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Abstract

The DN-CBM framework proposed by Rao et al. represents a significant advancement in
concept-based interpretability, leveraging Sparse Autoencoders (SAEs) for automatic con-
cept discovery and naming. Our study successfully reproduces DN-CBM’s core findings,
confirming its ability to extract meaningful concepts while maintaining competitive classifi-
cation performance across ImageNet, Places365, CIFAR-10, and CIFAR-100. Additionally,
we validate DN-CBM’s effectiveness in clustering semantically related concepts in the latent
space, reinforcing its potential for interpretable machine learning. Beyond replication, our
extensions provide deeper insights into DN-CBM’s interpretability and robustness. We show
that the discovered concepts are more concrete and less polysemantic, favoring monoseman-
tic representations, and that polysemantic concepts have minimal impact on classification.
Our intervention analysis on the Waterbirds100 dataset supports DN-CBM’s interpretability,
and a novel loss function improves classification accuracy by reducing reliance on spurious
background cues. In addition, we show through a user study the advantages of the new loss
function on the interpretable concept selection for CIFAR-10. While our automatic concept
intervention method offers an alternative to manual interventions, human selection remains
more effective. These findings affirm DN-CBM’s validity and highlight opportunities for
further refinement in interpretable deep learning.

1 Introduction

Deep learning models are increasingly applied across diverse domains, but their lack of interpretability
remains a critical challenge. This problem has fueled interest in inherently interpretable methodologies that
facilitate clearer, more comprehensible model explanations for human understanding (Böhle et al., 2022; Koh
et al., 2020).

Concept Bottleneck Models (CBMs) (Achtibat et al., 2023; Kim et al., 2018; Koh et al., 2020; Oikarinen
& Weng, 2023) present a promising strategy by introducing a human-interpretable concept space between
feature extraction and classification. However, traditional CBMs need a labelled concept training dataset,
leading to the rise of label-free LLM-based CBMs (Panousis et al., 2023; Yang et al., 2023), with the disad-
vantage of having to query expensive LLMs and whose faithfulness has been called into question (Margeloiu
et al., 2021). The work by Rao et al. (Rao et al., 2024) addresses these limitations by introducing DN-
CBMs, a type of CBM that employs Sparse Autoencoders (SAEs) to autonomously discover latent concepts.
This approach reverses the conventional workflow, which typically involves defining concepts in advance and
then applying them to the input data. Instead, it begins by uncovering the concepts in a language-agnostic
manner and subsequently assigning them the closest matching term from a predefined vocabulary.

In this paper, we reproduce the findings of DN-CBM to validate its claims and evaluate its reproducibility.
We focus on the use of SAEs for concept discovery and analyze the trade-off between interpretability and
performance across ImageNet (Deng et al., 2009), Places365 (Zhou et al., 2018), CIFAR-10 (Krizhevsky,
2009), and CIFAR-100 (Krizhevsky, 2009).
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This study focuses on DN-CBM due to its intrinsic task-agnostic nature, which distinguishes it from models
such as CEIR Cui et al., 2023. In DN-CBM, the sparse autoencoder is trained once and remains fixed,
thereby necessitating only the retraining of a linear probe for adapting to new tasks, making this model
more computationally advantageous. Furthermore, DN-CBM employs a fixed (but possibly tunable) vocab-
ulary based on unigrams rather than relying on expensive large language models for generating task-specific
concepts. This design not only reduces computational overhead but also enhances reproducibility and ease of
integration into various downstream applications. Additional advantages include the simplicity of the train-
ing procedure, good performances on complex datasets such as ImageNet and improved efficiency, which
together render DN-CBM a compelling candidate for further empirical validation.

Additionally, we extend the research from Rao et al. by conducting a deeper exploration of the Sparse
Autoencoder (SAE)’s concept space through various interventions. Specifically, we introduce three key ex-
tensions beyond the original work. First, we analyze the learned concept space using different vocabularies
to assess its interpretability. To examine concreteness, we leverage the vocabulary developed by Brysbaert et
al. (Brysbaert et al., 2014), which provides concreteness ratings for 37,058 English words and 2,896 two-word
expressions based on sensory and motor experiences, predominantly visual and haptic. This enables us to
evaluate the alignment between discovered concepts and human perceptual concreteness levels. To study
polysemanticity, we utilize WordNet’s hierarchical structure, identifying whether the learned concepts belong
to multiple synsets. Second, we introduce a modified loss function designed to penalize spurious correla-
tions, improving robustness by discouraging reliance on incidental features. Finally, we develop an automatic
concept intervention method that selectively adjusts the influence of learned concepts without manual inter-
vention. These extensions provide a more comprehensive understanding of DN-CBM’s interpretability and
its potential for refining concept-based representations.

2 Scope of reproducibility

The paper proposes a novel task-agnostic framework, DN-CBM, for constructing concept bottleneck models
(CBMs). Below are the main claims made by the authors:

• Claim 1: Task-Agnostic Concept Discovery
DN-CBM uses sparse autoencoders (SAEs) to discover concepts (Bricken et al., 2023) learned by
CLIP (Radford et al., 2021a) in a task-agnostic manner, eliminating the need for labeled datasets
or task-specific concept generation, making the approach computationally efficient and scalable.

• Claim 2: SAE overcomes polysemanticity DN-CBM uses sparse autoencoders (SAEs) to disen-
tangle representations, ensuring each concept is mono-semantic and independently encoded (Elhage
et al., 2022), improving interpretability.

• Claim 3: Automated Concept Naming
DN-CBM automatically names the discovered concepts by aligning the dictionary vectors of the
SAE decoder with the most similar text embeddings in the CLIP space. This naming mechanism is
faithful to what the concept truly represent and avoids reliance on external large-language models.

• Claim 4: Semantically Meaningful and Diverse Concepts
Sparse autoencoders enable the discovery of semantically meaningful concepts across different ab-
straction levels.

• Claim 5: Semantic Consistency and Clustering in Concept Space
Semantically similar concepts and their associated images naturally cluster together in the latent
concept space.

• Claim 6: Intervention Analysis
Retaining only class related concepts (Petryk et al., 2022; Rao et al., 2022) significantly improves
overall accuracy, while removing these concepts causes a substantial drop in performance, demon-
strating the effectiveness of targeted interventions.

2



Under review as submission to TMLR

We structure our reproducibility study as follows: Section 3 details the models, datasets, and experimental
setup used to replicate the original findings. Section 4 presents the reproduced results alongside the methods
and results beyond the original paper. Finally, Section 5 summarizes our study and reflects on the challenges
of reproducing the original work.

3 Methodology

To reproduce the results obtained by Rao et al. (Rao et al., 2024) we mainly used the code made publicly
available by the authors in a GitHub repository 1. The available code was useful for claims 1, 3, 4, and 5,
while for the user study, the intervention analysis and additional experiments, some of which concerning the
concreteness level of the vocabulary used for concept naming, we implemented additional scripts.

