Ik}, 1− α). Given a test instance in group k, the filter is F̂ (k)
n,α(Pn+1, Cn+1) =

F (p̂, Q̂
(k)
1−α, Un+1;Pn+1, Cn+1).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 2 (Group-conditional coverage guarantee). If the samples {(Pi, Ci, Yi)}n+1
i=1 are ex-

changeable, the group-conditional conformal inference rule satisfies

P
(
∀cn+1,j ∈ F (k)

n,α(Pn+1, Cn+1), yn+1,j = 1 | g(Pn+1, Cn+1) = k
)
≥ 1− α,

for all k ∈ {1, . . . ,K} with P(g(Pn+1, Cn+1) = k) > 0.

A key implication of Theorem 2 is that it ensures finite-sample, distribution-free validity within each
group, in contrast to the marginal guarantee of Theorem 1, which holds only in aggregate. Each
group achieves a level 1 − α based on its own calibration size nk, ensuring that even small groups
are covered, albeit with more conservative thresholds and reduced retention.

In the oracle regime (p̂ = p∗), conformity scores are exactly uniform on [0, 1] (Lemma 2 in Ap-
pendix A). This uniformity implies that Theorem 2 achieves maximal retention efficiency: coverage
is attained precisely at the target level, without conservatism, so no true-claims are unnecessarily
discarded. To formalize this notion of efficiency, we introduce the retention ratio, which measures
the proportion of claims that are retained under a given factuality-score function and threshold.

Formally, let (P,C, Y ) ∼ P be a random document (cf. Section 3), and let ρ := P(y = 1) be the
marginal probability that a claim is true. For a factuality-score function p and threshold τ , define the
retention rate as

R(p, τ) := P
(
c ∈ Fτ (p;P,C)

)
. (2)

Theorem 3 (Retention gap with MSE). Let p∗ denote the oracle factuality-score and p̂ an estimated
score. Fix a threshold τ ∈ [0, 1] and let

∆ :=
∣∣R(p̂, τ)−R(p∗, τ)

∣∣.
Suppose (i) E

[
(p̂−p∗)2

]
< ∞ and (ii) the oracle factuality-scores are not overly concentrated near

the threshold τ , in the sense that P
(
|p∗(P, c)− τ | ≤ ϵ

)
≤ Cϵβ for some (C, β). Then

∆ ≤ E[(p̂− p∗)2]

ϵ2
+ Cϵβ ,

and optimizing in ϵ yields

∆ ≤ C ′ (E[(p̂− p∗)2]
) β

β+2 ,

where C ′ depends only on (C, β).

Assumption (i) requires that p̂ not deviate too far from the oracle p∗ on average, keeping errors
manageable. Assumption (ii) requires that oracle scores not cluster near the threshold τ , so small
mistakes in p̂ rarely alter retention. Under these conditions, Theorem 3 shows that the retention
gap decreases polynomially with the MSE of p̂, highlighting that improved accuracy directly yields
more efficient retention.

4.3 MULTI-LLM ENSEMBLE

From a statistical perspective, ensembling multiple predictors reduces variance in the bias–variance
tradeoff and lowers MSE, bringing the estimator closer to the oracle benchmark. Yet directly min-
imizing MSE is not practical because the oracle score is unobservable and binary labels drive pre-
dictors toward overconfident outputs, which makes ensembles prone to overfitting.

We therefore use a surrogate objective based on the retention decomposition. By keeping recall
above a tolerance and reducing the FPR, we directly improve retention while avoiding overconfi-
dence. This surrogate remains aligned with the oracle goal and, as our figure 3 shows, also reduces
MSE in practice.

Recall the retention rate defined in (2), which can be decomposed as follows.

R(p, τ) = ρ · TPR(p, τ) + (1− ρ) · FPR(p, τ), (3)

where

TPR(p, τ) =
P(c ∈ Fτ (p;P,C), y = 1)

ρ
, FPR(p, τ) =

P(c ∈ Fτ (p;P,C), y = 0)

1− ρ
.

5
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Maximizing R(p, τ) therefore amounts to increasing TPR while decreasing FPR, but the two cannot
be optimized simultaneously. To prevent trivial solutions that sacrifice recall, we require the true
positive rate to remain above a fixed tolerance, TPR(p, τ) ≥ 1− δ for δ ∈ (0, 1). With τp,δ denoting
the δ-quantile of conformity scores among true-claims, we thus focus on minimizing the FPR subject
to this constraint:

p⋆ = argmin
p

E
[
FPR(p, τp,δ)

]
. (4)

Since direct fine-tuning toward the oracle p∗ is impractical for black-box LLMs, we instead target
the surrogate optimum p⋆ in (4) by adopting a multi-LLM ensemble strategy. Given base factuality-
scorers {pm}Mm=1 and weights w = (w1, . . . , wM ), the ensemble predictor is

pens(P, c;w) =

M∑
m=1

wm pm(P, c),

with w optimized to minimize the empirical FPR under the tolerance constraint (see Appendix B.1
for details). Algorithm 2 summarizes the MACI framework, which combines group-conditional
conformal inference with the ensemble to maximize retention while preserving exact coverage.

5 EMPIRICAL RESULTS

We empirically validate the superiority of MACI by using three datasets with distinct characteristics.
For these datasets, we define a representative grouping criteria for each and a general group criterion
of false-claim risk that is commonly applied to the false-claim filtering task. For numerical stability,
all conformity computations and thresholding are performed on the transformed −ln(1− p̂(c) + ϵ),
where ϵ is a small positive constant. This transform is strictly monotone, so conformal quantiles, se-
lection sets, and coverage guarantees are unchanged, while computations involving probabilities are
stabilized by operating in log-space. A detailed explanation of the datasets, group criteria, selecting
LLMs, and evaluation metrics can be found in Appendix D.

5.1 OVERALL PERFORMANCE

Table 1 compares the group-conditional coverage and retention ratio for three datasets with dis-
tinct characteristics against two prominent baselines in the false-claim filtering field: BCI and CCI.
MACI demonstrates robust performance in settings where the other two baselines falter, consistently
achieving the target coverage across most groups while maintaining the highest retention ratio.

