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Abstract

Large language models (LLMs) have shown promise in automating scientific1

hypothesis generation, yet existing approaches primarily yield coarse-grained hy-2

potheses lacking critical methodological and experimental details. We introduce3

and formally define the novel task of fine-grained scientific hypothesis discov-4

ery, which entails generating detailed, experimentally actionable hypotheses from5

coarse initial research directions. We frame this as a combinatorial optimization6

problem and investigate the upper limits of LLMs’ capacity to solve it when maxi-7

mally leveraged. Specifically, we explore four foundational questions: (1) how to8

best harness an LLM’s internal heuristics to formulate the fine-grained hypothesis it9

itself would judge as the most promising among all the possible hypotheses it might10

generate, based on its own internal scoring-thus defining a latent reward landscape11

over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit12

stronger alignment with ground-truth hypotheses; (3) whether shaping the reward13

landscape using an ensemble of diverse LLMs of similar capacity yields better14

outcomes than defining it with repeated instances of the strongest LLM among15

them; and (4) whether an ensemble of identical LLMs provides a more reliable16

reward landscape than a single LLM. To address these questions, we propose a17

hierarchical search method that incrementally proposes and integrates details into18

the hypothesis, progressing from general concepts to specific experimental configu-19

rations. We show that this hierarchical process smooths the reward landscape and20

enables more effective optimization. Empirical evaluations on a new benchmark21

of expert-annotated fine-grained hypotheses from recent chemistry literature show22

that our method consistently outperforms strong baselines.23

1 Introduction24

Large language models (LLMs) have increasingly been applied to assist scientific research (Luo25

et al., 2025; Cambria et al., 2023), with one of the most ambitious applications being the automated26

discovery of novel and valid scientific hypotheses. However, current methods produce hypotheses27

that are criticized for being overly coarse, lacking sufficient detail, offering simplistic suggestions, or28

omitting concrete implementation strategies (Wang et al., 2024; Hu et al., 2024; Si et al., 2024).29

We present the first systematic investigation into how LLMs can be leveraged to formulate fine-30

grained scientific hypotheses—those enriched not only with major concepts but also with precise31

methodological details and clearly specified experimental configurations. For example, a coarse-32

grained hypothesis in chemistry might state, “synthesize hierarchical 3D copper,” while a fine-grained33

counterpart could elaborate, “Copper foils are chemically oxidized by immersion in a solution of 0.534

M ammonium persulfate and 2 M sodium hydroxide for 15 minutes at room temperature, forming a35

Submitted to the AI for Science workshop (NeurIPS 2025).



pentagonal hierarchical CuO nanostructure.” Such fine-grained hypotheses significantly enhance36

clarity, feasibility, and experimental implementability.37

Formally, we define the task as generating a fine-grained hypothesis given a research back-38

ground—comprising a research question and established methodologies—and a coarse-grained39

hypothesis direction. We show that fine-grained scientific hypothesis discovery is a combinatorial40

search problem, as it requires selecting and composing a coherent set of concrete details from a41

vast space of plausible options—making it particularly challenging in practice. The difficulty is42

compounded by the fact that scientific hypothesis discovery is an inherently out-of-domain (OOD)43

problem: the correctness of a hypothesis is fundamentally unknown at the time of formulation.44

In this work, we focus on the pre-experimental stage of discovery, mirroring how human scien-45

tists—prior to empirical testing—iteratively search through the hypothesis space using heuristics and46

domain knowledge to identify the hypothesis they themselves would judge as the most promising47

among all plausible candidates they could think of during the hypothesis search process.48

Our goal is to emulate this cognitive search process using LLMs, which increasingly rival human49

scientists in heuristic reasoning and scientific knowledge understanding. This motivates our central50

research question (Q1): how to best harness an LLM’s internal heuristics to formulate the fine-51

grained hypothesis it itself would judge as the most promising among all possible hypotheses it might52

generate? We conceptualize a hypothesis space where each point along the input dimensions (the53

x-axis, potentially multidimensional) represents a candidate hypothesis, and each point is assigned54

a reward value (on the y-axis) by the LLM based on its internal heuristics. This defines a reward55

landscape over the hypothesis space, with the highest peak corresponding to the hypothesis the LLM56

internally judges as most promising. Framed this way, Q1 becomes an optimization problem: how57

can we navigate this landscape to find stronger local optima—or ideally the global optimum—thus58

eliciting the best fine-grained hypothesis the LLM can generate?59

A straightforward baseline is greedy search over the reward landscape. However, its non-convex60

and complex structure makes naive greedy strategies prone to poor local optima. To address this,61

we propose a hierarchical search framework that explicitly models how a finite-capacity reasoning62

agent—human or LLM—navigates the hypothesis space. Specifically, it first explores higher-level63

conceptual spaces and then incrementally refines into more specific detail spaces. This hierarchical64

approach smooths the reward landscape at each hierarchy level—especially at higher, more abstract65

levels—enabling convergence to superior local optima compared to greedy search and greedy search66

with self-consistency (Wang et al., 2023). The proposed framework inherently scales with the67

LLM’s available capacity, enabling systematic exploration of the limits of LLM-driven fine-grained68

hypothesis generation.69

Having investigated how to identify stronger local optima in Q1, we now turn to our second question70

(Q2): whether hypotheses judged better by LLMs exhibit stronger alignment with ground-truth71

hypotheses? To rigorously address Q2 while avoiding data contamination, we construct a benchmark72

of research backgrounds paired with expert-annotated fine-grained hypotheses from chemistry papers73

published after January 2024, ensuring these examples were unseen by our LLM (GPT-4o-mini,74

October 2023 cutoff). Using this benchmark, we indirectly evaluate Q2 by comparing the recall of75

hypotheses discovered by our hierarchical approach—which locates higher LLM-internal local op-76

tima—with hypotheses identified by baseline methods. Our results consistently show that hypotheses77

generated by our method achieve higher recall than those from baselines, providing empirical support78

for the reliability of the LLM’s internal reward signal in guiding fine-grained hypothesis discovery.79

Until now, the reward landscape guiding hypothesis search has been defined by a single LLM serving80

as the evaluator. We now turn to the third question (Q3): whether defining this landscape with an81

ensemble of diverse LLMs of similar capacity yields better outcomes than using multiple instances of82

the strongest LLM within that group. Our experiments show that ensembles composed of repeated83

instances of the strongest LLM consistently outperform equally sized ensembles of diverse models,84

suggesting that peak model quality is more important than architectural diversity in this setting.85

