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Abstract

Protein structure generation finds important applications in drug and antibody de-
sign. Diffusion models have quickly become one of the most prominent approaches
for generative tasks. The diffusion process can be seen as applying the gradient of
the log-probability density functions to a time-varying sequence. With this inter-
pretation, it becomes possible to control the diffusion process by manipulating the
density function. This idea has motivated the introduction of both classifier-based
and classifier-free guidance methods. The score-based interpretation of diffusion
models has been used to define alternative methods of conditioning, modifying, and
reusing these models for tasks that involve compositional generation and guidance.
For protein or drug structure prediction, SE(3)-equivariant message passing has
been the predominant approach, while atom types are typically modeled using
discrete diffusion models. We introduce a formal logical composition framework
for conditional diffusion processes (AND and AND-NOT guidance), which re-
spects Boolean De Morgan’s laws, and demonstrate its application to antibody
complementarity-determining region design.

1 Introduction

The design of novel molecular structures is a fundamental challenge in computational biology and
chemistry, with wide-ranging applications including therapeutic antibody engineering, enzyme design,
and small-molecule drug discovery. In recent years, deep generative models have emerged as powerful
tools for learning complex, high-dimensional data distributions directly from example data, bypassing
the need for hand-crafted energy functions. Among these, diffusion probabilistic models have gained
prominence due to their stability, scalability, and ability to produce high-quality samples. Diffusion
models frame generation as the reversal of a forward noising process, gradually transforming simple
random noise into structured outputs through a series of denoising steps. Importantly, diffusion
models naturally support guided sampling mechanisms, such as classifier-based and classifier-free
guidance, allowing for fine-grained control over the generation process and enabling the incorporation
of external constraints or desired properties during generation.

In this work, we explore the combination of conditional diffusion models for multi-target and anti-
target design. We introduce the AND and AND-NOT (ANDN) logic for conditional diffusion models
and apply it to the problem of antibody complementarity-determining region (CDR) design. To
demonstrate the practical implications of this framework, we instantiate our formulation of logical
guidance within an SE(3)-equivariant diffusion model for antibody design. In this setting, the
diffusion process is conditioned on multiple biophysical attributes of antibodies, such as antigen-
binding affinity, and logical operators are used to compose these conditions during generation.
Specifically, we apply AND and ANDN logic to modulate the conditional score fields, enabling
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explicit control over the joint or antagonistic satisfaction of distinct design objectives. Through
this setup, we show that the logical composition not only yields interpretable guidance dynamics
in the diffusion trajectories but also produces antibody variants that faithfully reflect the intended
logical relationships among their biophysical constraints. This antibody case study thus serves as an
experimentally grounded proof of concept for our general theory of logical composition in conditional
diffusion processes, illustrating how stochastic guidance can be systematically structured through
formal logical operators. Other approaches Du et al.|(2020); [Liu et al.| (2022) offer compositional
frameworks. However, their rules do not obey Boolean De Morgan’s laws, making their semantics
unclear. In contrast, our approach can be shown to satisfy De Morgan’s laws (Section D).

Related Work

Diffusion-based generative models Diffusion-based models have emerged as a powerful gen-
erative framework Sohl-Dickstein et al.| (2015);|Song & Ermon| (2020), achieving state-of-the-art
performance for images, audio, and molecular structures. In molecular applications, they have
been adapted to generate both 3D atomic coordinates and graph-based representations. Equivariant
diffusion models (Hoogeboom et al., [2022) operate in 3D while respecting SE(3) symmetries, pro-
ducing physically plausible structures, and torsional diffusion (Jing et al.l 2023) sequentially samples
torsion angles to capture conformational flexibility. Graph-based formulations (Liu et al., [2023)
manipulate nodes and edges to generate chemically valid topologies, bridging discrete graphs and
continuous structures. These advances have driven breakthroughs in de novo protein design, antibody
engineering, and protein-ligand modeling.

Antibody Design Recent advances in diffusion-based generative models (Ho et al., 2020; |Dhariwal
& Nicholl 2021)), have enabled the joint modeling of antibody sequence and 3D structure, capturing
both backbone and side-chain geometry, as well as CDRs. Methods such as DiffAb (Luo et al.|[2022b)
and AbDiffuser (Martinkus et al.}2023) perform co-design of sequence and structure conditioned on
antigen complexes. Direct preference from post-training LLM community has been proposed for fine-
tuning protein diffusion models for antibody design (Wang et al., 2025)). Graph-based frameworks
(Jin et al.| 2021} [Kong et al., 2023} |Zhang et al.| 2022; |Bennett et al.,2025) further refine CDR loops
and antibody structures. Despite these advances, accurately modeling antigen-antibody interfaces and
generalizing to novel antigens remains challenging, motivating the development of guided diffusion
strategies that incorporate orientation, side-chain, and equivariance.

