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Abstract

Probabilistic circuits (PCs) are tractable probabilis-
tic models, enabling exact and efficient compu-
tation of many queries. When modeling images
with PCs, one key step in the learning pipeline is
decorrelation. Since RGB channels in pixels are
highly correlated in natural images, learning is in-
stead performed on a transformed pixel space with
much lower channel-wise correlation, making the
learning task easier. However, the transformations
are not bijective; there are values in the modeled
space not realizable as images in the original space.
In particular, probability mass is ‘leaked’ to such
invalid values during learning on the transformed
space. Moreover, the resulting model does not en-
able tractable inference on the original space. We
propose to use bitblasting — representing a distri-
bution over complex objects as a distribution over
bits — to address these problems. We show that the
relationship between the original and transformed
spaces can be encoded exactly and succinctly in the
structure of the PC, removing the leakage problem,
improving modeling performance, and providing
a tractable model over the original space. Prelimi-
nary empirical results support our approach.

1 INTRODUCTION

Probabilistic circuits (PCs) are deep generative models
whose structure enables efficient, exact probabilistic infer-
ence [Choi et al., [2020| |[Darwichel 2021]], enabling applica-
tions like controllable generation and model alignment [Liu
et al.,[2024b, |[Zhang et al.}2024] [Yidou-Weng et al., [2025]].
Much research on the architecture and implementation of
PCs has scaled them to increasingly complex distributions
like natural language and images [Liu et al.,[2024a, |Zhang
et al., [2025b,[Wang and Van den Broeck, |[2025].

When PCs are used to model images, one important tech-
nique is decorrelation. The RGB channels in natural images
are highly correlated, but there exist simple hand-crafted
linear transforms that can almost entirely remove the corre-
lation between channels. It has been observed empirically
that it is easier to learn PCs on the decorrelated space, and
this technique is standard practice in the literature [Liu et al.,
2023alb, |Gala et al., [2024] [Liu et al.| 2024a]]. However, this
approach has two major drawbacks. First, the pixel channels
in images only take values up to some bitdepth (i.e. 8 bits for
each channel), but more bits are needed in each channel to
capture the full range of the transformation. Consequently,
some values in the transformed space are not realized by ac-
tual RGB images, and probability mass is inevitably ‘leaked’
to these values. Second, the resulting models from learn-
ing on the decorrelated color space only model that space
tractably and not the original RGB space.

We propose to address these concerns by representing a
distribution over images as a distribution over the bits in the
binary expansion of each channel value. Reducing proba-
bilistic models of complex objects to distributions over bits
has proven useful in other probabilistic inference contexts
and is known as bitblasting |Garg et al.| [2024] |Cao et al.|
2023} Sladek et al., 2025]]. We show that in such a represen-
tation, a linear transformation and the constraint introduced
by it can be efficiently encoded exactly in the PC, ensuring
that no mass is leaked. Moreover, it enables us to obtain
a tractable model in the original RGB space without sacri-
ficing accuracy. Empirically, we observe that constraining
the decorrelated space leads to a significant improvement
in likelihood for PCs modeling ImageNet patches. Addi-
tionally, by incorporating the constraint directly into the PC
structure, we are able to optimize the PC parameters further
in the constrained function space.

We provide background on PCs and image data decorre-
lation in section [2]and describe the problem of leakage in
section (3| We present our approach based on bitblasting in
section[d] describe our experiments and results in section 3]
and conclude in section[6]
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Bits BPD Pairwise correlations
RGB (8,8,8) 7.01 0.92,0.81,0.92
YCoCg-L (10,9, 10) 6.86 0.00027,0.19, —0.00049
YCoCg-R (8,9,9) 6.80 —0.00027,0.019, —0.00051
YCoCg-mod (8,8, 8) 6.83 0.15,0.11, 0.068

Table 1: Common color transforms with (i) the number of
bits needed to be lossless; (ii) test bits-per-dimension for a
PC trained on single pixels from CIFAR-10 (lower is better)
(iii) pairwise correlations among channels (lower is better).

2 BACKGROUND

Probabilistic circuits. Probabilistic circuits [[Choi et al.,
2020] are a general class of tractable probabilistic models
that express high-dimensional distributions as computation
graphs.

Definition 1 (Probabilistic Circuit). A probabilistic circuit
(PC) of = (G,0) represents a joint probability distribu-
tion over random variables X through a rooted directed
acyclic (computation) graph (DAG), consisting of sum (D),
product (®), and leaf nodes (L), parameterized by 0. Each
node t represents a probability distribution pi(X), defined
recursively by:

fi()
HcEch(t) p((m)
D cean(t) Otepe(®) if tis a sum node

ift is a leaf node

pi(x) = if t is a product node

where fi(x) is a univariate input distribution function (e.g.
Gaussian, Categorical), we use ch(t) to denote the set of
children of a node t, and 9, . is the non-negative weight
associated with the edge (t,c) in the DAG. We define the
scope of a node t to be the variables it depends on. The func-
tion represented by a PC, denoted po (), is the function
represented by its root node; and the size of a PC, denoted
|27 |, is the number of edges in its graph.