Finally, we consider a fourth question (Q4): whether an ensemble of identical LLMs provides a more86

effective reward landscape than a single instance of the same model. While Q3 compares ensembles87

of different models, Q4 isolates the effect of aggregation alone by controlling for model identity. We88

find that even identical LLMs, when sampled independently and aggregated via summarization, yield89
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a reward signal that better captures novelty without sacrificing overall quality—highlighting a subtle90

but important dimension in optimizing hypothesis discovery.91

Overall, the contributions of this work are:92

1. We introduce and formalize fine-grained scientific hypothesis discovery as a combinatorial93

optimization problem, and release a post-2024 chemistry benchmark with expert-annotated94

fine-grained hypotheses, explicitly designed to prevent data contamination for current LLMs.95

2. We systematically investigate this task through four foundational research questions: (Q1)96

how to best leverage an LLM’s internal heuristics for fine-grained hypothesis generation;97

(Q2) whether LLM-preferred hypotheses align more closely with ground-truth expert hy-98

potheses; (Q3) whether ensembles of diverse LLMs provide a better reward landscape99

compared to repeated use of the strongest single model; and (Q4) whether ensembles of100

identical LLMs offer a better reward landscape than a single instance of the same model.101

3. We propose a hierarchical search method over levels of conceptual abstraction, which102

smooths the reward landscape and reduces search complexity at each hierarchy level. Em-103

pirically, it consistently outperforms strong baselines in both LLM self-evaluation, expert104

evaluation, and recall against annotated ground-truth hypotheses.105

2 Methodology106

2.1 Background and Task Motivation107

Yang et al. (2024b) assume that many chemistry hypotheses can be constructed from a research108

background b—typically including the research question and/or background survey—and a set of109

inspirations i1, . . . , ik, representing concepts or findings from the literature. It can be formulated as:110

h = f(b, i1, . . . , ik) (1)

In practice, however, most hypotheses h generated from Equation 1 tend to be coarse-grained: while111

they form cohesive associations between b and the i, they often lack clear hypothesis specification and112

the detailed experimental configurations required for direct implementation in a laboratory setting.113

Additionally, many such hypotheses contain redundant or tangential elements—either due to the114

inclusion of unnecessary inspirations or from noise present in the literature that is unrelated to the115

core knowledge intended for hypothesis construction.116

2.2 Problem Formulation: Fine-Grained Hypothesis Generation as Combinatorial Search117

Let hc be a coarse-grained hypothesis direction and hf its fine-grained counterpart, defined as:118

hf = {hc, d1, . . . , dm} (2)

Here, {hc, d1, . . . , dm} denotes the meaningful integration of edits d1, . . . , dm into hc, resulting in a119

coherent, fine-grained hypothesis. Each d represents either: (1) the addition of a fine-grained detail120

to a concept i in hc, or (2) the deletion of a redundant concept from hc. We define two sets of edit121

candidates: D+, consisting of all possible fine-grained details that can be added to concepts in hc,122

and D−, consisting of all concepts in hc that may be removed. The full candidate set is defined as123

D = D+ ∪D−.124

Inspired by coarse-to-fine strategies in computer vision—where a coarse image is first generated and125

then refined with fine-grained details (Tian et al., 2024)—we formulate the transition from hc to hf126

as an additional step building on Equation 1, which provides the initial hc.127

P (hf |b, hc) = P ({d1, . . . , dm}|b, hc, D) (3)

This formulation turns P (hf | b, hc) into a combinatorial optimization problem, where the objective128

is to select a subset of edits d1, . . . , dm ⊆ D. Let |D| = n and |d1, . . . , dm| = m. The search129

space has at least combinatorial complexity Cm
n = n!

m!(n−m)! . This makes the problem particularly130
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challenging due to three factors: (1) both m and n are unknown; (2) the candidate set D is itself131

implicit and potentially very large; and (3) the edits di are not independent—errors early in the132

reasoning chain can propagate and impair later decisions.133

2.3 Algorithmic Motivation for Hierarchical Heuristic Search (HHS)134

Fine-grained hypothesis generation is generally intractable due to the exponential growth of the135

search space, where the candidate set |D| is often large or prohibitively so.136

A notable exception occurs when the problem exhibits an optimal substructure—i.e., an optimal137

solution can be composed from the optimal solutions to its subproblems. This principle underlies138

dynamic programming, where solutions are built incrementally from smaller subproblems (first try to139

obtain the optimal solution for a smaller subproblem and then iteratively find the optimal solution for140

larger subproblems).141

We observe that fine-grained hypothesis generation exhibits an optimal substructure. Specifically, the142

edits d1, . . . , dm can be organized hierarchically: some address high-level concepts (e.g., functional143

groups, catalyst classes), while others specify low-level details (e.g., reagents, catalysts, temperature,144

concentration). We assume these edits can be partitioned into p hierarchical levels (p > 1), with145

higher levels corresponding to finer details. Then the overall problem can be seen as to determine d in146

{1, . . . , p} hierarchies. The subproblem of it can be seen as the determination of d in {1, . . . , p− 1}147

hierarchies, etc. Then it is obvious that the optimal solution of a problem can be derived from the148

optimal solution of its subproblem, etc.149
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Figure 1: Hierarchies designed for chemistry.

Figure 1 illustrates an example hierarchical decomposition for chemistry, developed in collaboration150

with domain experts (PhD-level chemists). The hierarchy spans from high-level mechanistic intent to151

low-level experimental configurations, reflecting the granularity typically considered when translating152

a conceptual hypothesis into a testable laboratory procedure in chemistry.153

Now we have simplified the problem of determining d in all p hierarchies into the iteration of154

determining d in each hierarchy sequentially. Nonetheless, even within a single hierarchy, the number155

of candidates remains combinatorially large.156

A practical approach to this combinatorial complexity is to use heuristics that approximate solutions157

rather than exhaustively searching for exact ones. This aligns with how chemists refine hypotheses:158

given that hc often represents an unexplored direction, explicit candidate details d are rarely retriev-159

able from existing databases. Instead, chemists often rely on domain knowledge and intuition to160

heuristically identify and iteratively refine plausible details.161

Analogously, we propose to leverage LLMs’ internal heuristics to guide the search for d at each162

hierarchical level. As LLMs advance, their heuristics—emerging from pretraining over extensive163

scientific corpora—increasingly approximate, and in some cases surpass, those of human experts. By164

developing methods that maximally exploit these heuristics for fine-grained hypothesis generation,165

we aim to provide scientists with progressively greater support as LLMs’ capacities grow.166

In this setting, the candidate space D is not explicitly enumerated but is implicitly embedded within167

the LLM’s internal knowledge and reasoning capabilities. The LLM does not select d from a168

predefined list, but rather proposes candidates by navigating this latent, heuristic-driven space.169
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2.4 Hierarchical Factorization of the Search Problem170

For formalization, we partition the implicit candidate space D into p hierarchical levels, where171