Background

Antigen

Notation and defintions An amino acid in a pro-
tein complex can be represented by its type s; €
{A,C.D.EFGHLKLMN,PQRSTVWY}, C, atom co-
ordinate ¥; € R3, and the orientation O; € SO(3), with
i € [N] = {1,...,N}, and N the number of amino acids
in the protein complex, which can contain multiple chains
or proteins. We assume the antigen structure and the anti-
body framework given in Figure |1} where we focus on de-
signing complementarity-determining regions (CDR)s for the A gntonan
antibody template. We consider that the generated CDR has * DR CDR .
m amino acids. The position of the CDR is from position Antbody  Tmmmmm==tT
I+ 1to !+ m in the protein complex. The CDR is represented Figure 1: Antibody-antigen protein
by R = {(sj,2j,0;)]j = 1+ 1,...,1 + m}. Therefore, complex structure, where we high-
the objective of the diffusion model is to model the distribu- light the heavy and light chains and
tion of R given the structure of the antibody-antigen complex the associated CDR structures.

Diffusion model A diffusion probabilistic model is composed of two diffusion processes: The for-

ward process used during training, and the reverse process used during generation. The intermediate

sample of the j amino acid at time ¢ is (55, z}, O;) while the generated sequence and structure at

steptis Ry = {s?, :c?, O; Hgﬁu At time t = 0, we have the real data, while at time t = T we have



samples from the prior distribution. Therefore, the forward diffusion goes from time ¢ = 0 to time
t = T', while the reverse diffusion proceeds fromt¢ =T tot = 0.

Amino acid discrete diffusion process For the amino acid, we use a discrete diffusion multimodal
process (Luo et al.l [2022b; Hoogeboom et al., 2021), where the forward process is q(s§|s§*1) =
Multinomial ((1 — 3™)onehot(s’ ") + 3" 551) , where onehot(s) converts amino acid type to
a 20-dimensional one-hot representatlon i.e., a zero vector with 1 at the position 5. 87 is the
uniform probability of resampling another amino acid over 20. Fort — T, ﬂtype goes to 1, such
that the distribution becomes the uniform distribution. For efficient training B © is substituted by
1— o™ =T _, ¥ and sﬁ-*l with s9. The reverse discrete diffusion process is implemented
as p(sé-_l |R:, C') = Multinomial (Fy(R;, C),) , with Fp(R;, C') a neural network that encodes the
conditional antibody-antigen complex C' and the CDR sequence and structure in the previous step
(Rp).

C, coordinates continuous diffusion process The coordinates of C, are first normalized.
Then the forward diffusion for the normalized C, coordinates is defined as ¢(x t-|:ct_1) =

N(zh; /1~ pmxz L EOSI ) where for efficient training 1 — 3/ is substituted with o}” =

Hizl PO and x3 with :c , the data sample. The reverse process is given by p( YR, C) =

N (@h; po(Ry, C), B T) with g (R, C') = j ( i~ WGQ(Rt,C)J) and Ge(Rt,C)j a de-
noising neural network that predicts the noise ¢; ~ N(0, I'), added to the sample /« 0 . Indeed,
pos 0 Pos

_|_

the sample at time ¢ is transformed as !, = 1—a; e

Residue orientation SO(3) continuous diffusion process The forward diffusion process works on
the rotation group (Leach et al., 2022), ¢(O%|09) = ZGso(3) (O}5 |ScaleRot (\/6?, O?) , d"“)
with ZG g0 (3) the isotropic Gaussian distribution on SO(3) parametrized by the mean rotation forward
scaled by \/aT’“ and the variance 1 — a$". The function ScaleRot scales the rotatlon angle of the rota-
tion matrix, where the rotation axis is ﬁxed (Gallier & Xu, [2003). a"” = HT 1 B, with 5"” the vari-

ance at time t. The reverse process is given by p(O} 'Ry, C) = IGs0(s) (O} \Hg (R, C), Or‘)j
where Hy is a neural network that denoises the orientation matrix.

2 Guidance of Conditional Diffusion-Based Generative Models

Discrete-time diffusion processes are connected to continuous-time diffusion processes (Song et al.,
2021). We use the results from (Didi et al., [2024)) to introduce the guided diffusion, which connects
an unconditional diffusion process and the condition to reach an end state xy € Y.