3.1 Model Descriptions

3.1.1 DN-CBM model

The reproduced DN-CBM model introduces a structured approach to concept-based learning by organizing
its pipeline into three main stages: (1) Concept Discovery with Sparse Autoencoders (SAE), (2) Automated
Concept Naming, and (3) Concept Bottleneck Model (CBM) for Classification. Below we provide a high-level
explanation of DN-CBMs, for a detailed explanation see Appendix 6.1.

Stage 1: Concept Discovery with Sparse Autoencoders To extract human-interpretable concepts,
we employ a Sparse Autoencoder trained on CLIP embeddings. Unlike conventional autoencoders that
prioritize reconstruction accuracy, the SAE introduces a L1-sparsity constraint in the latent space, ensuring
that individual neurons correspond to distinct, disentangled concepts (O’Neill et al., 2024; Rao et al., 2024).

The SAE consists of a linear encoder-decoder architecture, where the encoder projects CLIP embeddings
into a high-dimensional sparse concept space, and the decoder reconstructs the original input. The training
objective balances reconstruction accuracy and sparsity, ensuring that concepts remain disentangled while
preserving key information from CLIP representations. The total number of trainable parameters of the
SAE is of approx. 17 million for CLIP ResNet-50 and of approx. 8 million for CLIP ViT/B-16.

Stage 2: Automated Concept Naming After concept discovery, we can now map the input data to a
sparsely activated layer where each of the neurons represent a concept. To make the neurons of the hidden
layer (concept space) human-interpretable we now assign them names from a predefined vocabulary V. In
particular, for every concept we compute its CLIP embedding (i.e. we pass the corresponding vector of the
standard basis through the SAE decoder) and assign the name in V whose CLIP embedding vector is closest
under cosine similarity. This ensures that each neuron is assigned the most semantically meaningful name,
although the effectiveness of this step depends on the granularity of the vocabulary, since a richer vocabulary
allows for more precise naming.

Stage 3: Concept Bottleneck Model for Classification Once sparse representations are extracted
and labeled, we use them to train a Concept Bottleneck Model (CBM) for classification. A linear probe
is trained on top of the sparse concept representations to map them to class logits. The training objective
consists of a cross-entropy loss for classification and a L1 regularization term to encourage sparse weight
connections, further enhancing interpretability.

Crucially, both the CLIP encoder and SAE remain frozen during classifier training, ensuring that only the
final classification layer is optimized. This enables direct alignment between image and text embeddings
while maintaining the semantic structure of the learned concepts.

1https://github.com/neuroexplicit-saar/Discover-then-Name. Accessed 31/01/2025.
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3.1.2 CLIP Image and Text Encoders

CLIP is a vision-language model that aligns images and text into a shared embedding space by training on
large-scale image-caption pairs (OpenAI, 2021). It comprises an image encoder I and a text encoder T ,
both of which map their respective inputs into the same multimodal space, facilitating zero-shot learning.

3.1.3 Concept Intervention on the Waterbirds100 Dataset

The concept intervention experiment follows the methodology proposed in the original paper and is conducted
on the Waterbirds100 (Petryk et al., 2022; Sagawa* et al., 2020) dataset. This dataset is constructed such
that all landbirds appear against land backgrounds and all waterbirds appear against water backgrounds in
the training split, creating a strong spurious correlation between bird class and background. However, in
the test split, this correlation is removed, making classification based on background cues ineffective.

We use the same components as the original study. The SAE trained on CC3M for the CLIP RN-50 model.
The Linear Probe is trained for 200 epochs with a learning rate of 0.1 and a sparsity coefficient of 10.

After training, we extract the top 10 concepts with the largest weights in the probe and manually intervene
by removing (zeroing out) concepts that are not bird-related. This differs from the original approach, where
only the top 5 concepts were considered. The top 10 concepts for each class, sorted by weight, are presented
in Table 8 in the Appendix 6.6 .

3.1.4 Extension: Penalizing spurious correlations with a modified loss on the Waterbirds100 Dataset

Deep learning models often exploit spurious correlations in training data, leading to poor generalization
when these patterns do not hold in test settings. This issue is evident in datasets like Waterbirds100, where
background features (e.g., land or water) strongly correlate with bird class during training but not in testing.
Standard classifiers rely on these cues, resulting in suboptimal performance when they become unreliable.
Waterbirds100 is explicitly designed to introduce such correlations in training while removing them in testing,
making it an ideal benchmark for robustness evaluation.

To address this, we introduce a modified loss function that penalizes reliance on spurious correlations. This
function encourages the model to prioritize semantically meaningful concepts while suppressing irrelevant
or misleading features. By leveraging class names and concept embeddings, we quantify semantic alignment
and adjust model training accordingly.

Metadata Usage Beyond training data (train_X, train_y), we incorporate class names (e.g., waterbird,
landbird) to guide concept selection. Specifically, we extract a large set of candidate concepts and estimate
their semantic alignment with each class. This produces a similarity matrix (#classes×#concepts), where
each row represents a class and each column a concept. A corresponding related masks matrix of the same
size identifies key class-associated concepts. Similarity is computed by embedding class names via the CLIP
text encoder and measuring alignment with CLIP’s discovered concept embeddings.

By leveraging class metadata, our penalty loss reduces spurious correlations between backgrounds and bird
types, improving generalization when background cues change in the test split. This ensures the model
focuses on bird-relevant concepts rather than background biases.

Experiments To evaluate the effectiveness of our penalty loss, we trained a linear probe on the Water-
birds100 dataset, with a learning rate of 0.1, a sparsity loss coefficient of 10, a penalty loss coefficient of
5 × 10−5, over 300 epochs. For a more detailed mathematical explanation of the loss, see Appendix 6.2.

3.1.5 Extension: Automated Concept Intervention

Motivated by the need for a more scalable and practical approach, we introduced automatic concept in-
tervention as an alternative to the manual intervention strategy proposed in the original paper on the
Waterbirds-100 datasets. This automation allows the method to generalize more effectively to datasets with
a large number of classes, where manual intervention would be infeasible.
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This method aims to identify concepts that are semantically related to class names based solely on the
embeddings of their textual representations. Unlike the modified loss function, which relies on the original
learned concept embeddings (the dictionary vectors of the SAE Decoder), this approach directly utilizes the
embeddings of concept names (from CLIP). For more detail see Appendix 6.2. This methodology is con-
ceptually closer to the manual intervention performed in the original paper, allowing for greater flexibility
in the choice of embeddings and enabling experimentation with different models, including: BERT (Devlin
et al., 2019), GloVe (Pennington et al., 2014), CLIP, and Sentence Transformer (Reimers & Gurevych,
2019). The automatic concept intervention procedure consists of the following steps:

1. Train a linear probe. We evaluate this method using both a standard probe and a probe trained
with the modified loss function.

2. Extract the top-k concepts with the largest weights in the trained probe.

3. Zero out all remaining weights, retaining only the top-k concepts.

4. Encode the class names and concept names using one of the four embedding models listed above.

5. Compute the similarity between the class name embeddings and the embeddings of the retained
top-k concepts, using a predefined similarity metric and a threshold.