D(i) ⊆ D represents all potential edits at level i, and D∗(i) ⊆ D(i) denotes the (unknown) ground-172

truth edits. The j-th ground-truth edit at level i is denoted as d∗(i)j ∈ D∗(i). Since D is implicitly173

determined by hc, we have P (D | hc) = 1, and explicitly condition on D for clarity in the subsequent174

factorization. Applying the chain rule hierarchically, Equation 3 can be reformulated as:175

P (hf | b, hc) = P
(
{D∗(1), . . . , D∗(p)} | b, hc, D

)
(4)

=

p∏
i=1

P
(
D∗(i) | b, hc, D

∗(<i), D(i)
)

(5)

=

p∏
i=1

|D∗(i)|∏
j=1

P
(
d
∗(i)
j | b, hc, D

∗(<i), d
∗(i)
<j , D(i)

)
, (6)

where D∗(<i) = {D∗(1), . . . , D∗(i−1)} and d
∗(i)
<j = {d∗(i)1 , . . . , d

∗(i)
j−1}.176

The key advantage of this hierarchical factorization is that at each level i, the search is restricted to177

the reduced candidate set D(i) rather than the full space D, significantly narrowing the search space.178

Moreover, as we will show in § 2.6, this hierarchical decomposition smooths the reward landscape179

at each hierarchy level, facilitating more stable optimization and enabling the discovery of stronger180

local optima in the hypothesis space.181

2.5 LLM-Based Implementation of Hierarchical Heuristic Search182
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Figure 2: Overview of the proposed Hierarchical Heuristic Search (HHS) framework.

We implement HHS as an LLM-driven agentic process that directly follows the hierarchical factor-183

ization formalized in Equation 6. As shown in Figure 2, at each hierarchy level i, Hi−1 represents184

the accumulated edits from all previous levels, corresponding to D∗(<i). Within the current level,185

hprev denotes the partial hypothesis incorporating the edits selected up to step j−1, i.e., d∗(i)<j . The186

candidate set D(i) is not explicitly enumerated but emerges implicitly from the LLM’s internal187

heuristics, conditioned on the background b, the hypothesis direction hc, and the edits selected so far.188

Specifically, the search for a local optimum hj
i begins from the initial point hi−1, using contextual189

information from b, hc, and Hi−2. For hierarchy level i = 1, we set h0 = hc and H0 = ∅, making190

the hypothesis direction hc the starting point.191

At each iteration, the Add one d at level i module prompts an LLM to propose an edit d to hprev,192

producing a candidate hcur, which is then refined once for validity, novelty, and specificity. The193

hcur > hprev module evaluates whether the new hypothesis improves upon the previous one via194

LLM-based pairwise comparison, serving as an internal gradient signal.195
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This search process continues until no further improvement is observed over k consecutive steps196

(default k = 3), at which point the current hypothesis is accepted as a local optimum. Each edit d197

may involve either an addition or a deletion, allowing the search path to include retrospection and198

self-correction as needed.199

Within each hierarchy level, we adapt the design of an evolutionary unit (Yang et al., 2024b) to our200

task, where the search for the local optimum hi is independently repeated multiple times (set to three201

in our implementation), yielding distinct local optima h1
i , h2

i , and h3
i . These candidates are then202

passed to a recombination module, which integrates their complementary strengths to interpolate a203

potentially superior local optimum hi within the subspace spanned by h1
i , h

2
i , h

3
i .204

2.6 Theoretical Analysis: Smoothing Effects of Hierarchical Heuristic Search205
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Figure 3: The smoothing effect of hierarchy on the hypothesis space performance landscape.

A key observation is that a hypothesis candidate’s performance at a higher hierarchy level can be206

viewed as an aggregated estimate—approximating an average or soft maximum—of its lower-level207

subspace. For instance, when evaluating a coarse-grained concept like “hierarchical 3D copper,”208

the LLM may implicitly account for diverse fine-grained structural variants, some highly relevant,209

others ineffective. We hypothesize that the LLM’s higher-level assessment aggregates these outcomes,210

weighting promising variants within the broader distribution to produce an overall estimate of the211

concept’s expected potential.212

Building on this observation, the hierarchical abstraction smooths the reward landscape at higher213

levels by attenuating local irregularities in the fine-grained space, as the performance of a point at a214

higher level can be interpreted as an approximate aggregation or average of the performance across215

its corresponding lower-level subspace. This effect is illustrated in Figure 3 (a simplified schematic216

projection into a 1D space). Consequently, direct search over the flat, non-hierarchical space tends217

to be highly rugged and non-convex, often leading to premature convergence to suboptimal local218

optima. In contrast, introducing hierarchical structure progressively smooths the landscape, enabling219

more stable and efficient optimization, particularly at higher levels.220

This smoothing effect can also be interpreted in the frequency domain as a form of low-pass filtering,221

where high-frequency components of the landscape are attenuated, resulting in a spectral cutoff in the222

spatial frequency domain, as illustrated in Figure 4.223
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Figure 4: Spectrum of the performance landscape over the hypothesis space: hierarchical design as a
low-pass filter attenuating high-frequency irregularities.

3 Experiment: Investigating the Four Fundamental Questions224

3.1 Benchmark Construction, LLM Selection, and Baselines225

To our knowledge, no existing benchmark provides annotated fine-grained scientific hypothe-226

ses—detailed enough for direct experimental execution. A critical consideration in constructing227

such a benchmark is minimizing data contamination by ensuring the LLM has not been exposed to228

the annotated data during pretraining. We extend the TOMATO-Chem dataset (Yang et al., 2024b),229

which contains 51 chemistry papers published and made available online after January 2024 in230

leading journals such as Nature and Science. Each entry is annotated with a research background b231

and a coarse-grained hypothesis hc. For this study, two PhD-level chemists further annotated these232

examples with fine-grained hypotheses hf , providing ground-truth references for evaluation. To233

rigorously avoid data contamination, all experiments are conducted using GPT-4o-mini, whose234

pretraining data cutoff is October 2023.235

We compare HHS against two strong baselines widely used in search tasks: (1) greedy search and (2)236

greedy search with self-consistency. The latter serves as an ablation of HHS where the hierarchical237

decomposition is removed, performing the search in a single stage with each d sampled directly from238

the full candidate set D rather than hierarchy-specific subsets D(i). The self-consistency mechanism239

is similar to the Recombination module in Figure 2, which interpolate multiple local optima trying to240

find a better one. Greedy search represents a further ablation, disabling the Recombination module241

entirely and following a single search trace where the first found local optimum (h1
i ) is directly242

adopted as the output (hi = h1
i in Figure 2).243

3.2 Experiments on the Questions244

Due to page limit, the experiments for Q1, Q2, Q3, and Q4 can be found at Appendix § A, § B, § C,245

and § D, correspondingly. The conclusions to each of the question correspondingly are:246