Proposition 2.1. (Doob’s h-transform Rogers & Williams (2000); Didi et al.|(2024)) Consider the
reverse SDE: dxy = by(a;) dt+0,dWy, @r ~ Pr where time flows backwards and with transition
densities py|s. It then follows that the conditioned process xi|xo € Y is a solution of

day = (by(xs) — 07 Va, npo(zo € Yay)) dt + 0:dWy, @r ~ Pr, e))
such that hg|hy, o € Y ~ pypo(hs|hy, o € Y) and P(xg € Y) = 1.

Theorem [2.T|show that we can obtain a desired state €, € Y by transforming an unconditional dif-
fusion model. The conditional term V, Inpg(xo € Y|x;) substitutes the unconditional term
Vz, Inp:(x:) and guarantees the target event ¢y € Y. Therefore, the drift term can be im-
plemented using the conditional model as Vo, Inpo(xo € Y | o) = Vg, Inpyo(xs | o €
Y) — Vg, Inp(xy).

Combining conditional diffusion processes with AND logic We consider the condition on two
independent events o € A, xy € B happening at the same time g € A A\ xy € B.



Proposition 2.2. Given two independent conditions xy € A and xy € B, the score function of the
x|xyg € AN xo € B is given by

Ve, Inp(xg € ANxTg € Blx:) = Vinp(xi|zg € A) + VInp(ai|xy € B)

If we want to combine two conditional diffusion models (V In p(z:| A)), we have that V In p(x|xo €
ANzg € B) =Vinp(xzo € A) + Vinp(xi|zo € B) — VInp(a,;) where we used V In p(xg €
Alz:) = Vinp(zi|zg € A) — VInp(a;). Proofs are available in the supplementary material.

Combining conditional diffusion processes with AND-NOT logic We consider the condition
when the second event is negated, xy € A A ¢ € B, where the bar represents the negation —B. We
call this combination ANDN as AND NOT.

Proposition 2.3. Given two independent conditions A and B, the first-order Taylor expansion of the
score function associated to xi|xog € AN xo € B is given by

Vinp(xzog € AAxy € Blx) = Vinp(zg € Alzy) — p(xo € Blx:)VInp(xy € Blx;)

If we want to combine two conditional diffusion models, we have that V In p(x;|zo € A A xo €
B) = VInp(xi|zo € A) — p(xo € Bla,) (Vinp(xi|zy € B) — Vinp(x,)) . This result defines
a guidance framework that respects De Morgan’s laws (Section [D). The interesting observation
is that the unconditional score function can be derived from the empty event, i.e., VInp(x;) =
V Inp(x;|0). Furthermore, the absolute probability p(xq € B|x;) is not accessible; we use an
estimate, proportional to the inverse of the distance of two denoising states. For the discrete diffusion
process on the residue types, we can not implement the diffusion at the level of the discrete variables;
therefore, we implement the combination at the probability distribution of the multinomial distribution
(in our model Fy(R;, C') from Section , enforcing the probability to stay non-negative.

Experiments

) AAR(D) IMP() RMSD () AAG()
Metrics Following (Luo et al., CDR  Target Method

2022a), we evaluate the designed  Hi HAT-11 DiffAb 58.1 533 15 0.0
antibodies using four metrics: DiffAb-AND 567 56.7 30 02
1) Bindine E I ) DiffAb-ANDN  57.4 60.0 14 -0.1
(1) Binding Energy Improvemen Omicron DiffAb 585 B3 15 39
(IMP): The percentage of CDRs DiffAb-AND  54.8 933 3.0 7.1
: oo DiffAb-ANDN  56.3 833 15 -6.1
with lower binding energy (AG) e iap 91 533 05 01
than the reference, computed DiffAb-AND 9.1 500 11 04
with Rosetta (Alford et al.. 2017). DiffAb-ANDN _ 10.3 63.3 0.4 0.3
o Omicron DiffAb 82 933 05 a3

(2) Root-mean-square fieylatlon DiffAb-AND 8.6 767 L4 35
(RMSD): The C,, deviation be- DiffAb-ANDN  10.2 333 0.5 12
tween generated and reference H3 ~ HAT-II DiffAb 25 867 45 -206
ith antibodv f DiffAb-AND 118 400 2006 9.4

structures, with antibody frame- DiffAb-ANDN  21.5 900 5.1 214
works aligned. (3) Amino Acid Omicron DiffAb 214 60.0 42 1033
. : DiffAb-AND 222 300 2000 26.8
Recovery (AAR): Fraction of DiffAb-ANDN  25.4 500 62 144.7

residues in the generated CDR se-
quences that match the reference Table 1: Heavy Chain CDR design based on DiffAb diffusion-

sequences (Adolf-Bryfogle et al|, based conditioned generative model averaged over 30 samples.
2017); (4) AAG: The change in

AG between reference and generated complexes. As in (Didi et al.}[2024)), we do not use neutralization
prediction models.