6. Zero out the concepts whose similarity scores fall below the threshold.

The image encoder is implemented using two architectures: ResNet-50 (RN50) (He et al., 2015) and Vision
Transformer (ViT-B/16) (Dosovitskiy et al., 2021). RN50 extracts hierarchical image features using convo-
lutional layers, producing compact embeddings, while ViT-B/16 treats images as sequences of 16×16 pixel
patches, modeling long-range dependencies through self-attention. Both architectures generate embeddings
of size 1024 (RN50) and 512 (ViT-B/16). Pre-training on 400M image-text pairs using a contrastive loss
function ensures that semantically similar images and text are pulled together in the embedding space.

3.2 Datasets

Training the SAE

• Conceptual Captions 3M (CC3M) (Sharma et al., 2018). Contains 3,318,333 training and 15,840
validation image-caption pairs. Images are resized to 224x224, normalized with CLIP and augmented2.

Training the Linear Probe

• ImageNet-1000 (Deng et al., 2009). Contains 1,153,050 training, 128,117 validation, and 50,000 test
images across 1,000 classes. Images are resized to 224x224, normalized and augmented3.

• Places365 (Zhou et al., 2018). Contains 1,623,114 training, 180,346 validation, and 36,500 test images
across 365 categories. Images are resized to 256x256, cropped to 224x224, normalized and augmented4.

• CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). Both datasets contain 45,000 training, 5,000 vali-
dation, 10,000 tests images. Images are standardized, with random cropping and horizontal flipping applied5.

Vocabularies

• 20K Vocabulary (Oikarinen & Weng, 2023). Contains 20,000 common English words. Words are
tokenized, stemmed, stop words removed, and encoded6.

2Available in https://ai.google.com/research/ConceptualCaptions/. Accessed 31/01/2025.
3Available with academic license in https://www.image-net.org/. Accessed 31/01/2025.
4Available in http://places2.csail.mit.edu/. Accessed 31/01/2025.
5Available in https://www.cs.toronto.edu/~kriz/cifar.html. Accessed 31/01/2025.
6Available in https://github.com/first20hours/google-10000-english/blob/master/20k.txt. Accessed 31/01/2025.
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• Concreteness Ratings (Brysbaert et al., 2014). Contains concreteness ratings for 37,058 English
words and 2,896 two-word expressions rated in an abstract (1) to concrete (5) scale7.

• WordNet Vocabulary (Fellbaum, (1998, ed.)). Contains over 155,000 words hierarchized into syn-
onym sets (synsets). Words are tokenized, stemmed, encoded, and hierarchical relationships are represented
as directed acyclic graphs8.

3.3 Hyperparameters

The hyperparameters for training the SAE and linear probes were predefined in the dictionary found in
dncbm/method_utils.py. Consequently, no hyperparameter search was conducted for either model. The
exact values used can be found in Table 1 and Table 2.

Encoder LR L1 coeff. (λ1) Exp. factor (µ) Epochs Resample freq. Batch Size
CLIP ResNet-50 5e-4 3e-5 8 200 10 4096
CLIP ViT-B/16 5e-4 3e-5 8 200 10 4096

Table 1: Hyperparameters used for the training of the SAE, for the encoders CLIP ResNet-50 and CLIP
ViT-B/16. LR stands for Learning Rate and note that a expansion factor of 8 implies that the concept space
will have 8192 dimensions for ResNet-50 and 4096 for ViT-B/16.

Dataset LR L1 coeff. (λ2) Epochs Batch Size
CIFAR10 1e-3 1 200 512
CIFAR100 1e-2 1 200 512
Places365 1e-3 1 200 512
ImageNet 1e-3 1 200 512
Waterbirds-100 1e-1 10 200 512

Table 2: Hyperparameters used for the training of the linear probes. The values are the same for both
encoders (CLIP ResNet-50 and CLIP ViT-B/16). LR stands for Learning Rate.

3.4 Experimental setup

During this study, we conducted experiments to reproduce the claims presented in the DN-BCM paper. For
the core claims, the authors’ provided codebase was sufficient. However, for additional claims discussed in
Appendix 6.3–6.5, such as the user survey and concept intervention (claim 6) on the Waterbirds100 dataset,
we implemented supplementary scripts, which are available in our repository.

Beyond replication, we extended the authors’ claim 2 by conducting auxiliary experiments to better under-
stand the SAE’s learned concept space. These experiments include using other vocabularies, analyzing the
concreteness level of learned concepts, and investigating the impact of polysemantic words as concepts (see
Section 4.2.1). Further experiments were performed to penalize spurious correlations with a modified loss
(Section 3.1.4) and to develop an automatic concept intervention (Section 3.1.5).

All experiments were implemented using PyTorch (Paszke et al., 2019). We leveraged pre-trained feature
extractors from the official CLIP repository, specifically ResNet-50 and ViT-B/16 models. The extracted
features, after pooling, were used to discover concepts via a sparse autoencoder. We trained our sparse
autoencoders following the methodology described by (Bricken et al., 2023), using their publicly available
implementation9 (v1.3.0).

7Available in https://link.springer.com/article/10.3758/s13428-013-0403-5. Accessed 31/01/2025.
8Available in https://wordnet.princeton.edu/. Accessed 31/01/2025.
9https://github.com/ai-safety-foundation/sparse_autoencoder. Accessed 31/01/2025.
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For classification, we trained linear probes on the learned concept representations using the Adam opti-
mizer (Kingma & Ba, 2017), without a bias term. The classifier was optimized with a cross-entropy loss
function and an L1 sparsity constraint on the weights. We trained linear probes on all learned SAEs and
selected the models that achieved the highest top-1 validation accuracy for each dataset.

3.5 Computational Requirements

Our experiments were conducted on the Snellius supercomputer using NVIDIA A100 SXM4 80GB GPUs
(400W TDP) within an HGX A100 node architecture. Although each node includes four GPUs, our jobs
utilized only a single GPU per node. Across all phases of this reproduction study, including the extensions,
a total of 97 node hours were consumed.

To estimate the carbon footprint, we used the Machine Learning Impact calculator (Lacoste et al., 2019),
which takes into account hardware specifications, runtime, and the carbon intensity. Given a reported carbon
efficiency of 2.12 kgCO2eq/kWh for Snellius, the total emissions were initially estimated at 82.26 kgCO2eq.
However, since only one out of four GPUs was actively used per node, we scale this estimate by a factor of
0.25, resulting in a corrected carbon footprint of approximately 20.57 kgCO2eq.

4 Results

Our reproducibility study reveals that overall, all the claims mentioned by the authors are correct and
reproducible. In this section, we first highlight the results reproduced to support the main claims of the
authors, then we delve into additional results observed by studying more in depth the concept space.