The key feature of PCs is their tractability, i.e., the ability to
answer queries about the distributions they represent exactly
and in polynomial time. For example, the commonly as-
sumed properties of smoothness and decomposability ensure
that a PC computes a multilinear polynomial in the input
distributions, a sufficient condition for efficient answering
of marginal and conditional inference queries [Broadrick
et al., 2024} [2025]].

Color Transforms. Pixels in digital images are typically
represented using three color channels — red, green, and
blue — for reasons ultimately relating to human physiology.
However, in a number of digital settings, it is useful to repre-
sent pixels in other, transformed color spaces. For example,
the YCoCg family of color spaces separate a luminance
(Y) from two chroma channels. In natural images, RGB

color channels are highly correlated; whereas YCoCg color
spaces statistically decorrelate the three channels. Moreover,
the transformation from RGB space to a YCoCg space is
a simple, linear map. These properties, in particular decor-
relation, are exploited in various settings, for example in
data compression [[Goyal}, 2002, |Agawane, 2008, |[Prativadib{
hayankaram et al.,|2024]. In the literature on PCs, it has been
observed that application of such decorrelating color trans-
forms significantly boosts image modeling performance (as
measured by log-likelihood) compared to directly modeling
on RGB datasets [Liu et al., 2023alb| |Gala et al., 2024]).

3 PROBLEMS WITH DECORRELATING
COLOR CHANNELS IN IMAGES

For RGB pixels with bitdepth 8 for each channel, Table
lists several commonly used transforms. However, when
applying a linear transform with inputs of fixed bitdepth,
extra bits are required for these transforms to be injective
(and thus lossless). For example, the well known YCoCg
(YCoCg-L in Table[I) transform is simple and exhibits ex-
cellent channel decorrelation [Malvar and Sullivan, [2003b]].
Indeed, it was found by taking the linear transformation
with maximum decorrelation on a dataset of natural images
and rounding its entries [Malvar et al.,[2008]]. The YCoCg
transform is given as follows:

Y 1/4 1/2 1/4\ (R
(Co): ( 12 0 —1/2) (G) (1)
Cg ~1/4 1/2 -1/4) \B

Given integers R, G, B in the range [0, 255], Y takes values
in the range [0, 255] at an interval of 0.25, i.e., Y can take
1024 different values, requiring 10 bits to be represented
losslessly. In total, this encoding requires 5 additional bits
increasing the size of the modeled space by 32x. As a
result, not all values in the resulting YCoCg space can be
mapped back to RGB values. For example, mapping back
(Y, Co, Cgq) = (0.25,—0.5,0.25) results in (R,G,B) =
(—0.5,0.5,0.5) which are not integers and hence, not valid
values for RGB channels.

YCoCg requires fixed-point arithmetic to be represented
losslessly which is not ideal. To avoid this, the YCoCg-R
transform is often used that computes a close approxima-
tion to the YCoCg transform. It is a reversible transform
under integer operations [Malvar and Sullivan| 2003al] and
also exhibits excellent decorrelation (see appendix |B| for
details). However, it still requires 2 additional bits to be
injective. Finally, the YCoCg-mod transform [Strutz and
Leipnitz, |[2015]] uses modular arithmetic to avoid the need
for additional bits, but has worse decorrelation.

In summary, each known transform either requires extra
bits for a lossless representation (and so a learned model on
the transformed space leaks probability mass), or does not
decorrelate the channels as effectively.
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Figure 1: Illustration of color transform constraints and PC components.

4 BITBLASTING TO LEVERAGE
DECORRELATION

As shown in the previous section, modeling images in the
decorrelated space leaks probability mass to values that can-
not be realized in the original RGB space. Therefore we
would like to constrain our model of the transformed space
so that such ‘invalid’ values are always assigned zero mass.
Doing so by enumerating all 224 possible values is infeasi-
ble, and so we seek a compact encoding of the constraint
that preserves tractability of the model.

4.1 REPRESENTING LINEAR TRANSFORMS
USING BINARY REPRESENTATION

In the current state-of-the-art PCs that model images, each
channel is represented using leaves with a categorical dis-
tribution. Our key insight is that if each channel is instead
modeled at the level of its binary representation, imposing
the constraints arising from the linear transformation be-
comes tractable. Specifically, the constraint arising from a
linear transformation can be encoded with a small Ordered
Binary Decision Diagram (OBDD) [Wegener, 2000] (which
can be efficiently transformed to a deterministic, structured
decomposable PC [Amarilli et al.| [2024]).