• HHS can lead to better local optimum than the baseline methods.247

• The better local optimum found (judged by LLMs without reference), the better recall of248

number of components in the groundtruth hypothesis (judged by LLMs with reference).249

• Repetitive usage of the best LLMs for providing the reward landscape outperforms the usage250

of diverse LLMs in similar capacity.251

• Repetitive usage of the same LLMs multiple times to provide the reward landscape outper-252

forms using it only once.253

4 Related Work254

LLM-driven scientific discovery methods typically fall into two categories: (1) direct generation of255

hypotheses from a research background—comprising a research question and established method-256

ologies (Qi et al., 2023); or (2) retrieval of seemingly unrelated but potentially useful knowledge257

fragments—termed inspirations—which are then combined with the background to construct a258
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hypothesis (Yang et al., 2024a,b; Wang et al., 2024; Liu et al., 2025). While these methods have259

shown promise in generating novel ideas, they are often criticized for producing hypotheses that are260

overly coarse, lacking in detail, or omitting actionable experimental steps (Wang et al., 2024; Hu261

et al., 2024; Si et al., 2024). In contrast, our goal is to investigate how LLMs can be leveraged to262

generate fine-grained scientific hypotheses—those sufficiently detailed to be directly implemented in263

laboratory settings. Notably, inspiration-based hypotheses from prior work (Yang et al., 2024a,b)264

can serve as inputs to our framework in the form of coarse-grained hypothesis directions. These265

hypotheses emphasize novelty, as they often draw from previously unassociated knowledge, while266

our work complements them by enhancing experimental specificity and validity.267

5 Conclusion268

We present the first systematic study of fine-grained scientific hypothesis discovery with LLMs,269

framing it as a combinatorial optimization problem. To address the vast, implicit search space, we270

propose hierarchical heuristic search (HHS), which incrementally refines hypotheses from coarse271

to fine-grained levels. HHS smooths the reward landscape, stabilizes optimization, and consistently272

finds higher-quality hypotheses than flat search methods. Experiments show that (1) HHS reliably273

discovers better local optima than baselines, (2) LLM-preferred hypotheses align more closely with274

expert ground truths, and (3) repeated use of the strongest model provides better reward landscapes275

than diverse ensembles. These results underscore the value of hierarchical search in exploring more276

LLMs’ potential for scientific discovery.277
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A Q1: How to Best Harness an LLM’s Internal Heuristics to Formulate the388

Fine-Grained Hypothesis It Itself Would Judge as the Most Promising389

Among All Possible Hypotheses It Might Generate?390

We frame this question as an optimization problem: Given only a coarse-grained hypothesis hc as the391

starting point, and relying entirely on a single LLM, how can we navigate the hypothesis space to392

approach the global optimum of the performance landscape, as defined by this same LLM’s internal393

heuristics, where each optimization step consists of adding an edit d to hc? In this setting, the LLM394

plays a dual role: it serves both as the proposal generator, proposing candidate edits d to formulate395

new hypotheses within the hypothesis space, and as the gradient provider, judging whether the new396

hypothesis improves upon the current one via its own internal heuristics (e.g., pairwise comparison).397

While it is inherently infeasible to determine whether a found local optimum represents the global398

optimum, we can empirically compare local optima obtained by different methods within the same399

performance pairwise evaluation, and therefore check which one is closer to a global optimum.400

As detailed in § 2, the hierarchical design of HHS offers two key advantages over flat search strategies:401

(1) less search space to propose each d (from D(i), instead of D), and (2) smoothing the performance402

landscape progressively in the hypothesis space. Among these, the smoothing effect is particularly403

critical, as it reduces the risk of early convergence to suboptimal local optima and facilitates progress404

toward higher peaks in the LLM’s internal performance landscape.405

We compare the local optima discovered by HHS against the two baselines. For each pair of local406

optima, we conduct both overall evaluations and dimension-specific assessments across four key407

criteria: effectiveness, novelty, detailedness, and feasibility. In this context, feasibility reflects the408

practical ease of implementing the proposed hypothesis, encompassing factors such as implementation409

complexity and the minimization of redundant steps. Hypotheses that are easy to implement and free410

of redundant components are preferred.411

We further observe two common trade-offs among these dimensions: (1) between effectiveness412

and novelty, as highly novel hypotheses often entail greater scientific risk and uncertainty; and (2)413

between detailedness and feasibility, as increased specificity can introduce procedural complexity or414

redundancies that diminish experimental feasibility.415

We also conducted an expert evaluation involving two chemistry PhD students. For each benchmark416

item, one hypothesis was randomly sampled from each method, and the experts were tasked to rank417

the three hypotheses. The results from both the LLM-based and expert evaluations on the quality418

of local optima discovered by each method are presented in Table 1. To mitigate known position419

bias in LLM-based pairwise comparisons—where models tend to favor the first option (Li et al.,420

2024)—each pair of local optima was compared six times, with the order of presentation alternated421

every three times. A hypothesis was considered to win if it received more than three votes; a tie was422

recorded if both received exactly three votes.423

Effectiveness (LLM) Novelty (LLM) Detailedness (LLM) Feasibility (LLM) Overall (LLM) Overall (Expert)

HHS v.s. Greedy Search

Win 74.51% 41.18% 71.57% 67.65% 73.53% 76.47%
Tie 18.63% 18.63% 28.43% 10.78% 18.63% 15.69%
Lose 6.86% 40.20% 0.00% 21.57% 7.84% 7.84%

HHS v.s. Greedy Search + Self-consistency

Win 59.31% 42.16% 56.37% 48.53% 53.43% 74.51%
Tie 24.02% 8.33% 43.14% 18.63% 33.82% 17.65%
Lose 16.67% 49.51% 0.49% 32.84% 12.75% 7.84%

Greedy Search + Self-consistency v.s. Greedy Search

Win 57.84% 48.04% 29.41% 51.96% 54.90% 62.75%
Tie 22.55% 11.76% 65.69% 18.63% 34.31% 21.57%
Lose 19.61% 40.20% 4.90% 29.41% 10.78% 15.69%

Table 1: Comparison between HHS and baseline methods across LLM-based and expert evaluations.
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B Q2: Whether Hypotheses Judged Better by LLMs Exhibit Stronger424

Alignment With Ground-Truth Hypotheses?425

Soft Recall Hard Recall

Greedy Search 16.60% 9.90%
w/ Self-consistency 31.50% 17.70%

HHS 40.40% 23.00%

Table 2: Recall of ground-truth compo-
nents by discovered hypotheses.