4.1 Results reproducing original paper

4.1.1 Concept Discovery and Naming

We were able to reproduce the claims 3 and 4 of the authors regarding the quality of the extracted concepts
and their names, the automatically chosen names for the concepts very often reflected the common feature
in the concept images despite coming from very different datasets. Examples of our results can be seen in
the Appendix 6.3. Furthermore, as suggested by the authors, we used a wider vocabulary for improving the
concept naming, the results of this approach are shown in Section 4.2.1. To evaluate the quantitative aspect
of the concept consistency and naming accuracy, we reproduced the user study proposed by the authors,
and our trends reflected those shown by the authors (see Appendix 6.4 for details).

4.1.2 Clustering Concept Vectors

To further measure semantic consistency, we also reproduced the clustering evaluation performed by the
authors, in order to represent how well semantically related concepts cluster together in the latent concept
space. Our results aligned with the authors’ claim 5, showing that similar concepts, such as winter-related
terms, formed coherent clusters. The reproduced clusters maintained strong semantic consistency, demon-
strating that the concept-based representations effectively capture meaningful relationships. This reinforces
the validity of the learned latent space and its ability to organize interpretable concepts. For more details,
see Appendix 6.3.

4.1.3 Interpretability of DN-CBM

The classification performance of the authors’ DN-CBM models, trained on ImageNet, CIFAR-10, CIFAR-
100, and Places365, was accurately reproducible and their results often outperformed the baseline methods,
as shown in the article. A summary of the reproduction analysis using CLIP ResNet-50 and CLIP ViT-B/16
is shown in Table 3. The interpretability assessments, detailed in Appendix 6.3, showed that our reproduced
DN-CBM provided intuitive and class-relevant local and global explanations, aligning with prior findings.
Furthermore, our results confirmed that the reproduced models provided meaningful explanations despite
using a task-agnostic concept set, compared to the linear probe and zero-shot performance of the CLIP
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model. These results validate the robustness of DN-CBM in both accuracy and interpretability, supporting
the authors’ claim 1.

Model Task
Agnostic

CLIP ResNet-50 CLIP ViT-B/16

IMN Places CIF10 CIF100 IMN Places CIF10 CIF100

Linear Probe - 73.3* 53.4 88.7* 70.3* 80.2* 55.1 96.2* 83.1*
Zero Shot - 59.6* 38.7 75.6* 41.6* 68.6* 41.2 91.6* 68.7*

DN-CBM (Rao et al.) ✓ 72.9 53.5 87.6 67.5 79.5 55.1 96.0 82.1
DN-CBM (Reproduction) ✓ 72.7 53.1 86.7 69.1 79.6 54.9 96.0 82.4

Table 3: Performance of our CBM in comparison to the authors’ work. The classification accuracy (%) of
the CBM and baselines is achieved using CLIP ResNet-50 and ViT- B/16 feature extractors on ImageNet,
Places365, CIFAR10, and CIFAR100. ‘*’ indicates results reported for the respective baselines, zero-shot
performance is as reported by (Radford et al., 2021b) and for Places365 we reported the values reported by
the authors.

4.1.4 Concept Intervention on the Waterbirds100 Dataset

We were able to reproduce the concept intervention experiment as it was done in the original paper. The
results are presented in Table 4, where performance changes relative to the standard probe are indicated in
parentheses.

Table 4: Performance comparison across different intervention strategies. Relative changes for our results
are shown in parentheses.

Model Overall Worst Groups Training Groups
L.Bird@W W.Bird@L L.Bird@L W.Bird@W

Original Paper’s Results
Before Intervention 82.8 71.3 57.5 98.6 93.3
Only Bird Concepts 89.4 (+6.6) 86.6 (+15.3) 71.3 (+13.8) 96.8 (-1.8) 91.4 (-1.9)
No Bird Concepts 60.8 (-22.0) 28.5 (-42.8) 28.8 (-28.7) 95.0 (-3.6) 85.8 (-7.5)

Reproduced Results
Before Intervention 83.32 73.01 47.51 99.02 91.92
Bird-Only Probe 89.99 (+6.67) 91.44 (+18.43) 68.94 (+21.43) 97.12 (-1.9) 85.09 (-6.83)
No-Bird Probe 56.29 (-27.03) 15.90 (-57.11) 18.01 (-29.05) 98.22 (-0.8) 94.40 (+2.48)

The results indicate that removing non-bird-related concepts significantly improves performance on the hard-
est subgroups (W@L and L@W). The Bird-Only Probe outperforms the Standard Probe by a substantial
margin on these groups, demonstrating that forcing the model to rely only on bird-related concepts miti-
gates the reliance on background information. In contrast, the No-Bird Probe performs significantly worse,
particularly on W@L and L@W, confirming that bird-related concepts are essential for classification.

Notably, the Bird-Only Probe experiences a slight drop in performance on the training-aligned groups (W@W
and L@L), suggesting that some non-bird-related concepts may have contributed positively to classification
in these cases where the background is informative. We therefore accept claim 6 given the empirical results
we obtained.
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4.2 Results beyond original paper

4.2.1 Understanding the learned concept space using different vocabularies

We performed an analysis of the concept space, for which we introduce two vocabularies that have additional
statistics associated to each of the words: Concreteness ratings (Brysbaert et al., 2014) and WordNet (Fell-
baum, (1998, ed.)). The former vocabulary consists of 40,000 words with a measure of concreteness between
1 (abstract) and 5 (concrete). The latter is a well known lexical database consisting of 155,000 words from
which we extracted the average number of synsets (synonym sets) for every word. The motivation behind
the study is to better understand the learned concept space as well as addressing two claims made by the
authors regarding human-interpretability and polysemanticity of concepts. The results and data used for
this section is available for open access10.

On the concreteness level of the learned concepts

The authors argue that there is no assurance that the concepts learned by neurons correspond to human-
interpretable concepts. If such non-interpretable concepts occur too frequently, they could hinder the inter-
pretability of DN-CBMs. To examine this, we assess human interpretability of concepts on a scale ranging
from abstract to concrete based on their assigned names. In Figure 1 we can observe that even though the
vocabulary contains more abstract words, the learned concepts by the SAE are strongly distributed towards
the more concrete ratings. Moreover, given that there is little correlation between concreteness and concept
alignment (Figure 10 of Appendix 6.5) we can conclude that concepts learned by DN-CBMs will be mostly
human-interpretable, given the tendency of the SAE to learn concrete concepts. This finding highlights
the advantage of language-agnostic concept discovery over methods that predefine concept names, and em-
phasizes the need to take into account the discrepancy in abstraction levels between vision and language.
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Figure 1: Distribution of concreteness of words for the 40k words with concreteness ratings vocabulary, the
named concepts for both CLIP ResNet-50 and CLIP ViT/B-16. We can observe that despite abstract words
being more frequent in the vocabulary, concrete words are more frequent in the learned concept space.