Comparison with BCI. BCI only guarantees marginal coverage via a single threshold, which leads
to alternating overcoverage and undercoverage depending on the difficulty differences between
groups. This phenomenon is particularly evident in the results for the False-Claim Risk groups
across all three datasets and the View Count groups in WikiBio. Furthermore, the task of false-claim
filtering typically involves a high proportion of true-claims interspersed with a few false-claims.
Consequently, guaranteeing high coverage (e.g., 90%) with BCI requires setting an overly conserva-
tive single threshold, which in turn filters out most claims and causes a sharp decline in the retention
ratio. By utilizing group-conditional thresholds and a cumulative conformity score, MACI simulta-
neously achieves stable group-conditional coverage and a high retention ratio.

Comparison with CCI. CCI shows an improved retention ratio over BCI, presenting a more ad-
vanced result than BCI’s overly conservative outputs. The function gCCI (Theorem 3.1. of Cherian
et al. (2024)), which operates within a linear feature space framework, presents certain constraints
when applied to our grouping scenarios. The grouping criteria for each dataset, such as Medical
Content or False-Claim Risk, are complex semantic functions implemented based on prompt and
claim parsing. It is therefore difficult to capture such criteria using the simple linear functions and
features proposed by CCI, leading to undercoverage or overcoverage. In contrast to gCCI, our group-
ing function g is an arbitrary measurable function that partitions the space into a finite number of
groups, therefore unaffected by the complexity of grouping criteria in threshold calculations. The
constraints inherent in gCCI are also reflected in its retention ratio. gCCI risks calculating an overly
conservative threshold depending on how well it captures the grouping criteria. This leads to a lower
retention ratio compared to MACI, which calculates group-conditional thresholds directly.

6
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Table 1: Group-conditional coverage, marginal coverage, and retention ratio for three different
datasets with distinct characteristics. The marginal results are in the row corresponding to the
dataset name, followed by two rows showing the results for two representative grouping criteria
for that dataset. Coverage within 1− α± 0.01 are marked with a green dot •, while values that fall
outside this range, within 1−α± 0.02 (indicating either over or undercoverage), are marked with a
red arrow ↓↑. Compared to the two conformal inference baselines, MACI consistently achieves the
target coverage in most cases, regardless of the group. Furthermore, its retention ratio is the highest
across almost all groups. Cov. denotes coverage, Ret. denotes the retention ratio. The result with
the highest retention ratio, achieved without under-coverage, is marked in bold. All reported values
are the mean over 30 repeated trials. The performance of CCI is a result of fixing the target coverage
(1-α).

Target Coverage: 80% (α = 0.2) Target Coverage: 90% (α = 0.1) Target Coverage: 95% (α = 0.05)

BCI CCI MACI BCI CCI MACI BCI CCI MACI

Group Cov. Ret. Cov. Ret. Cov. Ret. Cov. Ret. Cov. Ret. Cov. Ret. Cov. Ret. Cov. Ret. Cov. Ret.

MedLFQA 0.80• 0.06 0.81• 0.56 0.80• 0.71 0.90• 0.02 0.90• 0.31 0.90• 0.50 0.95• 0.01 0.95• 0.18 0.95• 0.30

Medical Content
Info 0.81• 0.06 0.76↓ 0.54 0.80• 0.70 0.91• 0.02 0.86↓ 0.30 0.90• 0.48 0.96• 0.01 0.93↓ 0.18 0.95• 0.30
Interpret 0.80• 0.07 0.84↑ 0.58 0.79• 0.69 0.89• 0.03 0.93↑ 0.33 0.90• 0.47 0.94• 0.01 0.96• 0.21 0.96• 0.26
Action 0.79• 0.06 0.85↑ 0.49 0.80• 0.73 0.90• 0.02 0.92↑ 0.27 0.90• 0.53 0.96• 0.01 0.96• 0.16 0.95• 0.33

False-Claim Risk
Low 0.84↑ 0.07 0.83↑ 0.68 0.79• 0.78 0.94↑ 0.03 0.91• 0.41 0.89• 0.52 0.97↑ 0.01 0.95• 0.28 0.95• 0.37
Medium 0.83↑ 0.06 0.81• 0.66 0.79• 0.70 0.89• 0.03 0.90• 0.39 0.91• 0.46 0.94• 0.01 0.95• 0.25 0.95• 0.31
High 0.73↓ 0.06 0.78↓ 0.43 0.80• 0.64 0.88↓ 0.01 0.89• 0.22 0.89• 0.41 0.94• 0.01 0.94• 0.12 0.95• 0.26

WikiBio 0.81• 0.02 0.79• 0.19 0.81• 0.43 0.90• 0.01 0.89• 0.11 0.90• 0.25 0.95• 0.01 0.93↓ 0.06 0.95• 0.13

View Count
Low 0.74↓ 0.03 0.79• 0.18 0.81• 0.36 0.87↓ 0.01 0.88↓ 0.11 0.91• 0.21 0.94• 0.01 0.92↓ 0.06 0.96• 0.11
Medium 0.84↑ 0.02 0.78↓ 0.19 0.81• 0.46 0.91• 0.01 0.88↓ 0.11 0.91• 0.24 0.95• 0.01 0.92↓ 0.06 0.95• 0.12
High 0.85↑ 0.02 0.81• 0.20 0.81• 0.51 0.91• 0.01 0.92↑ 0.12 0.91• 0.24 0.95• 0.01 0.95• 0.07 0.96• 0.12

False-Claim Risk
Low 0.81• 0.03 0.80• 0.21 0.82↑ 0.40 0.90• 0.01 0.90• 0.11 0.90• 0.23 0.95• 0.01 0.93↓ 0.07 0.94• 0.17
Medium 0.81• 0.02 0.78↓ 0.19 0.81• 0.42 0.91• 0.01 0.89• 0.11 0.90• 0.25 0.95• 0.01 0.93↓ 0.06 0.95• 0.12
High 0.81• 0.02 0.79• 0.18 0.81• 0.45 0.89• 0.01 0.88↓ 0.11 0.90• 0.28 0.94• 0.01 0.92↓ 0.06 0.96• 0.09

ExpertQA 0.91↑ 0.13 0.85↑ 0.18 0.80• 0.45 0.91• 0.13 0.85↓ 0.17 0.90• 0.15 0.91↓ 0.13 0.85↓ 0.17 0.95• 0.10