§ A shows that HHS consistently discovers superior local426

optima compared to baseline methods. We further investi-427

gate whether these optima exhibit stronger alignment with428

the ground-truth hypotheses.429

Given the absence of established metrics for this task, we430

propose an LLM-based evaluation that quantifies how well431

discovered hypotheses recall key chemical components432

of the ground-truth. Each hypothesis is decomposed into433

components regarding to the research question, and recall is assessed for each ground-truth component434

on a 0–3 scale, where 0 denotes no recall and 3 denotes an exact match.435

We report two metrics: (1) Soft Recall, which counts a component as recalled if its score is greater436

than 0, normalized by the total number of components; (2) Hard Recall, which sums the raw 0–3437

scores and normalizes them by the maximum possible score.438

As shown in Table 2, the hypotheses discovered by HHS (which are preferred by LLMs, as demon-439

strated in § A) achieve consistently higher recall with the ground-truth hypotheses.440

C Q3: Whether Defining the Reward Landscape With an Ensemble of441

Diverse LLMs of Similar Capacity Yields Better Outcomes Than Using442

Multiple Instances of the Strongest LLM Within That Group?443

EF (GT) NV (GT) DT (GT) FS (GT) OV (GT) EF (GM) NV (GM) DT (GM) FS (GM) OV (GM)

Mixed committee v.s. GPT-4o-mini committee GPT-4o-mini committee v.s. Gemini-1.5-flash committee

Win 20.83% 33.33% 14.58% 33.33% 29.17% 27.08% 31.25% 14.58% 0.00% 18.75%
Tie 41.67% 20.83% 72.92% 18.75% 33.33% 58.33% 52.08% 77.08% 95.83% 68.75%
Lose 37.50% 45.83% 12.50% 47.92% 37.50% 14.58% 16.67% 8.33% 4.17% 12.50%

Gemini-1.5-flash committee v.s. GPT-4o-mini committee Mixed committee v.s. Gemini-1.5-flash committee

Win 16.67% 25.00% 6.25% 37.50% 16.67% 16.67% 33.33% 12.50% 6.25% 18.75%
Tie 41.67% 27.08% 79.17% 25.00% 52.08% 68.75% 35.42% 75.00% 93.75% 64.58%
Lose 41.67% 47.92% 14.58% 37.50% 31.25% 14.58% 31.25% 12.50% 0.00% 16.67%

Mixed committee v.s. Gemini-1.5-flash committee Mixed committee v.s. GPT-4o-mini committee

Win 29.17% 45.83% 10.42% 47.92% 27.08% 8.33% 29.17% 14.58% 6.25% 8.33%
Tie 56.25% 16.67% 85.42% 10.42% 50.00% 77.08% 39.58% 70.83% 93.75% 64.58%
Lose 14.58% 37.50% 4.17% 41.67% 22.92% 14.58% 31.25% 14.58% 0.00% 27.08%

Table 3: “EF”: Effectiveness, “NV”: Novelty, “DT”: Detailedness, “FS”: Feasibility, “OV”: Overall.
“(GT)” and “(GM)” indicate that the pairwise evaluations were conducted by GPT-4o-mini and
Gemini-1.5-flash, respectively.

The hypothesis optimization in HHS depends on the “hcur > hprev?” module (Figure 2), which444

provides the gradient signal. This raises the question: does a diverse ensemble of similarly capable445

LLMs enhance search performance compared to multiple instances of its strongest model?446

To answer this, we design three experimental settings: (1) Mixed Committee: the “hcur > hprev?”447

module is implemented by an ensemble of three different LLMs—GPT-4o-mini (OpenAI, 2024),448

Gemini-1.5-flash (Georgiev et al., 2024), and Claude-3-haiku (Anthropic, 2024); (2) GPT-4o-449

mini Committee: the module is implemented by three instances of GPT-4o-mini; (3) Gemini-1.5-450

flash Committee: the module is implemented by three instances of Gemini-1.5-flash. All three451

settings use GPT-4o-mini as the proposer module for generating edits d at each hierarchy level i.452

We compare the local optima generated by these setups using LLM-based pairwise comparisons,453

following the protocol in § A, where each pair is evaluated six times to mitigate position bias. However,454

since the evaluator is itself an LLM, an additional bias may occur—favoring optima discovered using455
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gradients from the same model. To control for this, we conduct two sets of evaluations: one using456

GPT-4o-mini as the evaluator, and the other using Gemini-1.5-flash.457

As shown in Table 3, across both evaluators, the GPT-4o-mini committee consistently outperforms458

the mixed committee, which in turn outperforms the Gemini-1.5-flash committee. These results459

suggest that leveraging repeated instances of the strongest single model provides a more effective460

gradient for hypothesis optimization than combining different models of similar capacity.461

D Q4: Do Multiple Identical LLMs Provide a Better Reward Landscape462

Than a Single LLM?463

Effectiveness (LLM) Novelty (LLM) Detailedness (LLM) Feasibility (LLM) Overall (LLM)

HHS-1 v.s. HHS-3

Win 21.08% 25.49% 4.41% 41.67% 8.82%
Tie 57.35% 28.92% 94.12% 28.92% 82.35%
Lose 21.57% 45.59% 1.47% 29.41% 8.82%

Table 4: Pairwise comparison between HHS-1 and HHS-3.

In prior experiments (Tables 1 and 2), the reward landscape was defined using an ensemble of three464

identical LLMs, followed by a fourth instance of the same LLM that aggregated the three judgments465

into a final, reasoned decision. In the experiment corresponding to Table 3, the reward landscape466

was defined using an ensemble of three diverse LLMs of similar capacity, with aggregation again467

performed by a fixed instance of GPT-4o-mini. However, the extent to which this ensemble-based468

reward landscape improves performance compared to using a single LLM remains unclear.469

To evaluate this, we compare two variants: HHS-3, which uses an ensemble of three identical instances470

of GPT-4o-mini to provide the reward signal, and HHS-1, which relies on a single instance of the471

same model.472

Table 4 reports LLM-based pairwise evaluations between the two setups across four criteria. While473

overall quality, effectiveness, and detailedness are largely comparable, HHS-3 outperforms in novelty,474

whereas HHS-1 shows an advantage in feasibility.475

This result is somewhat counterintuitive. Although both HHS-3 and HHS-1 use the same base476

LLM, they differ in how the gradient signal—that is, the decision of whether a new hypothesis477

improves upon the current one—is computed. In HHS-3, three independent comparative judgments478

are sampled using the same LLM, and a fourth instance of the same model aggregates these judgments479

by evaluating the underlying rationales and selecting the most justified preference.480

Crucially, this summarization step is not a simple majority vote. Instead, the LLM is explicitly481

instructed to assess the relative strength of reasoning across all three perspectives and to favor482

the most compelling argument. This setup implicitly allows the model to surface and validate483

minority-supported but well-reasoned views, enabling exploration of more novel or unconventional484

hypotheses.485

As a result, the aggregated gradient signal in HHS-3 may be more receptive to creative or atypical486

ideas that would otherwise be dismissed in a single-shot comparison. In contrast, HHS-1 relies on487

only a single comparative judgment per step, which reflects a narrower and more internally consistent488

heuristic perspective. This tends to produce more conservative refinements—favoring feasibility and489

coherence, but often at the cost of novelty.490

The observed trade-off—greater novelty in HHS-3 and greater feasibility in HHS-1—thus stems not491

from classical ensemble averaging, but from the summarizing LLM’s ability to integrate diverse492

heuristic signals in a principled manner during hypothesis evaluation.493

Table 5 presents the recall of ground-truth components for hypotheses generated by HHS-1 and494

HHS-3. Across both soft and hard recall metrics, HHS-3 outperforms HHS-1, indicating stronger495

alignment with expert-annotated reference hypotheses.496

13



Soft Recall Hard Recall

HHS-3 40.40% 23.00%
HHS-1 32.40% 19.90%

Table 5: Recall of groundtruth components of groundtruth hypotheses between HHS-1 and HHS-3.