Results  Tables|I]and [2 summarize the outcomes of applying logical guidance to two antigen targets:
(1) SARS-CoV-2 RBD (Omicron, PDB ID: 7TWVN, residues 322-590) and (2) Human Adenovirus
type 11 (HAT-11, PDB ID: 2039). Using DiffAb [Luo et al.|(2022b) as the baseline, the AND and
ANDN combinations provide higher AAR for 2 out of 6 CDR designs and improved IMP in 3 out of
6. The higher RMSD reflects the larger structural rearrangements induced by the guided generation.
The AAG values are more favorable across all designs. Comparable or better trends were observed
for the light-chain CDRs.



Conclusions This work extends the framework of (Didi et al.,2024)) by introducing logical compo-
sition of conditional diffusion models through the AND and ANDN operators. While multi-target
ligand design (Yang et al.|[2024) addresses the AND case, here we demonstrate the ANDN scenario
in antibody CDR generation. The proposed framework enables a flexible combination of conditional
generative models for precise multi-target control in molecular design. In future work, the authors
will consider the extension to a general combination of conditional diffusion flows to realize logic
rules, compare with additional baselines, and potentially extend its application to different domains.
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Figure 2: For each target, first dock the Antigen to the Antibody template. We then align the targets
with respect to the Antibody template.

Supplementary Material of Guidance of Diffusion-Based Conditional
Generative Models for Antibody Design

A Target preparation for diffusion model composition

Before we combine different conditional diffusion models, we need to align the targets. As shown in
Figure[2] this is done using a template antibody. We first dock the antigen to the antibody template
and then align all targets with respect to the same template.

B Continuous diffusion model

Forward process The forward process or diffusion process is a Markov chain that gradually adds
Gaussian noise to the data according to a variance schedule 31, ..., 81 :

T
q(z1.7|T0) = H q(@¢|Ts—1)
t=1

Q($t|wt71) = N(wt; v1- ﬁtwtflvﬁt-[)

Since the variance and mean are known, we can build the distribution at any time ¢ as

q(@i|xo) = N(2i; Vauwo, (1 — ay)I)
a=1-p, [Jar

T=1

Reverse process The forward process is used to train the reverse process, which is defined as a
Markov chain starting from a fixed Gaussian prior z7 ~ p(x;) = N (z7;0, I), described by:
T

g(wor) = g(ar) [ el |2)

t=1
q(@i—1|xe) = N(2i—1; po (e, 1), Zo (a4, t))

The simplified training objective

L= Et,wQND,eNN[HE - 69(\/077330 +v1 - 07t60”]
Denoise process During the denoise process, we first estimate the noise and then denoise the
sample

€t = €y (:ct, t)

z, = (1-B)""?(x; — Bi(1 — &) */*€;) Denoise

x; = x; + o€, €~ N(0,I) Brownian motion



The denoise step is summarized here

T = a;l/Q (:ct - ﬁtﬁfl/Qee(wt,t))+Jte, € ~N(0,I) 2)

Composition rules The A A B conditional score function is given by
éanp (@1, t) = €g(xy,t) +wa (ea(mt,t\A) - eg(mt,t))+w3 (eg(wt,t\B) — ee(mt,t)),
w4, wp are an hyper-parameters. Withwy = wp =1
éanp (T, t) = —€g(@4,t) + €9(xy, t|A) + €o(x4, t| B),
We currently use:

éanD(Tt,1) = —€g(x4, 1) + €g(xy, t|A) + weg (x4, 1] B),

While for the NOT, the process is defined by
éanpN (¢, 1) = €a(@e,t) + w(eg (s, t|A) — p(Blay)eg(x, t|B)).

C Logic rules

If we have two conditions A, B we can create logic rules for:

e ANB
° —\A:A
e ANB=AAB

Proposition C.1. Given an event A, we can write the gradient conditional distribution equalities

‘Vlnp(m|A) =Vinp(z) + Vinp(A|z) ‘

‘Vlnp(A|x) = Vinp(z|A) — Vinp(x) ‘

Proof. First, we remind that Bayes’ rule
p(z[A) = p(Alz)p(z)/p(A)
then we compute the gradient with respect to x,
Vinp(z|A) = Vinp(z) + Vinp(Alz) — V, Inp(A)
but since V, In p(A) = 0, we have that
Vinp(z|A) = Vinp(z) + Vinp(A|z)
O

In the following we remove the condition on z, therefore instead of studying p(A|x) we consider
only p(A). We then write the condition for the general case.