On the effect of polysemanticity in classification

The authors highlight the capability of SAEs in addressing the issue of polysemanticity with claim 2, as
supported by (Bricken et al., 2023). However, it is possible that the linear probe overly depends on these con-
cepts, as they are activated for a broader range of inputs, which would ultimately undermine interpretability.
We employ WordNet to analyze the presence of polysemantic concepts learned by the SAE and the effect
these have in classification. In particular, we define a word as polysemantic if it belongs to more than one

10https://anonymous.4open.science/r/FACT-4635/FACT_Reproducibility_DNCBM.ipynb. Accessed 31/01/2025.
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synonym set and monosemantic if it belongs to only one. Under this definition, more than 21% of lemmas in
WordNet are polysemantic, whereas fewer than 13% of the named concepts learned using CLIP ResNet-50
are polysemantic, showing that the SAE prioritized monosemantic concepts.

In order to study the effect of polysemantic words in classification, we ablate polysemantic concepts and
evaluate the trained linear probes on the test split of the four probe datasets. Table 5 shows that removing
polysemantic neurons leads to only a minor decrease in accuracy, indicating their limited impact in overall
performance. We also include the weight that polysemantic concepts have in concept activations, as a
measure of how polysemantic the images in the dataset are. ImageNet is a less polysemantic dataset and
thus the effect of polysemantic concepts in classification is less. In contrast, Places365 appears to be more
polysemantic, leading to a greater drop in accuracy. We acknowledge that while CIFAR-100 aligns with this
trend, CIFAR-10 does not, but we assume that the resolution of the images in the CIFAR datasets is too
low to draw meaningful conclusions.

ImageNet Places365 CIFAR10 CIFAR100
% activation mass polysemantic 13.9 15.2 16.3 16.3
Accuracy before pruning 72.7* 53.1* 86.7* 69.1*
Accuracy after pruning 70.6 (-2.1) 49.5 (-3.6) 85.8 (-0.9) 65.1 (-4.0)

Table 5: Accuracies in classification of test split for CLIP ResNet-50 before and after pruning polysemantic
concepts. The percentage of the mass activation coming from polysemantic concepts is first shown as a
reference on how polysemantic the dataset is. This value is obtained by computing the mean activation of
all concepts and then the percentage coming only from polysemantic concepts. ‘*’ as reported by Table 3.

Lastly, we want to point out that even though polysemanticity doesn’t have a big impact on classification, it is
fundamental for the reconstruction process of the SAE. Given the sparsity condition, polysemantic words are
more versatile and can be used in a larger range of input images. We named the concepts every three epochs
during the training of the SAE and discovered that polysemanticity increases throughout training (Figure
11 of Appendix 6.5). This is likely due to CLIP embeddings of polysemantic words being concentrated in
more densely populated regions and at the beginning of the training most of the random concepts are best
aligned to monosemantic words.

4.2.2 Penalizing spurious correlations with a modified loss

Our final model achieved an accuracy of 88.75%, marking a relative improvement of +5.43% over our standard
linear classifier on the Waterbirds-100. Unlike concept intervention, which requires manual human oversight
to correct spurious correlations, our approach achieves this improvement in a fully automated manner. This
result highlights the effectiveness of our penalty loss function in reducing reliance on background cues and
guiding the model toward class-relevant features. With the scope of generalizing our results to a different
dataset, we also trained the linear probe on CIFAR10 on the modified loss. The accuracy dropped slightly
(87.95% and 86.59% for the original and modified loss, respectively; a decrease of -1.36%), but we noticed that
the top activated concepts were better after applying the modified loss. In order to highlight the improvement
of the concepts we conducted a user study, to better understand whether the potentially perceived increase
in interpretability of highly activated concepts justifies the drop in accuracy.

User study on CIFAR10 concept names’ interpretability

For each of the 10 classes of the CIFAR10 dataset, we analyzed the top 10 activated concepts, both before
and after applying the modified loss, and for each class we selected the first three concepts appearing uniquely
in the two concept lists (we ignored the concepts appearing in both lists). Each subject had to answer to
two questions for each of the ten classes: the first was asking whether they found the concepts originated
from the modified loss, over the other concepts, more related to the class name; the second question asked
to rate individually all the six concepts (3 from the modified loss, 3 from the original loss) as not related,
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somehow related or very related to the class name. In this way we were able to collect both qualitative and
consistent results, presented in Figure 2. The survey was published internally and it received 52 responses.

In Figure 2a we can observe that the new loss produces highly activated concepts that participants find at
least somewhat relevant, rather than completely unrelated, as happened most of the cases with the original
loss. The most highly activated concepts given by the new loss (Figure 2b), the new loss was chosen over
the original loss the majority of the time across different categories, indicating a strong overall preference for
the outputs produced by the modified approach. Together, these results imply that the new loss generates
concept relationships that users perceive as more appropriate or closer in meaning to the class label, hence
showing that the slight drop in accuracy can be justified by a perceived increase in the interpretability of
the linear probe.

(a) Frequency of the ratings in relatedness of the con-
cepts to their corresponding class, using the author’s
original loss (red) and the modified loss (blue).

(b) The proportion of times survey respondents
chose the concepts given by the new loss (blue)
over the original loss (red), for each class of the
CIFAR10 dataset.

Figure 2: Results of the user study to compare the interpretability of the concepts yielded with the original
and the newly proposed loss for the linear probe. The study was conducted using the CIFAR10 dataset.

4.2.3 Automated Concept Intervention

Each of the embedding models were tested with multiple threshold values. However, our findings indicate
that all automatic intervention methods underperform when compared to manual human intervention, which
provides a more accurate selection of relevant concepts (see Table 6). This suggests that while embedding-
based similarity metrics can serve as a useful heuristic, they may not fully capture the nuanced relationships
between concepts and class semantics in a way that matches human intuition. As observed in Table 7,
the selected concepts exhibit limited intuitive alignment with the class names and lack a clear semantic
association with bird-related concepts.

Table 6: Test accuracies with automatic concept intervention. The relative performances (marked with ‘*‘)
are compared to the base model without any concept intervention.

Model Test Accuracy
Sentence Transformer 78.56 (-4.76*)
GloVe 76.81 (-6.51*)
CLIP 83.98 (+0.68*)
BERT 68.97 (-19.35*)
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Table 7: Top-5 concepts for each class in the Waterbirds-100 using CLIP embeddings.

Class Concept 1 Concept 2 Concept 3 Concept 4 Concept 5
Landbird Training Oldham Squash Carlisle Nightlife
Waterbird Training Oldham Nightlife Ireland Leaf

5 Discussion

Our reproduction study supports the claims made in the original paper. 11. The core experimental results,
such as the observed performance as compared to other CBM methods align well with the original findings,
reinforcing the validity of the authors’ claims. Our study successfully reproduced key findings of DN-
CBM, validating its ability to extract meaningful concepts (Claim 3 and Claim 4) and maintain competitive
classification performance across multiple datasets, including ImageNet, Places365, CIFAR-10, and CIFAR-
100 (Claim 1). Additionally, our results confirm the claim that DN-CBM effectively clusters semantically
related concepts in the latent space (Claim 5), reinforcing its potential for interpretable machine learning.
Finally, our reproduction of the Intervention Analysis with the Waterbirds100 dataset further highlights
DN-CBM’s interpretability advantages (Claim 6).