These results suggest that while the performance gains from ensembling are relatively modest, using497

multiple identical LLMs to define the reward landscape may yield a more reliable and diverse498

evaluation signal than relying on a single instance.499

E Expert Evaluation Instructions500

For each research question, you will be presented with three candidate hypotheses alongside a501

ground-truth fine-grained hypothesis. The order of the hypotheses is randomized. Your task is to502

rank the three candidate hypotheses based on their quality, using the ground-truth hypothesis as a503

reference.504

Please evaluate the hypotheses based on the following four criteria:505

• Effectiveness: How well the hypothesis addresses the research question.506

• Novelty: The degree of originality relative to existing knowledge.507

• Detailedness: The specificity and clarity of the hypothesis.508

• Feasibility: The practical plausibility of experimentally testing or implementing the hypoth-509

esis.510

Note that two tradeoffs may arise:511

• Between effectiveness and novelty512

• Between detailedness and feasibility513

Use your expert judgment to rank the hypotheses based on a holistic assessment of these criteria. In514

rare cases where two hypotheses appear to be of similar quality, assigning them the same rank is515

acceptable.516

F Case Study517

Example 1:518

• Research Question: How can a cost-effective N-type quasi-solid-state thermocell be devel-519

oped to boost electricity production from low-grade heat by improving both ion transport520

efficiency and electrode performance?521

• Hypothesis Candidate (from HHS): The development of a cost-effective N-type quasi-solid-522

state thermocell will be achieved through the strategic integration of three core components523

to enhance electricity production from low-grade heat (≤100°C):524

1. Hierarchical Metal Electrodes: Constructed from a copper-nickel alloy (70% Cu,525

30% Ni) optimized for conductivity and corrosion resistance, these electrodes will526

feature a dual-layer design incorporating a titanium dioxide (TiO2; CAS number:527

13463-67-7) coating, precisely controlled at a thickness of 100 nm to enhance charge528

transport by providing a stable interface that reduces charge recombination losses. An529

aluminum oxide (Al2O3; CAS number: 1344-28-1) layer will be included to improve530

corrosion resistance and reinforce mechanical stability, operating synergistically to531

enhance the overall electrochemical performance. The fabrication process will utilize532

an eco-friendly dual-step electrochemical deposition in a 0.5 M potassium sulfate533

electrolyte at a controlled temperature of 25°C, ensuring micro- and nanoscale porosity534

targeting 50-100 nm to maximize surface area as supported by literature demonstrating535
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that this range optimally enhances charge transfer and ion migration efficiency. This536

degree of porosity is expected to lower charge transfer resistance significantly, fostering537

improved electrochemical kinetics, which will be verified using scanning electron538

microscopy (SEM) for monitoring thickness and porosity.539

2. Metal-Based Redox Couples: The thermocell will utilize copper/copper(I) and540

nickel/nickel(II) redox couples, selected for their favorable redox potentials to minimize541

side reactions. An integrated cobalt co-catalyst (0.1 M) will serve as an effective542

stabilizing agent, enhancing electron transfer kinetics and maintaining the oxidation543

states of Cu2+ and Ni2+ during thermal cycling, as demonstrated by prior studies544

indicating its role in fostering electron transfer efficiency. Real-time monitoring will545

maintain pH levels between 4-7, with adjustable concentrations of redox couples546

systematically optimized between 0.5 to 1.5 M based on insights from the literature547

regarding their stability and reactivity under varying operational conditions, with548

specific methodologies for pH adjustments clearly defined to ensure minimal disruption549

during testing.550

3. Anisotropic Polymer Materials: The polymer matrix will feature aligned functional551

groups (-COOH and -SO3H), which will be developed through controlled mechanical552

stretching (5 mm/min at 70°C), a technique known to enhance ionic transport path-553

ways by promoting favorable interactions between the polymer backbone and ionic554

species. High-conductivity ionic species, specifically Na+ and Li+, will be incorpo-555

rated at optimized concentrations (0.5 to 1.0 M), with clear justifications based on556

their advantageous solvation properties and diffusion characteristics. The impact of557

variations in thermal conditions on ionic conductivity will be quantitatively assessed558

through impedance spectroscopy, with diffusion coefficients measured to elucidate559

the mechanisms of ionic mobility, providing a detailed connection between thermal560

gradients and polymer performance.561

This approach clarifies the synergistic interactions and functional enhancements among562

hierarchical metal electrodes, optimized redox couples, and engineered polymer materials,563

establishing a cohesive mechanism that uses low-grade heat to drive efficient ion migration564

and electron transfer within the quasi-solid-state thermocell.565

• Expert’s Analysis: The study addresses the question of how to develop a cost-effective566

N-type quasi-solid-state thermocell to enhance electricity production from low-grade heat by567

improving both ion transport efficiency and electrode performance. The response provides568

a detailed and logically structured explanation, covering key aspects related to electrodes,569

redox pairs, and polymer gel media. Specifically, the preparation of Hierarchical Metal570

Electrodes is highlighted, noting the primary use of copper-containing electrodes, with571

a clear principle of providing a stable interface, which aligns well with the ground truth572

(gdth) description of 3D hierarchical copper electrodes. Additionally, the study includes573

specific characterization of the electrode surface using SEM. However, while the polymer574

gel mentions an anisotropic alignment structure, it omits the specific operational methods575

for forming this alignment, which is inconsistent with the gdth. Nevertheless, the overall576

response encompasses detailed mechanistic explanations and core points related to the577

specific operations.578

Example 2:579

• Research Question: How can a Supramolecular amorphous glass material be engineered580

to simultaneously exhibit strong mechanical properties, optical transparency, self-healing581

capabilities, and adhesive strength at room temperature?582

• Hypothesis Candidate (from HHS): The engineering of multifunctional peptide-based583

supramolecular amorphous glass materials will concentrate on creating a robust dynamic584

network facilitated by cooperative reversible hydrogen bonds derived from interactions585

among four key amino acids: lysine, glutamic acid, aspartic acid, and tyrosine, along with586

proline to enhance rigidity. The hypothesized molar ratios will be set at 1:1 for lysine and587

glutamic acid, complemented by approximately 0.5:0.5 ratios for aspartic acid and tyrosine.588