AND clause (A A B)

Proposition C.2. Given two independent events A and B, we can write the conditional distribution
of © with respect the event A A B as

‘ Vinp(z|AAB) =Vinp(z) + Vinp(Alzx) + Vinp(Bl|z) ‘

Proof. For diffusion models, we have that, if A, B are independent
Inp(AAB) =Inp(A)p(B) =1np(A) 4+ lnp(B)

Vinp(z|AAB)=Vinp(z) + Vinp(AA B|z) = Vinp(z) + Vinp(Alz) + VInp(B|x)
O



NOT clause (A, ~A) We of course have that p(4) = 1 — p(A).

Proposition C.3. If A is an event, then we can write the first-order approximation for the gradient of
the log probability of the conditional distribution

‘ Vinp(z|A) ~ Vinp(z) — p(Alz)V Inp(A|z) ‘

Proof. We first remind that the Taylor series for In 1 + z is

2 .’1?3 .’II4

In(1 =r— 4 -4 ..
n(l+z)=x 2+3 4+

therefore, for [p| < 1 we have

In(l—p)=—(p+5+%5+5+)

P
2 3 4
we can now compute the gradient

2 3 4
Vxln(l—p)Z—Vw(p—i—%—k%—i—%—&—...)

= —(Vop+ pVap +0°Vap + p°Vap +...)
= —(pVoInp+p*Volnp+ p*Volnp + p*V,Inp...)
= —pV,Inp+ O(p)

On the other hand
1
VzIn(l-p) = —prﬂ = —(14p)Vap+0(p*) = =Vup—pVap+0(p?) = =Vup+0(p) = —pV, Inp+0(p)

since (1 —p)~t =1+p+O0(p?)
In conclusion, we consider the following first order approximation
Veln(l—p)~ —pV,Inp

then -
Velnp(A) =V, In(1 —p(A4)) = —p(4)V, Inp(A)

ANDNOT AA-B=AADB

Proposition C.4. Given two independent events A and B, we can write the gradient of the condidional
distribution to A N\ —B as

‘ Vinp(z|AAB) = Vinp(z) + Vinp(A|z) — p(B|z)V Inp(B|z) ‘

Proof. The result is obtained by combining the two previous results. O

In the absence of the normalization function, we can scale the negative term

Vinp(x|AAB) ~ Vinp(z) + Vinp(Alr) — ezg:gvmp(mx)

D De Morgan’s laws
We now show that the proposed guidance framework adheres to De Morgan’s laws.

De Morgan’s laws De Morgan’s laws:

~(AAB)=-AV-B 3)
-(AVvB)=-AA-B “)



Energy Models: For energy models (Liu et al., 2022; |Du et al., | 2020), the De Morgan’s laws do
not hold. For instance, for the LHS of Equation (E]), we have:

p(z|]A A B) x exp(—FE4(z) — Ep(x))
p(z[=(AA B)) o< exp(—Ey(z) + Ea(z) + Ep(z)),

while, for the RHS we have:

p(z|=Y) o exp(—Ey(z) + By (z))
p(x|=AV -B) x Z ' exp(—Ey(z) + Ea()) + Z5" exp(—Ey(x) + Ep(x))
= exp(—Ey(2))(Z," exp(Ba(x)) + Z5" exp(Ep(x)))
Hence, 3A, B s.t. p(x|=(A A B)) # p(z|-AV —B).

Our diffusion model framework: For our approach, De Morgan’s laws can be shown to hold. For
instance, for the LHS of Eq. Equation (3) we have:

Pl 5) = PADBL o)
p(z[~(AA B)) < p(z)p(=(AA B)|z) = p(z)(1 — p(AA Blz))
Z = p(Alx)p(Blz)p(x) = p(AA B),

while for the RHS, we have:

p(x[=AV =B) < p(z)p(=AV =Blz) = p(z)(1 — p(A A Blz)).