Beyond replication, our extensions provide deeper insights into DN-CBM’s interpretability and robustness,
namely through the study of the effect of concreteness and polysemanticity in the learned concepts. We also
introduced a novel loss function that penalizes reliance on spurious background cues, improving classification
accuracy by encouraging the model to prioritize class-relevant concepts. This automated approach outper-
formed the standard linear probe and produced more interpretable results, demonstrating that DN-CBM’s
concept representations can be refined to mitigate biases. Additionally, our automatic concept intervention
method, which selects influential concepts based on their alignment with class names, provides an alternative
to manual interventions, though it remains less effective than human-guided selection.

Despite these advancements, DN-CBM is not without limitations. While concept discovery is task-agnostic,
the extend of interpretability of the concepts remains dependent on the vocabulary used for alignment, ne-
cessitating further exploration of alternative naming strategies. Additionally, while DN-CBM successfully
disentangles representations, certain abstract or existent polysemantic concepts may still lack clear human
interpretability. Moreover, automated concept naming can introduce bias: while WordNet provides a rela-
tively neutral vocabulary, models like CLIP may reflect societal or cultural biases present in their training
data. This should be taken into account when interpreting concept labels.

5.1 What was easy

The original paper contains extensive research on the presented method as well as the methodology followed
for the experiment. The provided code was functional and required minimal changes when used in GPU-
based architectures. The hyperparameters chosen for the training of the SAE were documented in the paper
and the weights obtained by the original authors were publicly available hence reproduction and comparing
results was easy.

5.2 What was difficult

Several challenges emerged during the reproduction process. Using the provided code in CPU-based archi-
tectures or with no CUDA availability was deemed impossible, after many tries in different computers. To
this regard, the code does not generalize to computing in CPU.

Additionally, while the majority of the experimental setup was clearly documented, the chosen hyperparam-
eters for training the linear probes on the different datasets were not properly stated in the article which
initially lead to confusion and waste of compute. However, we later found them in the code.

11Additional code implemented by us can be found at https://anonymous.4open.science/r/FACT-4635/README.md. Ac-
cessed 31/01/2025.
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6 Appendix

6.1 Model technicalities

6.1.1 Concept Discovery with Sparse Autoencoders.

The sparse autoencoder operates on feature representations derived from a pre-trained CLIP model, which
we dicussed in more detail in Section 3.1.2. The SAE consists of a linear encoder f : Rd → Rh, which projects
CLIP embeddings into a sparse concept space, and a decoder g : Rh → Rd, which reconstructs the original
embeddings. The encoder and decoder are parameterized as follows: the encoder uses a weight matrix
WE ∈ Rd×h and bias term bE ∈ Rh, while the decoder is characterized by a weight matrix WD ∈ Rh×d

without an additional bias term. A learned bias vector b ∈ Rd is subtracted before encoding and reintroduced
after decoding, leading to the following SAE formulation

SAE(x) = (bias−1 ◦ g ◦ ReLU ◦ f ◦ bias)(x) = WT
D ReLU(WT

E(x − b) + bE) + b. (1)

Since sparsity already constrains the effective dimensionality of the concept space, the hidden dimension
h is chosen such that h ≫ d. The expansion factor µ defines this relationship as h = µ · d, where µ is a
hyperparameter.

The training objective of the SAE balances an L2 reconstruction loss, preserving key information from the
CLIP embeddings, with an L1 sparsity penalty, ensuring concept selectivity

LSAE(x) = ∥SAE(x) − x∥2
2 + λ1 · ∥(ReLU ◦ f)(x)∥1. (2)

Here, x represents image embeddings from the dataset Dextract, obtained via the CLIP image encoder while
ignoring text annotations. The hyperparameter λ1 regulates the trade-off between reconstruction fidelity
and sparsity. By enforcing sparsity, DN-CBM mitigates polysemanticity, ensuring that discovered concepts
are more interpretable and less entangled.

6.1.2 Automated Concept Naming.

Following concept extraction, each neuron in the SAE’s hidden representation must be assigned a meaningful
label. This is accomplished by aligning discovered concepts with representations in the CLIP embedding
space.

To assign interpretable labels to the hidden neurons of the SAE, a predefined vocabulary V is used. Each
word v ∈ V is mapped to a CLIP embedding via the text encoder, forming a set of vocabulary embeddings
E = {T (v)}v∈V . The standard basis vectors C = {e1, . . . , eh} in Rh are then passed through the decoder g,
extracting the CLIP embedding of each neuron:

WT
Den. (3)

A name is assigned to each neuron by finding the vocabulary word whose CLIP embedding maximizes cosine
similarity with the corresponding neuron embedding:

sn = arg max
v∈V

[cos(WT
Den, T (v))]. (4)

The choice of vocabulary V is a key factor in obtaining meaningful names, as the granularity of the available
words directly impacts the interpretability of the assigned labels.

6.1.3 Concept Bottleneck Model for Classification.

After concept discovery and naming, the extracted sparse representations serve as the foundation for a
Concept Bottleneck Model (CBM). Given an input image, the SAE produces a sparse concept vector, which
is then used for classification.
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A linear probe h : Rh → Rc is introduced to map concept vectors to class logits. With I(·) as the CLIP
image encoder and f(·) as the SAE encoder, the full CBM model is defined as

t(x) = (h ◦ ReLU ◦ f ◦ I)(x). (5)

Training of the classifier is performed on a dataset Dextract, divided into c categories. The classification loss
consists of a cross-entropy term and an L1 penalty on the classifier weights to enhance interpretability

Lprobe(x, y) = CE(t(x), y) + λ2∥ω∥1. (6)

Here, λ2 is the sparsity coefficient, and ω represents the weights of the linear probe. The image encoder I(·)
and the SAE encoder f(·) remain frozen during training, ensuring that only the classifier is optimized.

The embeddings from both RN50 and ViT-B/16 reside in the same CLIP space, facilitating direct alignment
between image and text embeddings for downstream classification tasks.

6.2 Penalizing spurious correlations with modified loss

Our training objective combines three components: a standard classification loss (to learn discriminative
features), a sparsity loss (to encourage sparse usage of concepts), and our key penalty loss (to intervene on
concept usage and combat spurious correlations). Formally, for each batch of training samples (x, y), the
total loss is:

Ltotal(w) = Lclass(w, x, y) + λsparLspar(w) + λpenaltyLpenalty(w, y), (7)
where Lclass is a cross-entropy term ensuring correct classification of input x, λspar is a weight for the L1
regularization on weights w, and Lpenalty enforces higher weights for concepts more similar to the target
class name, while suppressing weights for concepts with lower similarity.

6.2.1 Penalty Loss Computation

The penalty loss is designed to encourage the model to assign higher weights to concepts that are semantically
aligned with the target class while suppressing weights assigned to irrelevant concepts. This is achieved by
incorporating three key components: (i) penalizing large weights on concepts with low similarity to the target
class, (ii) encouraging alignment between the learned weight distribution and the similarity distribution, and
(iii) enforcing non-negative weights for relevant concepts.