Question Domain
Bio/Med 0.92↑ 0.14 0.86↑ 0.18 0.82↑ 0.47 0.92↑ 0.14 0.86↓ 0.18 0.92↑ 0.22 0.92↓ 0.13 0.86↓ 0.18 0.97↑ 0.10
Tech/Sci 0.91↑ 0.14 0.86↑ 0.17 0.81• 0.44 0.90• 0.13 0.85↓ 0.16 0.89• 0.21 0.91↓ 0.13 0.85↓ 0.16 0.94• 0.10
Common 0.90↑ 0.13 0.84↑ 0.18 0.78↓ 0.43 0.89• 0.13 0.85↓ 0.17 0.89• 0.21 0.89↓ 0.14 0.84↓ 0.17 0.95• 0.09

False-Claim Risk
Low 0.95↑ 0.13 0.85↑ 0.31 0.81• 0.57 0.94↑ 0.13 0.84↓ 0.31 0.89• 0.35 0.95• 0.13 0.84↓ 0.31 0.96• 0.16
Medium 0.91↑ 0.13 0.87↑ 0.18 0.81• 0.42 0.91• 0.13 0.86↓ 0.18 0.89• 0.23 0.91↓ 0.13 0.86↓ 0.18 0.96• 0.11
High 0.87↑ 0.13 0.85↑ 0.12 0.79• 0.37 0.87↓ 0.13 0.85↓ 0.12 0.90• 0.15 0.87↓ 0.13 0.85↓ 0.12 0.95• 0.07

CCI proposes improving retention by applying per-sample adaptive error rates that reflect each sam-
ple’s characteristics. The method learns α as a function and lowers α for each sample instead of
merely exceeding a minimum retention target. However, this adaptive α differs from our objec-
tive. Our goal is to design filtering rules that guarantee, with high probability, that the filtered set
contains no false-claims, ensuring applicability in real high-stakes domains. Adapting α to raise
retention produces filtering rules that are difficult to deploy in such settings. Figure 2 compares CCI
with adaptive α and MACI with α = 0.1 on WikiBio. The upper plot sets CCI’s target retention
to MACI’s average retention and outputs a per-sample adaptive α, showing that CCI’s α values are
generally higher than MACI’s fixed small α. The lower table reports actual coverage and retention
for both methods. CCI raises retention to nearly match MACI by increasing α overall, but the actual
coverage is lower than MACI because the target α is larger. This confirms MACI’s superiority in
the coverage–retention trade-off.

Comparison with sampling-based methods. While our primary focus is on CI-based baselines,
it is also practical to compare against recent non-CI approaches. We compare MACI’s group-
conditional coverage, marginal coverage, and retention ratio with sampling-based methods that ap-
ply to black-box LLMs and do not rely on retrieval. Brief descriptions of these baselines appear

7
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CCI (α=adap.) MACI (α=0.1)

Group Cov. Ret. Cov. Ret.
WikiBio 0.72 0.26 0.90• 0.28

View Count
Low 0.71 0.24 0.91• 0.29
Medium 0.73 0.26 0.90• 0.27
High 0.74 0.28 0.90• 0.31

Figure 2: Performance comparison of CCI (adaptive α) and MACI measured by View Count on the
WikiBio dataset. The horizontal axis of the left graph is the sample index sorted by View Count, and
the vertical axis is α. The left graph shows the variation in α when CCI (adaptive α) sets its target
retention ratio to MACI’s average retention ratio. CCI (adaptive α) trades off higher α to achieve a
higher retention ratio, and the table below shows the resulting decrease in coverage.

in Section D.4. Unlike CI-based methods, sampling-based approaches do not provide statistical
guarantees; instead, they compute a factuality-score p ∈ [0, 1], enabling false-claim filtering via a
threshold (e.g., 0.5). Table 2 shows that sampling-based methods attain high retention but low cov-
erage. This highlights their limitation in meeting the strict requirement that the filtered set contain
no false-claims. Moreover, their target coverage is not user-specified and thus unpredictable. These
points underscore the need for MACI in high-stakes settings that require a user-specified high 1−α.

Table 2: Comparison with sampling-based methods, a representative black-box and non-retrieval
approach for false-claim filtering. Sampling-based methods generally exhibit very low or unstable
coverage and a high retention rate. This suggests they are unsuitable for the strict target that all
claims have to be factual (the definition of Cov.). In contrast, MACI (α = 0.1) demonstrates the
ability to reliably guarantee the user’s desired coverage.

SelfCheck FSC-text FSC-KG MACI

Group Cov. Ret. Cov. Ret. Cov. Ret. Cov. Ret.

MedLFQA 0.56 0.97 0.63 0.85 0.64 0.88 0.90 0.50

Medical Content
Info 0.49 0.98 0.59 0.85 0.58 0.87 0.90 0.48
Interpret 0.54 0.98 0.59 0.90 0.63 0.93 0.90 0.47
Action 0.64 0.95 0.74 0.79 0.73 0.83 0.90 0.53

False-Claim Risk
Low 0.64 0.98 0.70 0.86 0.71 0.89 0.89 0.52
Medium 0.56 0.98 0.63 0.88 0.60 0.92 0.91 0.46
High 0.41 0.97 0.55 0.82 0.58 0.85 0.89 0.41

SelfCheck FSC-text FSC-KG MACI

Group Cov. Ret. Cov. Ret. Cov. Ret. Cov. Ret.

WikiBio 0.12 0.97 0.33 0.77 0.37 0.70 0.90 0.25

View Count
Low 0.11 0.95 0.42 0.69 0.46 0.64 0.91 0.21
Medium 0.13 0.97 0.31 0.79 0.27 0.73 0.91 0.24
High 0.11 0.98 0.26 0.82 0.39 0.73 0.91 0.24

False-Claim Risk
Low 0.19 0.98 0.41 0.78 0.43 0.72 0.90 0.23
Medium 0.08 0.96 0.28 0.74 0.32 0.68 0.90 0.25
High 0.08 0.97 0.30 0.78 0.35 0.70 0.90 0.28

5.2 MULTI-LLM ENSEMBLE

In Sections 4.1, 4.2, and 4.3, we have discussed the importance of the factuality-score p̂ and its
optimization via multi-LLM ensemble. Consequently, we first seek to verify to what extent our
proposed multi-LLM ensemble and optimization method (Section 4.3) improve the performance of
p̂ compared to a single-LLM, and how the retention ratio is correspondingly improved. We first
find that models exhibit significant disagreements in false-claim detection. Figure 3 (a) shows the
high Jaccard distance (Jaccard, 1901) between the sets of claims that different LLMs classify as
false. The analysis is performed exclusively on the subset of claims from MedLFQA where the
ground truth is false. This high distance implies that the models have different patterns for detecting
false-claims, suggesting significant potential for performance enhancement through an ensemble.
Figure 3 (b) shows that the FPR and MSE are sequentially improved from the single-LLM to the
arithmetic mean ensemble, and finally to MACI. Figure 3 (b) also shows that an improvement in FPR
is consistently accompanied by an improvement in MSE, and further demonstrates that MACI’s p̂ is
a superior estimator of factuality-score. Figure 3 (c) demonstrates that the corresponding sequential
increase in the retention ratio aligns with our objective of maximizing it by enhancing the quality of
p̂.