Similarly, for Equation (@) we have:

E Tweedie’s formula

With a diffusion process, we can estimate (Ho et al.l[2020)[eq.15] the end sample from the current
sample by

—_

t
Eo(z,€1) = ——=(2e — V1 — ver), € = €g(my,t), @y = H Qr, ap=1-—p5
T=1

Qi

ZTo(xe, €) = 54;1/2 (fﬂt - 73/260(wt7t)) ©)
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F Discrete diffusion process

Forward process Let’s note C = Multinomial, the forward diffusion process (Hoogeboom et al.,
2021)) and the long forward distribution, where the sample has 3; probability of sampling form the
uniform distribution:

a(@lzr) = Clae (1~ Bz + Bisg)

t
1
q(zt|mo) = C(s; i 0 + (1 — @t)?), ap = Tl_[:laT, ap=1-0
_ 51 3
q(xi|xo) = C(x4; 40 + 'BtE)’ Br=1—o
We therefore have two forward equations for the multinomial distribution
1
q(xe|es 1) = C(T4; 4y 1 + 51&}) ©)
~ 1
q(xi|xo) = C(xy; Qo + 5t?)- (7N

Reverse process By combining the previous equations (Ho et al.l [2020), we can compute the
posterior distribution q(s_1|xs, o) as

q(@i—1|Ts, o) = C(@4—1; PO (T4, T0, 1))

K
ﬁ@(mta o, t) = p@(wta o, t)/ ZPO(mta o, t)k
k=1
1 _ _ 1
po(y, o, t) = [uxe + (1 — o) =] O [@—10 + (1 — ¥ —1) —]
K K
1, . 1, )
po (@1, o, t) = [y, + 5tE]®[Oét—1mo + ﬁt—lE], Br—1=1—a;
and to summarize
1 _ - 1
q(xi—1|Ts, T0) = C[atmt + /Bt?} Q[Oét—lﬂfo + Bt-1 ?} 3

Or alternatively, but not usefully

bl o) = o) AT pefao)

a1+ Bt 1 _ =1
~C—————— |yxy_1 + B — | Oy + By —
Py [y 5tK] (o [3tK]
p(Ti—1) _ a1 E[z] +Bt—1% g + Bi—1
p(xt) aElxo] + B3 at + B

We can think of inverting the forward equation as follows

1
Cxy =Couxi_q + 5t—1?

1
Cri_1= Cat_l(mt — Bt—lg) Reverse direction
If we use this reversion, we can write the posterior distribution as
L 1 _ 1
p(@i—1]@e, o) = p(we—1|@e)p(@e| @) = Clog ' (@ — 6t—1?)] Olaxo + @sE]

and to summarize

1 1
p(@i-af@r, @o) = Clay (@1 — Bia 72) ] @ [@ao + Bi ] ©)

11



Denoise process Since during the reverse process g is not available, we use the prediction from a
neural network fy , as

i:O = f [%] (3315, t)
where fy includes a soft-max to ensure the positive definiteness. We then can interpret &o(z¢,t) as
the (un-normalized) probability of the classes at the end of the diffusion process.

G The logic of discrete diffusion processes

We can then combine the predictions to form the AND and AND-NOT logic.

G.1 Posterior distribution for the AND logic

We first derive the following relationship applying Bayes’ theorem:

B o) (1)

p(t|ANB) =p(AA B“)m = p(A|t)p(B\t)m
oAl p(BlY) 1 p(t|A)p(H|B)
=W P Pm T

if we consider p(t — 1|t, AA B) and map ¢ < ¢t — 1|t we have p(t — 1|t, A, B) = p(t — 1|t, A)p(t —
1], B)/p(t — 1|t), where p(t — 1|t) is the unconditional conditional posterior distribution, while
p(t —1|t, A)p(t — 1|t, B) are the two conditional posterior distributions. Let’s consider the following
relationship by using Equation (§),

1 = 1
p(t — 1]t, A) = Cloym, + ﬁt?]Q[@tqwom + Bt—1 E]
1 = 1
p(t — 1]t, B) = Clayx, + 6t?]®[@t—1$O|B + 6t—1§]
1 = 1
p(t — 1]t) = Clouz + ﬁtE]Q[@t—lmo + ﬁt_lE]

where we estimate xo 4 = fo(x¢,t, A), and o g = fo(x:,t, B).
When can we then combine and get the following relationship

p(t = 1]t, AN B) = p(t = 1]t, A)p(t — 1]t, B) /p(t — 1]t)

1 = 1
= C[Oétﬂ3t + Bt?] © [@t—lﬂ’?o\A + Bi-1 ?]