Mathematical Formulation. Given a linear model with weight matrix W ∈ RC×D, where C is the
number of classes and D is the number of concepts, the penalty loss is computed per batch of training
samples. For each batch, we define:

• R ∈ {0, 1}C×D: a binary mask indicating relevant concepts for each class,

• S ∈ [0, 1]C×D: a similarity matrix quantifying how strongly each concept aligns with the correspond-
ing class,

• Wy ∈ RD: the row of the weight matrix corresponding to the ground-truth class y.

The penalty loss is then computed using three main terms:

(1) Low-Similarity Penalty. To discourage reliance on concepts that are weakly related to the class, we
apply a penalty proportional to the absolute weight values of such concepts. This term is given by:

Llow-sim =
D∑

i=1
|(Wy)i| · Ry,i · (1 − Sy,i). (8)

Concepts with high similarity (Sy,i ≈ 1) contribute little to this penalty, while those with low similarity
(Sy,i ≈ 0) are strongly penalized.
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(2) Cosine Similarity Loss. To further enforce alignment between the learned weight distribution and
the similarity scores, we encourage the cosine similarity between Wy and Sy:

Lcosine = − Wy · Sy

∥Wy∥2∥Sy∥2
. (9)

Since cosine similarity ranges from [−1, 1], minimizing the negative term ensures that Wy and Sy are closely
aligned in direction. This term aims to make the weights vector for each class to be in the same direction
(proportionally similar) to the similarity vector between class names and concepts.

(3) Positivity Constraint. Since relevant concepts should have positive contributions, we introduce a
penalty for negative weights assigned to relevant concepts:

Lpositivity =
D∑

i=1
max(0, −(Wy)i) · Ry,i. (10)

This ensures that relevant concepts (as determined by R) are not assigned negative weights, which would
contradict their expected contribution.

6.3 Additional Qualitative results

In the paper from Rao et al. they provided additional qualitative results. Our study aims to validate the
claims of DN-CBM through rigorous qualitative and quantitative evaluation. We investigate task-agnostic
concept discovery by identifying shared and dataset-specific concepts across CIFAR-10, CIFAR-100, Ima-
geNet, and Places365, assessing how well DN-CBM captures semantically meaningful features in a task-
agnostic setting. We analyze semantic consistency through meta-clustering, revealing how images are orga-
nized into coherent high-level structures based on concept activations. To further evaluate interpretability,
we generate local and global explanations, highlighting the most influential concepts at both the individ-
ual and class levels. Examples of task agnosticity will be shown in section A1, meta-clusters in A2, local
explanations in A3 and global explanations in A4.

A1 Task-Agnostic Concept Discovery

This section examines how interpretable concepts emerge across multiple datasets in a task-agnostic manner.
Rather than restricting the analysis to a single dataset, the goal is to identify concepts that generalize across
CIFAR-10, CIFAR-100, ImageNet, and Places365, while also recognizing dataset-specific variations.

To achieve this, the most influential concepts are extracted and ranked using CLIP-derived embeddings. The
top-K representative images for each concept are selected based on their activation strengths, allowing for a
qualitative assessment of how these concepts manifest across different domains.

Figures 3 and 4 illustrate the task-agnostic nature of the discovered concepts by visualizing both high-
level and low-level concepts alongside their most activating images. High-level concepts, such as Namibia,
Firefighter, and Alcoholic, encapsulate complex semantic themes that persist across datasets, demonstrating
their robustness despite visual variability.

In contrast, low-level concepts, such as Plaid, Turquoise, and Stripes, correspond to fundamental visual
attributes, including textures, colors, and structural patterns. These concepts appear consistently across
datasets, highlighting how the model organizes lower-level information independently of object identity.

A2 Meta-Clusters

For this part we grouped images based on shared concept activations, revealing high-level thematic structures
beyond individual class labels. By applying K-Means clustering to concept representations, we identified
common patterns across images, regardless of their ground truth categories.

For instance, in Figure 5, we observe three distinct meta-clusters: A horse-riding cluster, characterized by
concepts such as equestrian, horseback, and jumps. A baseball cluster, where images share concepts like
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Figure 3: Visualization of high-level concepts such as "Namibia," "Firefighter," "Borrow," and "Alcoholic"
across CIFAR-10, CIFAR-100, Places365, and ImageNet.
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Figure 4: Visualization of low-level concepts such as "Plaid," "Turquoise," "Burgundy," and "Stripes" across
CIFAR-10, CIFAR-100, Places365, and ImageNet.

batting, pitching, and sophomore. A snow-themed cluster, dominated by concepts such as snowboarding,
snowy, and buried.

These clusters highlight how the model organizes knowledge, grouping semantically similar images even
when they belong to different classes. This provides insight into coherent representations as well as potential
spurious correlations, resulting from overreliance on background context rather than object-specific features.
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Figure 5: Examples of classes from the Places365 dataset with the top contributing concepts.

A3 Local Explanations

In this section, we present examples of local explanations generated by the reproduced DN-CBM on the
Places365 and ImageNet datasets, using CLIP ResNet-50. For a given image, we extract its concept ac-
tivations. These activations are then multiplied by the classifier weights to determine the contribution of
each concept to the predicted class. The concept contributions are ranked, and we extract the top-K most
influential concepts for each image. Each image is presented alongside its predicted class, ground truth label,
and a bar chart displaying the top contributing concepts with their corresponding strengths. In Figure 6a
the model correctly identified the overskirt by associating it with related fashion concepts such as gowns
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skirt, and dress. This suggests that the model successfully captures semantic relationships between concepts,
allowing it to leverage contextual cues to enhance classification accuracy.

On the other hand the model misclassified a shed as a ski resort. This error is likely due to the presence of
contextual elements such as snow and other winter-related cues (e.g., sauna, Andorra, Alps). This suggests
that the model sometimes relies too much on scene context rather than the object’s intrinsic properties,
leading to systematic misclassifications in certain environments — an example of a spurious correlation.

Overall, the explanations effectively capture the key characteristics of the input images, exhibit significant
diversity, and provide insights into the model’s misclassified decisions.

Pred: Overskirt, GT: Overskirt Most Strongly Contributing Concepts

gowns +1.42

skirt +1.26

victorian +0.98

blanket +0.95

dress +0.94

(a) ImageNet

Pred: Ski resort, GT: Shed Most Strongly Contributing Concepts

snowy +3.89

sauna +0.78

andorra+0.71

villages+0.40

alps+0.37

(b) Places365

Figure 6: Explaining decisions using CBM

A4 Global Explanations

In this section, we analyze global explanations by identifying and visualizing the most influential concepts
associated with each class in the Places365 and ImageNet datasets. Unlike local explanations, which focus
on individual image-level interpretations, global explanations provide an overview of class-level concept
associations, helping us understand the broader patterns that the model relies on when making predictions.