To illustrate the approach, consider the case of adding two
channels:
D=R+(G

Let R be represented using bits [Ry, Ra, . . ., Rg] and simi-
larly for G and D. Then, to represent the above linear trans-
form, we need a circuit that encodes the constraint that for
any index i, the i-th bit of the output channel D equals the
i-th bit of the sum of R and G. Following the grade school
algorithm for addition, let ¢; be the incoming carry bit for
adding the ¢-th bit of R and G. Then, the following holds:

D < ¢, ®R; dG;
Cit1 < (RL N Gl) \Y (Ci N (RZ ©® Gl))

Notice that, given the incoming carry ¢;, the constraint for
the i-th bit is independent of all bits with index less than <.

Include RGB Exclude RGB
YCoCg-L 909 474
YCoCg-R 1905 799

Table 2: OBDD sizes for validity constraints YCoCg
<> RGB for different color transforms; columns indicate
whether the RGB variables are marginalized out or not.

This means that the OBDD for the addition of two channels,
with the variable order where bits are interleave(ﬂ scales
linearly in the number of bits. Figure[Td|shows the OBDD
component for the i-th bit of the constraint.

Similar to how bitblasting leads to a compact adder, bitblast-
ing the color channels in the original and transformed space
leads to an OBDD that succinctly represents the constraint
arising from linear transformation for both YCoCg-L and
YCoCg-R. Table [2 shows the resulting OBDD sizes for
YCoCg-L and YCoCg-R.

4.2 INCORPORATING CONSTRAINTS IN PC
TRAINING

Given an OBDD representing the constraint, we construct
pixel-level probabilistic circuits “Zgonsyraine Satisfying the va-
lidity constraint. Specifically, OBDDs can be rewritten as
deterministic, decomposable PCs with right-linear structures
[[Amarilli et al.,|2024]. Each node in the OBDD corresponds
to the circuit structure shown in Figure[Ic] By associating
learnable weights to the sum node edges, one can parameter-
ize a probability distribution over only valid color YCoCg
channel values. Furthermore, by including the R, G, B vari-
ables, we retain a tractable model over those color channels
as well. To incorporate this into a tractable image-level PC,
nodes modeling a pixel can be replaced by % onstraint-

Parameter Initialization In preliminary experiments of
learning constrained image-level PCs using the EM algo-
rithm [Dempster et al., 1977, [Peharz et al.| 2016], we found

"Following the order R1,G1, R2, G, ..., Rn, Gn.



Categorical

Binary (no constraint)

Binary (constraint)

Train Test #Par Train Test #Par Train Test #Par
RGB 6.90 7.01 7690 7.15 7.24 250 - - -
YCoCg-L 6.69 6.86 25610 7.08 7.20 300 6.66 6.81 11050
YCoCg-R 6.64 680 12810 6.72 6.86 270  6.67 6.83 17910
YCoCg-mod 6.67 683 7690 6.70 6.85 250 - - -

Table 3: Modeling CIFAR pixels (1x1 patch) in different color transforms using different representations of the channels.

Categorical Binary (no constraint) Binary (constraint)
Train Test #Par Train Test #Par Train Test #Par
RGB 577 576 46,139,392 574 574 26,216,448 - - -
YCoCg-L 592 589 42993,664 594 592 27,265,024 - - -
YCoCg-R 5.61 560 45,090,816 559 558 28,313,600 5.55 5.52 58,688,512
YCoCg-mod 5.58 557 46,139,392 555 555 27,265,024 - - -

Table 4: Image modeling results on 4 x 4 ImageNet32 patches; results given in bpd (bits-per-dimension, lower is better).

that random initialization of weights led to worse perfor-
mance than the corresponding unconstrained PC, indicating
a failure of the learning algorithm to find the optimal param-
eters. Therefore, we instead initialize the constrained PC
using the parameters of a trained unconstrained PC. Specifi-
cally, we first learn an unconstrained PC where each channel
of every pixel is represented in binary and each bit has a
Bernoulli distribution. Figure [Tb] shows the structure for
each pixel in the resulting PC. Note that this reduces the
number of parameters per channel compared to a Categori-
cal leaf (from 255 to 8), though we show in Section 5] that
the performance of the resulting PC remains competitive.
We then transfer the parameters from the learned uncon-
strained PC to the constrained PC. For each input Bernoulli
distribution, we take its learned parameter and use it to ini-
tialize the weights of the corresponding sum node in the
constrained PC as shown in Figure This is equivalent
to multiplying the circuit shown in Figure[Tb| with the con-
straint, which can be done tractably due to the structure of
these circuits [Shen et al., 2016, |Vergari et al., 2021} 'Wang
et al.; 2024, Zhang et al., 2025a]]. This zeros out the invalid
values while maintaining the likelihood of the valid ones.
Finally, we normalize the constrained PC to complete the
process of initializing its parameters. This immediately pro-
vides an increase in likelihood compared to p.s simply by
redistributing the leaked probability mass. We can further
improve the performance by continuing the learning process
for the constrained PC from this initialization.