8
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Figure 3: (a) shows the high Jaccard distance between different LLMs’ predictions on claims known
to be false in MedLFQA, indicating diverse false-claim detection patterns that support using an
ensemble. (b) demonstrates the sequential improvement in FPR from a single-LLM and a simple
arithmetic mean ensemble to our proposed MACI. It also demonstrates that as the FPR improves
(0.147 to 0.123), the MSE also improves in practice (0.140 to 0.134); (c) demonstrates that as the
FPR and MSE improve, the retention ratio also increases. (0.497 to 0.527)

5.3 TIME COST

Time cost is a critical factor for real-time LLM response filtering. Our analysis compares MACI
with existing methods across two phases: Factuality-Score Generation, where factuality-scores are
created for LLM claims, and Calibration, where thresholds and ensemble weights are optimized;
the rapid filtering step is excluded. The factuality-scores of sampling-based methods are generated
with the Llama-3.3-70B-Instruct. The factuality-score generation time for MACI is the average
time of the three models in D.3. Table 3 reports costs on the WikiBio dataset for each phase.
Sampling-based methods are slower in score generation since they filter simultaneously and lack
a distinct calibration phase; for instance, SelfCheck must generate new responses, and FSC-KG
takes over ten times longer than MACI due to knowledge-graph construction and entity extraction.
Among conformal methods, CCI inherits SelfCheck’s generation times. In calibration, MACI is
faster than CCI because it uses simpler ensemble weight optimization instead of adaptive α search
and conditional boosting, and its single parallel scoring pass also makes it faster than sampling-based
approaches.

Table 3: Time-Cost Comparison of Four Filtering Methods. For sampling-based methods, the
factuality-score can be used for filtering at the time of generation, so the time for calibration and
filtering is excluded. The factuality-score for CCI is based on the results of SelfCheck, so the same
value is listed. The time required for inference can be approximately calculated as: calibration phase
time + (factuality-score generation time × # test samples).

Phase SelfCheck FSC-KG CCI MACI

Factuality-Score (s) 3.25 ± 0.43 19.30 ± 2.81 3.25 ± 0.43 1.20 ± 0.13
Calibration (s) — — 10.33 ± 1.18 3.24 ± 0.65

6 CONCLUSIONS

We reformulate conformal inference through a multiplicative filtering structure, providing a frame-
work for false-claim detection with finite-sample, distribution-free guarantees. Our analysis reveals
how deviations from the oracle factuality-score impact retention, motivating the use of ensemble
methods to narrow this gap. Building on these insights, we develop MACI, which uses ensemble-
based factuality-scores and group-conditional calibration to provide group-conditional coverage
guarantees. Experiments demonstrate that MACI achieves user-specified coverage while substan-
tially improving factual claim retention and running more efficiently than existing methods, offering
a practical solution for deploying LLMs in high-stakes applications.

9
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APPENDIX

Overview of Appendices Appendix A contains the proofs of the main theoretical results that were
omitted from the paper. Appendix B provides additional methodological details, including precise
definitions of the ensemble objective and empirical quantities used in our framework. Appendix C
reviews background material on conformal inference and its adaptation to false-claim filtering. Ap-
pendix D reports implementation details, datasets, and evaluation metrics for our numerical experi-
ments, together with supplementary results. Appendix E reports the use of a Large Language Model
for our research.

A PROOFS OF MAIN RESULTS

Lemma 1. For each i ∈ {1, . . . , n}, each threshold τ ∈ [0, 1], and each auxiliary randomization
Ui ∼ Unif(0, 1), we have

{Ei ≤ τ} ⇐⇒ {F (p̂, τ, Ui;Pi, Ci) ⊆ Ai}.

Proof. Fix i ∈ {1, . . . , n}, a threshold τ ∈ [0, 1], and a randomization variable Ui ∼ Unif(0, 1).
By the definition of Ei,

Ei = inf
{
t ∈ [0, 1] : F (p̂, t, Ui;Pi, Ci) ⊆ Ai

}
.

(⇒) Suppose Ei ≤ τ . Then, by the definition of the infimum, there exists τ∗ ≤ τ such that

F (p̂, τ∗, Ui;Pi, Ci) ⊆ Ai.

Since the retained set F (p̂, t, Ui;Pi, Ci) is non-increasing in monotone in τ , it follows that

F (p̂, τ, Ui;Pi, Ci) ⊆ Ai.

(⇐) Conversely, suppose that

F (p̂, τ, Ui;Pi, Ci) ⊆ Ai.

Then τ belongs to the set

{τ ∈ [0, 1] : F (p̂, τ, Ui;Pi, Ci) ⊆ Ai}.

Hence, by the definition of the infimum, we obtain Ei ≤ τ . Combining the two directions establishes
the desired equivalence. That is,

{Ei ≤ τ} ⇐⇒ {F (p̂, τ, Ui;Pi, Ci) ⊆ Ai}.

A.1 PROOF OF THEOREM 1

The proof follows the standard argument for marginal coverage in conformal prediction and is re-
stated here in our setting.

Lower bound. By Algorithm 1 and Lemma 1, the event that all retained claims are factual can be
written as

{∀cn+1,j ∈ Fn,α(Pn+1, Cn+1), yn+1,j = 1} ⇐⇒ {En+1 ≤ Q̂1−α({Ei}ni=1)}.