To generate these global explanations, we extract concept activations across all images belonging to a specific
class and compute the average contribution of each concept. The most influential concepts for each class are
ranked and presented alongside representative images from the dataset.

For example, in Figure 8, the model identifies a shopping mall indoor scene, with the most relevant concepts
including conventions, theaters, shopping, and malls. This suggests that the model strongly associates
shopping malls with large public spaces, events, and commercial environments. Similarly, for the shoe shop
class, the top concepts include shelves, collection, heels, and footwear, indicating that the model recognizes
key visual elements related to shoes.

However, in some cases, the model’s concept associations show spurious correlations. For instance, looking
at the grasshopper in Figure 7, the model has caterpillar, parrot, frog, and insects as top concepts. While
these concepts are related to nature and small creatures, the presence of parrot and frog suggests that the
model may be picking up on broad ecological similarities rather than fine-grained insect characteristics.

6.4 User study

In this section, we describe the details of the user study we conducted in order to quantitatively measure the
consistency and accuracy of our discovered and named concepts. Our goal was to see if the trends reported
by the authors were reproducible on a different set of users.

Node Selection. Following the paper, we sorted the SAE nodes for the CLIP ResNet-50 model, based on
the cosine similarity with the text embedding vector of the name assigned to them. We then uniformly at
random sample nodes from three bins where the alignment is the highest, intermediate, and lowest. From
the concept space including 8129 nodes, the high bin included the top 2000 nodes, the low bin included the
2000 less aligned nodes and the intermediate contained the remaining 4192. From each bin we randomly
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Figure 7: Global explanations from ImageNet dataset
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Figure 8: Global explanations from Places365 dataset

sampled 10 concepts, and then chose 5 that are commonly used in everyday language. The 20K Vocabulary
includes multiple words that are not as common in colloquial English (for example the word "bespectacled"
appeared in the top 12 most aligned concepts), therefore sampling only randomly would have most likely
caused the introduction of unfamiliar words for some users and a biased response in the survey. This manual
check was not mentioned in the authors’ analysis but in order to have an accurate representation of the
users’ opinions, we decided to add it.

Question Structure. For each node, we extracted the top four activating images from three diverse
datasets – ImageNet, Places365, and CIFAR100 – and create a grid of twelve images. For each set of images
we also provided the word that corresponded to the name assigned to the node. We asked the same questions
that were proposed by the authors: (1) Does the set of images correspond to a human-understandable concept?
(2) Does the word provided with the set of images accurately describe the common concept across the images?.
For each question, the participants can answer on a 5-point scale, rating their agreement from “Strongly
Disagree” to “Strongly Agree”.

Survey Response. We randomly ordered the 15 nodes in the survey and we decided to repeat one to
check how stable and coherent would this human quantitative analysis be. Before starting, we provided the
participants with two examples, as the authors did, to help them familiarize with the task. We published the
survey internally, and received 26 responses. The trends that we obtained are in line with the ones obtained
by the authors, as it is shown in Figure 9. Furthermore, by analyzing the responses from the duplicated
concept set inserted in the survey, we can observe that 3 users out of 26 lowered their score for the concept
consistency and two of them increased it, when encountering the same concept a second time. Regarding the
name accuracy, during the second interaction with the same concept, 4 users increased their score, while 3
of them lowered it. As we can notice, the user responses are not always coherent, but the changes in scoring
compensate each other, so overall the average results coming from the two identical nodes are very similar.
In this way we proved that the the user survey approach lead to consistent results, even if the singular
responses of the participants are not always coherent.
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Figure 9: User study on concept accuracy. Left: The trend of semantic consistency follows the distri-
bution of the three sets of alignment with the text embeddings of the concept names. Right: We plot the
scores for semantic consistency against name accuracy from human evaluators. Our results are comparable
to the ones obtained by the authors.

6.5 Understanding the concept space

In this section we provide further comments on our study regarding concreteness and polysemanticity in the
learned concept space. In Figure 10 we present the correlation scores and plots between concreteness and
concept alignment, and conclude that for CLIP ViT/B-16 there is no apparent correlation between these two
quantities while for CLIP ResNet-50 there is a positive correlation in the direction of concrete concepts being
more aligned. This finding is here presented to support the fact that the increase on human understandability
that arises from learning more concrete concepts is not counteracted by a great misalignment in the concepts.
In fact, it is further increased for CLIP ResNet-50 given the slight positive correlation.

Moreover, in Figure 11 we see that the average Synset count (word meanings) in WordNet, which is a direct
measure of polysemanticity, generally increases during training. This shows that even though polysemanticity
is not fundamental for the downstream task it is indeed necessary for the reconstruction objective of the
SAE.

6.6 Concept Intervention

In this section we report some additional results concerning the intervention analysis on the Waterbirds100
dataset, measuring the impact of retaining or removing key concepts on classification accuracy.

To systematically analyze the role of concept selection, we create three versions of the linear probe:

• Standard Probe: No intervention, uses all concepts for inference.

• Bird-Only Probe: Only bird-related concepts out of the top 10 are retained, with non-bird con-
cepts removed.

• No-Bird Probe: Bird-related concepts are removed, retaining only non-bird concepts in the top
10.

The concepts that were zeroed out for each probe variant are shown in Table 9.
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Figure 10: Relation between concreteness rating (ranging from abstract to concrete) and concept alignment
for two CLIP models: CLIP ResNet-50 (blue) and CLIP ViT/B-16 (orange). The correlation coefficient (r)
indicates a weak positive correlation (r=0.18) for CLIP ResNet-50, while CLIP ViT/B-16 exhibits almost no
correlation (r=-0.03). However, note that there is a high imabalance in the number of points in the concrete
spectrum as compared to the abstract spectrum.
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Figure 11: Evolution of polysemanticity throughout training of the SAE for CLIP ResNet-50. In the x-axis
we have the number of epochs, ranging from 3 to 200 and with measures every three epochs. In the y-axis we
have the average synset of the words that were assigned to the particular concept space of that give epoch.
We see that in general terms, it increases with the number of epochs.
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Table 8: Top 10 concepts identified by the linear probe for each class.

Landbird Waterbird
Concept Weight Concept Weight
Rainforest 15.2224 Ducks 9.6791
Magnolia 4.1347 Thames 6.1616
Parrot 4.0557 Beach 4.9798
Grass 2.8577 Seals 3.0335
Sparrow 2.5934 Canoeing 2.9707
Owl 2.4753 Flying 0.8073
Clic 0.2446 Yacht 0.2091
Social 0.2023 Casper 0.0969
Bild 0.1307 Anguilla 0.0833
Eagle 0.1129 Gazette 0.0656

Table 9: Concepts zeroed out for each intervention type.

Probe Variant Zeroed Concepts
Bird-Only Rainforest, Magnolia, Grass, Clic, Social, Bild, Thames, Beach,

Seals, Canoeing, Flying, Yacht, Casper, Anguilla, Gazette
No-Bird Parrot, Sparrow, Owl, Eagle, Ducks
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