These ratios are supported by empirical studies that have shown that such compositions589

can optimize hydrophilic and hydrophobic interactions, which are essential for improving590

mechanical strength, adhesion, andself-healing capabilities .591
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Lysine’s positively charged ammonium group is hypothesized to establish strong ionic592

interactions with the negatively charged carboxylate groups of glutamic acid and aspartic593

acid, enhancing the stability of the hydrogen-bonding framework critical for effective energy594

dissipation during mechanical stress. Tyrosine will contribute to the network through π-595

stacking interactions, which are expected to maintain the structural integrity and optical596

transparency of the material under load. Proline’s unique cyclic structure is anticipated597

to provide localized rigidity, supporting favorable peptide conformations and facilitating598

effective stress distribution throughout the dynamic network.599

A pivotal component of this dynamic system will be the incorporation of structured water ,600

maintained at an optimal concentration of 10–15% by weight. Structured water is theorized601

to engage in specific hydrogen bonding interactions with the peptide backbone, promoting602

molecular mobility and enabling rapid bond reformation necessary for self-healing capa-603

bilities at room temperature. The investigation will differentiate between structured and604

unstructured water forms, examining the specific interactions that influence bond lifetimes605

and recovery dynamics under mechanical stress. Previous research indicates that the interac-606

tions between structured water and the peptide backbone are critical for maintaining bond607

lifetimes during stress, and these dynamics will be quantitatively assessed through methods608

such as differential scanning calorimetry (DSC) and rheological measurements.609

The synthesis of these peptide assemblies will be executed under rigorously controlled610

environmental conditions. The reaction temperature will be maintained at 25°C to optimize611

amino acid interactions and prevent degradation, while systematic variations in pH (5.5 to612

8.5) will be conducted to explore their effects on the ionization states of the amino acids and613

corresponding hydrogen bonding dynamics. Additionally, ionic strength will be regulated614

at approximately 0.15 M using sodium chloride, which is expected to enhance electrostatic615

interactions and stabilize the hydrogen bonding network.616

To thoroughly investigate these interactions and material properties, a combination of exper-617

imental methodologies will be utilized. Dynamic Mechanical Analysis (DMA) will assess618

mechanical properties such as tensile strength and elasticity, while rheological assessments619

will evaluate the material’s response under stress. Spectroscopic techniques, including NMR620

spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy, will be employed to621

elucidate hydrogen bonding dynamics and monitor molecular interactions. This comprehen-622

sive approach aims to clarify the intricate relationships among amino acids and structured623

water dynamics, as well as the influences of environmental conditions on the multifunctional624

properties of the engineered peptide-based supramolecular materials.625

• Expert’s Analysis: In addressing the research question—"How can a supramolecular amor-626

phous glass material be engineered to simultaneously exhibit strong mechanical properties,627

optical transparency, self-healing capabilities, and adhesive strength at room tempera-628

ture?"—the generated scientific hypothesis proposes a notably complex system. This system629

is envisioned to comprise five distinct amino acids: lysine, glutamic acid, aspartic acid,630

tyrosine, and proline.631

Despite the increased complexity of this multi-component approach compared to the simpler632

system underlying the real hypothesis (the scientific finding concerning YYY peptide glass),633

several key conceptual parallels are evident: Shared Foundation in Peptide-Based Materials:634

At their core, both the generated hypothesis and the real scientific finding are centered635

on peptide-based materials as the fundamental building blocks for the desired amorphous636

glass.Convergent Aim for Dynamic Networks and Functional Properties: Both frameworks637

leverage their respective peptide systems with the goal of establishing a dynamic network.638

This network is considered crucial for imbuing the material with critical functionalities,639

particularly self-healing capabilities and effective adhesive strength.Emphasis on the Role of640

Structural Water: In their mechanistic considerations, both hypotheses significantly highlight641

the indispensable role of structural water. The real hypothesis (the scientific finding on642

YYY glass) successfully demonstrated that a dense, random hydrogen-bonding network,643

mediated by water molecules, is fundamental to the YYY glass’s unique structure and its644

observed properties. The generated hypothesis also underscores the centrality of cooperative645

and reversible hydrogen bonds in the construction and operational dynamics of its proposed646

network.647

Example 3:648
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• Research Question: How can computational methods be used to accurately predict and im-649

prove the reactivity and selectivity of modular diazo transfer (MoDAT) reactions, especially650

reactions with primary amines? And to design new reagents based on computational models.651

• Hypothesis Candidate 1 (from HHS): We propose to systematically investigate the reactivity652

and selectivity of modular diazo transfer (MoDAT) reactions utilizing azide-based reagents,653

with a specific focus on para-substituted benzyl azide derivatives modified with strong654

electron-withdrawing groups (EWGs) such as nitro (–NO2) and cyano (–CN), as well as655

weaker electron-withdrawing groups (e.g., fluoro (–F) and chloro (–Cl)), and electron-656

donating groups (EDGs) like methoxy (–OCH3). Our central hypothesis posits that the657

electronic nature and precise positioning of these substituents will significantly modulate the658

electrophilicity of the azide moiety, which will in turn influence the stability and geometrical659

configurations of intermediates and transition states during nucleophilic attacks by primary660

amines.661

The experimental work will be executed under controlled laboratory conditions using a662

Schlenk line to maintain an inert nitrogen atmosphere for at least 30 minutes prior to reaction663

initiation, minimizing moisture exposure. Reactions will be conducted at a temperature664

of 95–105°C, chosen based on literature findings indicating optimal kinetic performance665

while preserving the stability of diazo intermediates. We will employ polar aprotic solvents666

such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), which are anticipated667

to enhance solvation of the azide and improve nucleophilicity of the primary amines. A668

stoichiometric ratio of 1:1.5 (benzyl halide to sodium azide) will be applied, and reactant669

concentrations will be maintained at approximately 10–20 mM, a range supported by670

preliminary studies demonstrating optimal reactivity and solubility.671

To deepen our mechanistic understanding, we will utilize advanced computational tech-672

niques, primarily Density Functional Theory (DFT) with specific emphasis on the B3LYP673

functional and a 6-31G(d) basis set. This will allow us to thoroughly assess the impacts674

of substituent variations on charge distributions and transition state energies. In particular,675

we will quantify how the introduction of strong EWGs influences the electrophilicity of the676

azide, predicted to lower activation energy for nucleophilic attacks, while the EDGs may677

provide stabilization during transition state formation. A rigorous electronic structure analy-678

sis will be employed to visualize the overlap between the nucleophilic orbital of primary679

amines and the electrophilic centers of the diazo derivatives.680

To ensure a comprehensive evaluation of solvent effects, we will systematically conduct681

reactions in both polar protic solvents, such as ethanol, and polar aprotic solvents, like682