Since the samples (Pi, Ci, Yi) are exchangeable and the randomizations Ui are i.i.d., the conformity
scores {E1, . . . , En+1} are themselves exchangeable. Therefore, for any τ ∈ [0, 1],

P
(
En+1 ≤ Quantile({Ei}n+1

i=1 ; τ)
)

≥ τ.

(see Fact 2.15 of Angelopoulos et al. (2025)). Choosing τ = 1−α and using the equivalence above,
we obtain

P
(
∀cn+1,j ∈ Fn,α(Pn+1, Cn+1), yn+1,j = 1

)
≥ 1− α,
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which proves the marginal coverage lower bound.

Upper bound. Assume the conformity scores {Ei}n+1
i=1 are distinct with probability one, eliminating

the possibility of ties. Denote their order statistics by E(1), . . . , E(n+1), which under this condition
form a strictly increasing sequence almost surely. Let k = ⌈(1− α)(n+ 1)⌉. By construction,

{∀cn+1,j ∈ Fn,α(Pn+1, Cn+1), yn+1,j = 1} ⇐⇒ {En+1 ≤ E(k)}.
Since the conformity scores are exchangeable and distinct, the rank of En+1 is uniformly distributed
on {1, . . . , n+ 1}. It follows that

P(En+1 ≤ E(k)) =
k

n+ 1
=

⌈(1− α)(n+ 1)⌉
n+ 1

.

Finally, since

⌈(1− α)(n+ 1)⌉
n+ 1

≤ 1− α+
1

n+ 1
,

We conclude that

P
(
∀cn+1,j ∈ Fn,α(Pn+1, Cn+1), yn+1,j = 1

)
≤ 1− α+ 1

n+1 ,

which establishes the upper bound.

A.2 PROOF OF THEOREM 2

Fix k ∈ {1, . . . ,K} with P(g(Pn+1, Cn+1) = k) > 0. By Algorithm 1 and Lemma 1,

{∀cn+1,j ∈ F (k)
n,α(Pn+1, Cn+1), yn+1,j = 1} ⇐⇒ {E(k)

n+1 ≤ Q̂
(k)
1−α({E

(k)
i }i∈Ik

)},

where Ik = {i ∈ [n] : g(Pi, Ci) = k}.

Condition on g(Pn+1, Cn+1) = k. Then the conformity scores {E(k)
i : i ∈ Ik} ∪ {E(k)

n+1} are
exchangeable. Let m = |Ik| and set r = ⌈(1− α)(m+ 1)⌉. If E(k)

(1) ≤ · · · ≤ E
(k)
(m+1) are the order

statistics, then

{E(k)
n+1 ≤ Q̂

(k)
1−α({E

(k)
i })} ⇐⇒ {E(k)

n+1 ≤ E
(k)
(r) }.

By exchangeability, E(k)
n+1 is equally likely to occupy any of the m + 1 ranks. If ties occur at the

cutoff, the event {E(k)
n+1 ≤ E

(k)
(r) } only becomes more likely. Therefore,

P(E(k)
n+1 ≤ E

(k)
(r) | g(Pn+1, Cn+1) = k) ≥ r

m+ 1
≥ 1− α.

This completes the proof.
Lemma 2 (Uniformity under oracle factuality-score). If p̂ = p∗, then conditionally on (Pi, Ci) the
conformity score Ei is uniformly distributed on [0, 1].

Proof. Recall from Section 4.1 that F oracle
τ (Pi, Ci) denotes the set of retained claims at threshold τ .

The conformity score is defined as the smallest threshold at which the retained set is entirely factual:

Ei := inf{τ ∈ [0, 1] : F oracle
τ (Pi, Ci) ⊆ Ai}.

By construction of the randomized oracle filter, the retention rule is calibrated to satisfy

P
(
F oracle
τ (Pi, Ci) ⊆ Ai

∣∣Pi, Ci

)
= τ.

This equality holds for every τ ∈ [0, 1]. Consequently,

P(Ei ≤ τ | Pi, Ci) = τ.

Equivalently, the conditional distribution function of Ei is

GEi|(Pi,Ci)(τ) = τ.

Thus, conditional on (Pi, Ci), we have Ei ∼ Unif(0, 1).

13
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A.3 PROOF OF THEOREM 3

For notational simplicity, we suppress the dependence on (P, c) and write p̂ := p̂(P, c) and p∗ :=
p∗(P, c) throughout the proof.

Recall from equation 2 that the retention rate can be written as

R(p, τ) = P
(
c ∈ Fτ (p;P,C)

)
.

In the thresholding case where Fτ (p;P,C) = {c : p ≥ τ}, this simplifies to R(p, τ) = E[hp] with
hp := 1{p ≥ τ}. Therefore, the retention gap is

∆ = |R(p̂, τ)−R(p∗, τ)|
=

∣∣E[hp̂]− E[hp∗ ]
∣∣

=
∣∣E[hp̂ − hp∗ ]

∣∣ ≤ E
[
|hp̂ − hp∗ |

]
,

where we used the inequality |E[Z]| ≤ E[|Z|].
Since hp̂, hp∗ ∈ {0, 1}, their absolute difference equals 1 precisely when the two thresholding
decisions disagree. Hence

∆ ≤ P
(
hp̂ ̸= hp∗

)
= P

(
(p̂− τ)(p∗ − τ) < 0

)
.

Fix ϵ > 0. If hp̂ ̸= hp∗ , then one score is above τ and the other below. This can only happen in two
cases:

1. p∗ lies within ϵ of τ , i.e. |p∗ − τ | ≤ ϵ.
2. p∗ is farther than ϵ from τ but p̂ crosses the threshold, which forces |p̂− p∗| > ϵ.

Therefore,

{hp̂ ̸= hp∗} ⊆ {|p∗ − τ | ≤ ϵ} ∪ {|p̂− p∗| > ϵ}.

Taking probabilities and applying the union bound gives

∆ ≤ P
(
|p̂− p∗| > ϵ

)︸ ︷︷ ︸
(I)

+P
(
|p∗ − τ | ≤ ϵ

)︸ ︷︷ ︸
(II)

.

For (I), by Markov’s inequality,

P
(
|p̂− p∗| > ϵ

)
≤ E[(p̂− p∗)2]

ϵ2
.

For (II), Assumption (ii) ensures

P
(
|p∗ − τ | ≤ ϵ

)
≤ Cϵβ .