= 1 - 1.-
O] [O_ét—llUO\B + Bt—l?}Q[@t—lxo + Bt—l?] !

to summarize

1 - 1
p(t —1]t, AN B) = Cloyx; + Btﬁ] Ofa—1Toa + Bi-1 ?]
~ 1 - 1 .-
O [a1xoip + Bia E}@[@t—lxo + Bi-1 E] ' (10)

G.2 Posterior distribution for the AND NOT logic

We have:
p(xe—1|B, x¢)p(Blwi—1)
p(zi—1|ze)
p(-Blzi—1,x) =1 — p(Blei—1,34)
~ p(wia|ae) — p(oi—1| B, x)p(Blag—1)
N p(@e—1lzt)

p(B|17t—1793t) =

12



Hence, by Bayes’ rule:
p(0B|wi—1, x1)p(Ti—1]21)
p(—Blxy)
o p(xt—1|$t)2 — p(ws_1|ze)p(we_1| B, 2¢)p(Blat)
B p(@e—1|ze)p(—Bl2y)
p(@i—1|ze) — p(ze—1|B, ¢)p(Blzt)

= 11

P(It—1|ﬁB7It) =

We note that the only quantity in Eq. [TI] not immediately available from the denoising model
for B is p(B|z;), the probability of B under the unconditional model given x;. This quantity
may be estimated by Monte Carlo sampling, i.e. by repeatedly sampling xy by denoising x;
under the unconditional model, and observing the fraction of samples with property B. Alterna-
tively, a neural network may be pre-trained to estimate this quantity by repeated off-line sampling
from the unconditional model, and minimizing the cross-entropy between a binary vector of pre-
dicted properties (for A and B) given z; and ¢, and the properties of the generated z(. Lastly, we
may use a heuristic estimate of this quantity, for instance by evaluating p(B|f(z¢,t)), or letting
p(Blzy) = Z.! exp(—rHamming(f (24,t), f (24, t, B))), where Z,, is a normalization factor, and
T is a temparature parameter. We then define the following weights:

B B B B
- - _ A=ty _ =1
Uy = 1 ( |],‘t)’ wy = 1 ( |],‘t)’ Uy wy =

Using the above heuristic, we may thus set:

UtB = Zwt/(ZIt - exp(—THamming(f(xht), f(xhtﬂ B)))
= o(7'Hamming(f (z¢, 1), f (x4, t, B)))

where 7/ = 7/ exp(Z,, ), o(a) = 1/(1 — exp(—a)), and w? = vP — 1. We therefore have:

1 ~ 1
p(t = 1|t,=B) = v Claz; + Bt?}Q[dt—lmO + Bi-1 ?} -
1

1 _
wfc[atmt + ﬂt?]Q[@t—lmO\B + Bt—l?]
1 - 1
= C[Oétwt + 5t?}®[v,€@t—1$o - th@t—lmmB + (UtB - wig)ﬁt—l ?}
Then, to summarize, we have:
_ 1 _ 1
p(t—1t,ANB) = C[atfﬂt + ﬁt?] © [atfle\A + 5t71?]
_ _ = 1 _ = 1,4
® [vPa-12o — wla—1op + Bi-1 E}@[atqwo + Bi-1 R}
(12)
Heuristic Another way is to combine the prediction only
iO(mih ta A A B) = f@(mh tv A) + w?ND(fe(mtv ta B) - fe(mh ta 0)) (13)
:%O(wtat7A A _‘B) = f@(mhtv A) - w?NDN(fQ(mtvta B) - fa(mhta Q)) (14)

W™ = [Ilfolest, A) = fole B[] s

w?NDN = [1/||f9(wt,t,A) - f0($tath)|Hmﬁ§1)>(N
with [.] is the the min(., wyax).

WMAX
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H SO(3) rotation diffusion process

We consider the SO(3) diffusion process (Hoogeboom et al., [2022)) defined using the isotropic
Gaussian distribution on SO(3) (ZG) (Nikolayev & Savyolov,|1997) g ~ ZG 5o (3) (1, 0), with p, o
the mean and variance parameters. The density parametrized by the axis-angle form, with uniformly
sampled axes, and the rotation angle w € [0, 7], whose density is given by f(w) = H% Y20+

e —l(+1)o? % Interestingly, the ZG distribution is closed under convolution. We need to

train the model sampling from xq € SO(3). If the rotation angle of a rotation matrix R is w, than
InR = (RT —R) (or A=1/2(R— RT),InR = ”AHA“A | A||> = —1/2trA?), where w
satisfies trR = 1+ 2 cosw. The lie algebra so(3) of SO(3) is composed of skew-symmetric matrices

2511’10.1

0 V3 —V2

Sv) = (—Ug 0 vy ) ,v = [v1,v2,03), ||v]|]2 = w. The scaling by «, is implemented in the
V2 —V1 0

s0(3) by the function A(«, ) = exp aln x, which represents the scaling along the geodesic from I

sin w/232 W= ||$||

to s by the amount «.. The exponential map is defined as e* = I + sm‘”ac +2

Forward process The diffusion model is then defined by a forward diffusion process as
q(x¢|0) :IQSO(B)( ( t xo), Bt)
Reverse process The reverse diffusion process is implemented as
q(xs1]xe, ®0) = LG 50(3) (Ne(wt,wo,t),gt)
po(xe, o, t) = X(B; " a, 5:&7330) (Bt_latl/26t—l7xt)

In practice, pg (s, o, t) is a neural network, using the vector representation of x.