5 EXPERIMENTS

We implemented our approach and performed preliminary
experiments on the CIFAR-10 [Krizhevsky et al., [2009]
and ImageNet32 [Deng et al.,|2009] datasets. Our primary
research question is to examine the extent to which con-
straining the input decorrelated space to realizable values

helps the performance of PCs in modeling images.

Table 3 reports results of our experiments of modeling the
distribution of single pixels in the CIFAR dataset. The pixel
distributions were modeled using 10-component mixture of
distributions on the input channels. In these experiments, the
constrained circuit was learned using random initialization.
As expected, the test bits-per-dimension (BPD) deteriorates
when we replace categorical distributions with binary repre-
sentation since there are fewer parameters, but it improves
significantly once we apply the constraint. In the case of
YCoCg-L transform, the constrained circuit even outper-
formed its counterpart with categorical leaf distributions as
there is no leakage to invalid values.

Table [ reports results of our experiments of modeling the
distribution of 4 x 4 image patches from the ImageNet32
dataset. For these experiments we learned a Hidden Chow-
Liu Tree (HCLT) [Liu and Van den Broeckl, 2021]] structure
over image pixels for the PC, and pixel-level distributions
are 1024-component mixture of fully-factorized distribu-
tions on the input channel bits. Surprisingly, in these ex-
periments, test BPD improves when categorical leaves are
replaced by Bernoulli distributions. Then, using our ini-
tialization technique, the test BPD improves further in the
constrained YCoCg-R PC.

6 CONCLUSION

In summary, we identify how learning PCs on decorrelated
image spaces leaks probability mass to unrealizable values
and fails to provide a tractable model on the original space.
We use a binary representation of the color channels to en-
code the transformations, improving modeling performance
and providing a tractable model on the original space.
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A SMOOTHNESS AND DECOMPOSABILITY

Definition 2 (Smoothness and Decomposability). A sum node is smooth if all of its children have the same scope. A product
node is decomposable if its children have disjoint scope.

A PC is smooth if all of its sum nodes are smooth.

A PC is decomposable if all of its product nodes are decomposable.

B COLOR TRANSFORM DETAILS

We provide additional details of the three color transforms described in the paper below. Once we obtain the transformed
channels, they are converted to binary using the standard convention.

YCoCg-L . Given integers R, G, B in the range [0, 255], the YCoCg-L transform [Malvar and Sullivan, [2003b] produces
values Y, Co, Cg as follows:

R G B
Y=qte Tt
R B

Co=5-3
-R G -B
Cg 4 +5+T

Note that the above computations results in Y taking values in the interval [0, 255.75] at the granularity of 0.25 thus requiring
10 bits for lossless representation. Co takes values in the interval [—127.5,127.5] at the granularity of 0.5 requiring 9 bits.
And finally, Cy takes values in the interval [—127.5,127.5] at the granularity of 0.25 requiring 10 bits. Thus, YCoCg-L
needs 5 additional bits over RGB.

To avoid Co and Cy taking negative values, they are modeled in a probabilistic circuit only after they are right shifted by
adding appropriate values. In particular,

Co = Co+127.5
Cg= Cg+127.5

YCoCg-R . Given integers R, G, B in the range [0, 255], the YCoCg-R transform [Malvar and Sullivan, 2003b] produces

Accepted for the 8" Workshop on Tractable Probabilistic Modeling at UAI (TPM 2025).


mailto:<poorvagarg@cs.ucla.edu>?Subject=Your UAI 2025 paper

values Y, Co, Cy, as follows in integer arithmetic:

Co=R-B
tmp = B+ | Co/2|
Cg=G—tmp

Y =tmp + | Cg/2]

where Y takes integer values in [0,255] and Co and Cg takes integer values in [—255, 255]. This transform is exactly
invertible (lossless) using only integer arithmetic. Again, note that Co and Cg now require one additional bit in their
representation and thus the whole transform need 2 additional bits over RGB.

To avoid Co and Cy taking negative values, they are right shifted by appropriate values as was done in the case of YCoCg-L
transform.

Co = Co + 255
Cg = Cg + 255

YCoCg-mod . Given integers R, G, B in the range [0, 255], the YCoCg-mod transform produces integer values of Y, Co, Cy
in the range [0, 255] as described by the following code description.

def rgb2yccm(R, G, B):
def forward_ lift(x, vy):
diff = (y - x) % 256
average = (x + (diff >> 1)) % 256
return average, diff

o\

tmp, Co = forward_lift (R, B)
Y, Cg = forward_lift (G, tmp)

return Y, Co, Cg

Note that YCoCg-mod transform does not require any additional bits over RGB.
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