Hence for every ϵ > 0,

∆ ≤ E[(p̂− p∗)2]

ϵ2
+ Cϵβ .

Let V := E[(p̂− p∗)2]. The inequality

∆ ≤ V

ϵ2
+ Cϵβ

holds for any ϵ > 0. Hence, we may minimize the right-hand side over ϵ. Balancing the two
contributions by setting ϵ = V 1/(β+2) (up to constant factors) yields

∆ ≤ C ′ V
β

β+2 ,

where C ′ depends only on (C, β). This completes the proof.
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Algorithm 1 Adaptive Conformal Inference (ACI)

1: Input: Calibration dataset Dcal = {(Pi, Ci, Yi)}ncal
i=1 of size ncal, a new instance (Pn+1, Cn+1),

a black-box classifier p̂, and an error level α ∈ (0, 1).

2: Output: Filtered set Fn,α(Pn+1, Cn+1) that satisfies marginal coverage.

— Calibration Phase —
3: for i = 1, . . . , ncal do
4: Sample Ui ∼ Unif(0, 1).
5: Let Ai = { ci,j ∈ Ci : yi,j = 1 } be the set of factual claims.
6: Compute conformity score

Ei = inf{τ ∈ [0, 1] : F (p̂, τ, Ui;Pi, Ci) ⊆ Ai}.

7: end for
8: Compute empirical quantile

Q̂1−α = inf
{
q ∈ [0, 1] :

1

ncal

ncal∑
i=1

1{Ei ≤ q} ≥ 1− α
}
.

— Filtering Phase —
9: Sample Un+1 ∼ Unif(0, 1).

10: Construct the conformal filter

Fn,α(Pn+1, Cn+1) = F (p̂, Q̂1−α, Un+1;Pn+1, Cn+1).

11: Return Fn,α(Pn+1, Cn+1).

B METHODOLOGICAL DETAILS

B.1 DETAILS OF MULTI-LLM ENSEMBLE OBJECTIVE

This appendix provides the formal definitions of the proxy objective, empirical quantities, and op-
timization procedure underlying our multi-LLM ensemble (MACI), complementing the description
in Section 4.3.

Recall from (3) that
R(p, τ) = ρ · TPR(p, τ) + (1− ρ) · FPR(p, τ).

Because TPR and FPR cannot be optimized simultaneously, we enforce a tolerance δ ∈ (0, 1) such
that TPR(p, τ) ≥ 1− δ. Let τp,δ denote the δ-quantile of factuality-scores among true-claims. The
population-level objective is then

p⋆ = argmin
p

E
[
FPR(p, τp,δ)

]
,

where FPR is the false positive rate at threshold τp,δ .

Since the distribution P is unknown, we approximate the objective using a hold-out set Dopt =

{(Pℓ, Cℓ, Yℓ)}
nopt

ℓ=1. Let N1 =
∑nopt

ℓ=1 |{cℓ,j ∈ Cℓ : yℓ,j = 1}| be the total number of true-claims. The
empirical δ-quantile among true-claims is

τ̂p,δ = inf
{
t : 1

N1

nopt∑
ℓ=1

∑
c∈Cℓ:y=1

1{p(Pℓ, c) ≤ t} ≥ δ
}
.

For document (Pℓ, Cℓ, Yℓ), the empirical FPR is defined as

F̂PRℓ(p, τ) =
|{c ∈ Fτ (p;Pℓ, Cℓ) : y = 0}|

1 ∨ |{c ∈ Cℓ : y = 0}|
,

where a ∨ b = max(a, b). The empirical optimization problem is then

p̂ = argmin
p

1

nopt

nopt∑
ℓ=1

F̂PRℓ(p, τ̂p,δ).

15
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Algorithm 2 Multi-LLM Adaptive Conformal Inference (MACI)

1: Input: Data Dopt = {(Pi, Ci, Yi)}
nopt
i=1 and Dcal = {(Pi, Ci, Yi)}ncal

i=1, of sizes nopt and ncal

respectively, a new instance (Pn+1, Cn+1), a collection of base classifiers {p̂m}Mm=1, a grouping
function g, an error level α ∈ (0, 1), and a TPR tolerance δ ∈ (0, 1).

2: Output: A filtered subset F̂ (ktest)
n,α (Pn+1, Cn+1) that satisfies group-conditional coverage.

— Optimization and Calibration Phase —
3: for each group k ∈ {1, . . . ,K} do
4: Define the optimization indices Iopt,k = { i ∈ Dopt : g(Pi, Ci) = k }.
5: For any candidate weights w, compute the empirical threshold

τ̂p̂ens(w),δ := inf
{
t ∈ R :

1

N1,k

∑
i∈Iopt,k

∑
c∈Ci:y=1

1{p̂ens(Pi, c;w) ≤ t} ≥ δ
}
,

where N1,k =
∑

i∈Iopt,k
|{ci,j ∈ Ci : yi,j = 1}| is the number of true-claims in group k.

6: Compute the optimal ensemble weights w∗
k by solving

w∗
k = argmin

w

1

|Iopt,k|
∑

i∈Iopt,k

F̂PRi

(
p̂ens(w), τ̂p̂ens(w),δ

)
subject to

1

|Iopt,k|
∑

i∈Iopt,k

T̂PRi

(
p̂ens(w), τ̂p̂ens(w),δ

)
≥ 1− δ.

7: end for
8: for each group k ∈ {1, . . . ,K} do
9: Define the calibration indices Ical,k = { i ∈ Dcal : g(Pi, Ci) = k }.

10: Define the group-conditional ensemble classifier p̂∗k(c) = p̂ens(c;w
∗
k).

11: for each i ∈ Ical,k do
12: Sample Ui ∼ Unif(0, 1).
13: Let Ai = { ci,j ∈ Ci : yi,j = 1 } be the set of factual claims.
14: Compute the conformity score

Ei = inf{τ ∈ [0, 1] : F (p̂∗k, τ, Ui;Pi, Ci) ⊆ Ai}.

15: end for
16: Compute the group-conditional empirical quantile

Q̂
(k)
1−α = inf

{
q ∈ [0, 1] :

1

|Ical,k|
∑

i∈Ical,k

1{Ei ≤ q} ≥ 1− α
}
.