AND To implement A A B we apply the two rotations
Tt ANB = Lt|ALt|B
with v; € so(3) are computed as
V| AAB = In(exp Vi1 A €XP ’Ut|B)

Heuristic Since the v vectors are defined in the Lie Algebra, we can implement with
V| AAB = VA + VB

AND NOT To implement A A =B, we apply the two rotations
L AN-B = xt|sz[B

with v; € so(3) are computed as

T
Vt|An-B = In(exp VA €XP ’Ut|B)

Heuristic Similarly to the previous case, since the v vectors are defined in the Lie Algebra, we can
implement with

Vt|An-B = Ut|A — VB

FKC correction To allow our sampling methods to better approximate the conditional distribution
p(xo| AN B) or p(xg|A A —B), we may introduce Feynman-Kac corrections (FKC) at each sampling
step. Following Zhao et al.|(2025)), a Sequential Monte Carlo (SMC) sampler for the Feynman-Kac
model may be defined by introducing a proposal kernel, M;_;;(.|z;), and weighting potentials,

Gyi-1.4(.,.) and G7(.). The SMC sampler then proceeds by first drawing J samples 2 from
My (the reference noise distribution), and calculating weights w?}, = GT(a:Jf) /2 (Gr(a2.)). For
steps t = T, ..., 1, the sampler then: (a) resamples {(w?, :ct)}‘] pif 35, w! & 0; (b) draws new sam-

ples ! | ~ Mt e |2]) and computes the unnormalized weights @) | = w! Gy _1 ,(x]_|,®]); (c)
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normalizes the weights w{_l = w{_l /> i w{_l. The algorithm then outputs the weighted samples
J I\
{(wp, zp) j=1-

Following Wu et al.| (2024), we set:

p(Y|xi—1)p(@i—1|2))
(Y‘wt)Mt—l\t(wtfl \wt)

GY | (T, 2) =
t—1,t »

and G}/(xT) = p(Y|xr), where Mt’il‘t(act,l |z+) is the proposal distribution generated by our
framework, and Y is the condition, in our case Y = {A A B, A A =B}. Here, p(Y|x;) =
p(Alx)p(Blz:) and p(Y |x;) = p(Alz)(1 — p(Blx,)) for the casesY = AABandY = AAN-B
respectively, and the requisite probabilities may be estimated using the sampling, neural network or
heuristic approaches noted above.

I Light Chain CDR

We report the additional results for the light chain CDR in Table 2] The corresponding metrics and
test systems are discussed in the main text.

AAR (1) IMP(1) RMSD({) AAGW)
CDR Target Method

L1 HAT-11 DiffAb 74.1 60.0 0.9 2.3
DiffAb-AND 61.3 60.0 134.9 252.1
DiffAb-ANDN  74.6 73.3 0.8 -54
Omicron DiffAb 71.8 86.7 0.9 -13.3
DiffAb-AND 614 26.7 128.9 1452.3
DiffAb-ANDN  74.6 96.7 0.9 -22.3
L2 HAT-11 DiffAb 575 80.0 1.8 5.1
DiffAb-AND 28.0 63.3 100.7 55.6
DiffAb-ANDN  54.3 73.3 1.8 -7.0
Omicron DiffAb 57.1 30.0 2.0 3.9
DiffAb-AND 38.7 30.0 118.0 364.1
DiffAb-ANDN  55.9 76.7 1.9 -5.5
L3 HAT-11 DiffAb 42.6 20.0 1.2 0.5
DiffAb-AND 42.5 36.7 2.7 0.6
DiffAb-ANDN  44.3 36.7 1.4 -0.0
Omicron DiffAb 46.6 96.7 1.3 -51.5
DiffAb-AND 42.5 76.7 2.3 -22.9
DiffAb-ANDN 442 86.7 1.2 -44.0

Table 2: Light Chain CDR design based on DiffAb diffusion-based conditioned generative model
averaged over 30 samples.
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