17: end for
— Filtering Phase —

18: Determine the group of the new instance: ktest = g(Pn+1, Cn+1).
19: Retrieve the corresponding optimal weights w∗

ktest
and threshold Q̂

(ktest)
1−α .

20: Define the group-conditional ensemble classifier p̂∗ktest
(c) = p̂ens(c;w

∗
ktest

).
21: Sample Un+1 ∼ Unif(0, 1).
22: Construct the adaptive conformal filter:

F̂ (ktest)
n,α (Pn+1, Cn+1) = F (p̂∗ktest

, Q̂
(ktest)
1−α , Un+1;Pn+1, Cn+1).

23: Return F̂
(ktest)
n,α (Pn+1, Cn+1).

Direct fine-tuning toward p∗ is infeasible in black-box LLMs. Instead, let {pm}Mm=1 denote base
factuality-scores and w = (w1, . . . , wM ) a non-negative weight vector summing to one. The en-
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semble predictor is

pens(P, c;w) =

M∑
m=1

wm pm(P, c),

and the weights are optimized by

w⋆ = argmin
w

1

nopt

nopt∑
ℓ=1

F̂PRℓ(pens(·;w), τ̂pens(·;w),δ).

C BACKGROUND

C.1 CONFORMAL INFERENCE

Conformal Inference (CI) (Papadopoulos et al., 2002; Vovk et al., 2005; Lei et al., 2017; Angelopou-
los & Bates, 2022) is a statistical framework that provides distribution-free uncertainty quantification
for any machine learning model. Under the sole assumption that the data is exchangeable, a condi-
tion satisfied by i.i.d. data, CI generates a prediction set C(Xn+1) for a new test point Xn+1 that
contains the true label Yn+1 with a user-specified probability of at least 1 − α. This is achieved
through a calibration process using a hold-out calibration dataset, Dcalib. The core mechanism in-
volves defining a non-conformity score function, S(·, ·), which measures how poorly a data point
(Xi, Yi) conforms to a model’s predictions. For instance, a common score for a probabilistic clas-
sifier with a score function p̂ is S(Xi, Yi) = 1 − p̂(Yi | Xi), where a higher score indicates that
the true label was assigned a lower probability. These scores are computed for each sample in
Dcalib, and a threshold τ̂ is determined by taking the value at the ⌈(|Dcalib| + 1)(1 − α)⌉-th posi-
tion in the sorted list of scores. For a new test point Xn+1, the prediction set is constructed by
including all possible labels y ∈ Y whose non-conformity score does not exceed this threshold, i.e.,
C(Xn+1) = {y ∈ Y | S(Xn+1, y) ≤ τ̂}. This construction provides the powerful finite-sample
marginal coverage guarantee, P(Yn+1 ∈ C(Xn+1)) ≥ 1 − α, offering a robust foundation for
building reliable machine learning systems.

C.2 FALSE-CLAIM FILTERING WITH CONFORMAL INFERENCE

Mohri & Hashimoto (2024) adapt the CI framework to filter false-claims from Large Language
Model (LLM) outputs, proposing a foundational method we refer to as Basic Conformal Infer-
ence (BCI). The process begins with a set of n prompts, {Pi}ni=1. For each prompt Pi, an
LLM generates a response Ri, which is then segmented into a collection of independent claims,
Ci = {ci,1, . . . , ci,ni

}. Each claim ci,j is associated with a ground-truth binary label yi,j ∈ {0, 1},
where yi,j = 1 denotes a true-claim and yi,j = 0 denotes a false-claim. Thus, each data point is a
tuple Di = (Pi, Ci, Yi), and the dataset {Di}ni=1 is assumed to be drawn i.i.d. from an unknown
joint distribution P. A score function, p, assigns a confidence-score p(ci,j) to each claim. This score
function can be constructed in various ways, such as by directly querying an LLM (Tian et al., 2023;
Guan et al., 2024) or by capturing frequency (Wang et al., 2023; Manakul et al., 2023). Their for-
mal goal is to output a filtered set of claims, Fn,α(Pi, Ci) ⊆ Ci, that contains no false-claim with
user-specified error rate, i.e.,

P (∃cn+1,j ∈ Fn,α(Pn+1, Cn+1) such that yn+1,j = 0) ≤ α.

They define the filtered set as all claims whose scores exceed the calibrated global threshold τ̂ , that
is, Fτ̂ (Pi, Ci) := { ci,j ∈ Ci : p(Pi, ci,j) ≥ τ̂ }. The threshold τ̂ is determined by the conformal
procedure. Specifically, they define a non-conformity score for each sample (Ci, Yi) as the lowest
possible confidence-score threshold τ that ensures all retained claims are true :

S(Ci, Yi) := inf
{
τ ∈ [0, 1] : ∀ci,j ∈ Fτ (Pi, Ci), yi,j = 1

}
.

This non-conformity score is computed for all samples in the calibration set Dcalib. The global
threshold τ̂ is then set to the (1 − α) quantile of these non-conformity scores, as detailed in Sec-
tion C.1. They show that if the data samples are exchangeable, this procedure satisfies the desired
probability guarantee.
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D EXPERIMENT DETAILS

D.1 DATASETS

MedLFQA For the medical question-answering task, Cherian et al. (2024) create an experimental
dataset using prompts from the MedLFQA benchmark (Jeong et al., 2024). To generate the data,
they first prompt GPT-3.5-Turbo to produce new responses, which are then parsed into atomic claims
by GPT-4o. For the crucial step of ground-truth annotation, they employ an automated verification
procedure. For each generated claim, they prompt GPT-3.5-Turbo to verify whether it is substanti-
ated by the reference answer provided in the original MedLFQA benchmark, effectively treating the
reference answer as the ground-truth source text. From this dataset, we randomly extracted 2,000
samples, comprising 33,833 claims, for our experiments.

WikiBio Cherian et al. (2024) follow the principles of the FACTSCORE (Min et al., 2023) dataset
to construct a new, large-scale benchmark for evaluating the factuality of LLM output. To gen-
erate the data, they prompt GPT-3.5-Turbo to write short biographies for 8,516 names sampled
from Wikipedia. To circumvent the high cost of manual annotation, they then employ a variant
of the FACTSCORE procedure for fact-checking. For each generated claim, they use the BM25
algorithm (Robertson & Zaragoza, 2009) to retrieve ground-truth passages from Wikipedia and sub-
sequently prompt GPT-3.5-Turbo to verify whether the claim is supported by the retrieved text. This
completed dataset is referred to as WikiBio in our paper for convenience. We randomly extracted
2,000 samples, comprising 53,804 claims, for our experiments.

ExpertQA Malaviya et al. (2024) construct the ExpertQA dataset, a large-scale benchmark for
evaluating the factuality and attribution of LLM output. To generate the data, they first asked 484
qualified experts across 32 fields to formulate challenging, information-seeking questions from their
professional lives. To ensure high-quality annotations, they then employed an expert-in-the-loop
evaluation procedure where the same experts validated sentence-level claims in responses generated
by six representative LLMs. Using the rich, human-annotated information provided in this dataset,
we construct a binary ground truth for each claim. Among the datasets in our study, ExpertQA was
the most challenging and also the most rigorously labeled, due to its direct validation by domain
experts. We randomly extracted 2,000 samples, comprising 11,538 claims, for our experiments.

Of the 2,000 samples, 1,500 were used for the calibration phase, and 500 were used for the filtering
(test) phase. Figure 4 shows an actual format of the data sample we use.

D.2 GROUPING CRITERIA

We employ complex grouping criteria that are likely to occur in reality, yet simultaneously require
prompt and response parsing along with numeric values. We create one grouping criteria applicable
to all three datasets and three classification criteria reflecting the characteristics of each dataset. The
criteria are as follows:

Common: False-Claim Risk This is a composite risk index calculated by analyzing features of
the prompt and response texts. The risk score increases with longer response lengths, a higher
frequency of lists or numbers, and the inclusion of absolute or definitive expressions like ’always’,
’never’, or ’cure’. Conversely, the risk score decreases when expressions citing sources or evidence,
such as ’according to’ or ’research shows’, are present. This index estimates the potential risk of
containing false information based solely on textual characteristics.

MedLFQA: Medical Content Medical-related questions are classified into three groups based on
the ’intent’ of the user’s prompt:
Information-Seeking (Info): Cases that ask for factual information about a specific disease or drug,
using keywords like ”what is,” ”symptom,” or ”treatment.”
Interpretation-Seeking (Interpret): Cases that request an interpretation of what a specific symptom
or condition means, using phrases like ”what does it mean” or ”should I worry.”
Action-Seeking (Action): Cases that ask for specific guidance on actions or treatment, using phrases
like ”should I,” ”can I take,” or ”how to.”
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WikiBio: View Count Groups are divided based on the cumulative number of page views for
each person’s Wikipedia page in the WikiBio dataset. This is used as an indicator of public interest
in or awareness of the person.

ExpertQA: Question Domain Questions (prompts) from the ExpertQA dataset are classified into
three high-level domains based on the academic field specified in the official metadata:
Biology/Medicine (Bio/Med): Life science and health-related fields such as Healthcare, Medicine,
Biology, Chemistry, and Psychology.
Technology/Science (Tech/Sci): Engineering and physics-related fields such as Engineering and
Technology, Physics, and Astronomy.
Common: All other academic fields that do not fall into the two categories above.

D.3 SELECTING LLMS

Although our methodology is model-free and works with any large language model, we choose to
use Llama-3.3-70B-Instruct (Grattafiori et al., 2024), Qwen-2.5-72B-Instruct (Qwen et al., 2025),
and DeepSeek-V3 (DeepSeek-AI et al., 2025). We selected these three white-box models for their
high transparency and reproducibility. Their public availability and stable serving allow us to openly
share and control all settings, such as decoding parameters, logs, and the calibration pipeline, mak-
ing our work easily replicable. This open nature also reduces our dependence on unseen changes to
policies or filters that come with version updates, which is a key advantage in fields where repro-
ducibility and auditing are crucial.

D.4 SAMPLING-BASED METHODS

SelfCheck Manakul et al. (2023) proposes a black-box, zero-resource method that detects hal-
lucinations by sampling multiple responses from a large language model for the same query and
quantifying the content consistency between the original response and the samples. Specifically, the
method generates multiple stochastic responses for a single prompt and calculates response reliabil-
ity by aggregating mutual consistency at the sentence/passage level, using metrics such as semantic
similarity, NLI-based contradiction signals, and question-answering agreement. In our experiments,
we use Llama-3.3-70B-Instruct as the model to generate multiple samples for the same prompt when
applying the SelfCheck procedure.

FactSelfCheck (FSC) Sawczyn et al. (2025) proposes a method for detecting fact-level hallucina-
tions by extracting factual units from a response and multiple samples to construct a fact graph, then
aggregating supporting and contradictory signals for each fact across all samples. The procedure
involves extracting facts (e.g., entity-relation-entity triplets) from an initial response and multiple
samples, calculating the degree of consensus among these facts to aggregate them into fact, sen-
tence, or passage-level scores, and finally performing threshold-based filtering. In our experiments,
we also use Llama-3.3-70B-Instruct to generate the multiple samples required for the FSC proce-
dure.

D.5 EVALUATION METRICS

To evaluate our proposed method, we assess two key aspects: the quality of our oracle-
approximating factuality-score function and the performance of the final filtering procedure.

Coverage Coverage is the primary metric for verifying the theoretical guarantee of our confor-
mal inference procedure. A sample Di is considered ”covered” if its filtered set F (Ci) contains
no hallucinatory claims. The empirical coverage is the fraction of samples in the test set that are
successfully covered. For a given error rate α, a valid conformal procedure is expected to yield an
empirical coverage rate approaching or exceeding 1− α.

Cov. =
1

|Dtest|
∑

Di∈Dtest

1 [∀ci,j ∈ F (Ci), yi,j = 1]
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Figure 4: An example of independently decomposed claims in MedLFQA and the aggregated re-
sults of four methods that filter the false-claims of those claims. BCI yields conservative results,
while CCI and FSC-KG show high retention but fail to filter out all false-claims, whereas MACI
successfully filters out all false-claims.

Retention Ratio While coverage measures the safety of the filter, retention ratios measure its
utility. Retention measures the average fraction of total claims remaining after filtering, indicating
how much of the original text volume is preserved:

Ret. =
1

|Dtest|
∑

i∈Dtest

|F (Ci)|
|Ci|

E STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We used an LLM for minor editing and scripting automation only; core ideas, experiments, and
analyses were conducted by the authors.
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