DMSO, maintaining a concentration of 50% v/v relative to the reaction volume. This will683

elucidate how solvent polarity and hydrogen-bonding capacity impact the stability of zwitte-684

rionic intermediates and transition states. Furthermore, we will establish a robust iterative685

feedback mechanism that directly correlates our computational predictions to empirical data686

from high-resolution techniques, including NMR spectroscopy and mass spectrometry. Dis-687

crepancies exceeding a predefined threshold—such as a 10% difference between predicted688

and observed yields—will prompt specific adjustments to our computational models, thus689

refining our understanding of the factors influencing MoDAT reactions. This structured690

approach aims to enhance the design of azide-based reagents tailored for improved reactivity691

and selectivity in synthetic applications involving primary amines.692

• Hypothesis Candidate 2 (Greedy + self-consistency): This study aims to investigate the re-693

activity and selectivity of modular diazo transfer (MoDAT) reactions by designing tailored694

azide-based reagents that incorporate strategically positioned electron-withdrawing groups695

(EWGs), specifically nitro (–NO2) and cyano (–CN) moieties. These groups will be sys-696

tematically evaluated at distances of 2 Å, 4 Å, and 6 Å from the azide functionality. This697

selection is grounded in existing literature, which suggests that such variations in EWG698

positioning can significantly influence the electrophilicity of the azide, thereby stabilizing699

transition states during nucleophilic interactions with primary amines. The specific rationale700

for these distances is based on prior studies indicating that alterations beyond these ranges701

may lead to diminished effects on reactivity or unfavorable sterics.702

The primary amines selected for this investigation—n-butylamine, phenethylamine, ben-703

zylamine, and ethylamine—exhibit varying degrees of steric hindrance and electronic704

characteristics, allowing for a comprehensive analysis of their reactivity profiles when paired705

with engineered azide reagents. This choice effectively captures a spectrum of nucleophilic706
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behavior and enhances our understanding of how both electronic and steric factors operate707

within MoDAT reactions.708

An integrated computational strategy will be employed utilizing density functional theory709

(DFT) calculations focused on the B3LYP functional, supplemented by other functionals710

(e.g., M06-2X and PBE0) to ensure accuracy and validation of outcomes. In addition to711

DFT, we will incorporate transition state theory and potentially machine learning approaches712

to analyze the reactivity patterns further. We will conduct extensive mapping of activation713

energy profiles and transition state geometries to uncover the relationships between EWG714

positioning, electron density distributions, and transition state stability. Molecular dynamics715

(MD) simulations will also be utilized to explore solvation effects across differing solvent716

environments, including acetonitrile, methanol, and DMSO, examining how these solvents717

influence reaction pathways and stabilize charged intermediates.718

Empirical validation of computational models will incorporate a structured approach to719

varying critical parameters such as azide reagent concentrations and molar ratios of primary720

amines to azides, along with solvent compositions, to derive quantitative metrics, including721

reaction yields, rate constants, and activation energies. Statistical analyses will employ722

techniques such as ANOVA and regression models to extract significant trends from the723

experimental data. This iterative feedback mechanism will facilitate a dynamic refinement724

process, whereby experimental outcomes directly inform adjustments to computational725

predictions. Through this comprehensive methodological framework, we aim to elucidate726

the interplay between EWG distances and steric factors, ultimately leading to the design of727

innovative azide-based reagents optimized for selective transformations of primary amines.728

• Hypothesis Candidate 3 (Greedy): This research aims to systematically investigate the re-729

activity and selectivity of modular diazo transfer (MoDAT) reactions utilizing azide-based730

reagents, focusing on a set of primary amines: benzylamine, 2-aminopropane, and cy-731

clohexylamine. This selection combines varying steric and electronic profiles, enabling732

comprehensive evaluation of how solvent and reaction conditions influence reactivity and733

selectivity across different nucleophilicity ranges. Initial studies will determine baseline734

reactivities through systematic kinetic measurements, assessing critical parameters such as735

rate constants and product ratios under controlled conditions.736

Reactant concentrations will be evaluated at specific increments of 0.1 M (0.1 M, 0.5 M,737

and 1.0 M), and the temperature will be optimized through a systematic approach involving738

stepwise assessments from 25°C to 60°C, analyzing how these variations affect reaction739

progress. A comprehensive assessment of solvent effects will be performed, including the740

examination of solvent mixtures (e.g., varying concentrations of water, DMSO, and possible741

co-solvents) to quantify their influence on nucleophilicity and overall reactivity.742

Advanced computational methods, including density functional theory (DFT) calculations743

with the M06-2X functional and a 6-31G basis set, will be employed to simulate the744

MoDAT reaction environment accurately. We will analyze key molecular descriptors such745

as nucleophilicity, electrophilicity, and steric hindrance to construct predictive models of746

reactivity. These analyses will guide experimental design, with a feedback mechanism747

where discrepancies between computational predictions and experimental observations will748

result in specific adjustments to molecular descriptors or computational parameters, refining749

the predictive capabilities of the models.750

Following these investigations, the design of innovative azide-based reagents will be under-751

taken to optimize MoDAT reactions. This design process will emphasize the incorporation752

of electron-withdrawing groups like trifluoromethyl and cyano, aimed at enhancing both sta-753

bility and selectivity by stabilizing the transition state. Rigorous standardized experimental754

protocols will ensure reproducibility, including specific techniques for measuring yields and755

selectivity ratios over controlled reaction durations. By integrating mechanistic insights from756

computational and empirical findings, this research will elucidate the key factors influencing757

reactivity and selectivity in diazo transfer reactions, enhancing our understanding of these758

critical processes.759

• Expert’s Analysis: 1 conducted a relatively comprehensive analysis, for instance, suggesting760

that modifying the azide reagent with functional groups could improve it, which aligns with761

the original text. However, 2 and 3 did not. This time, 1 has an obvious error: the speculated762

temperature is incorrect, and the proposed temperature is experimentally unfeasible, as azide763

reagents are prone to explosion at high temperatures. Of course, temperature is a minor764
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point, and overall, 1 is still acceptable. 2 deviates significantly from the original text in765

terms of the research design approach. Compared to 2, 3 lacks consideration of the group766

effect in the research design, making 3 the weakest. Finally, all three mentioned using DFT767

calculations, and although there are deviations in details from the original text, the approach768

is correct.769

Example 4:770

• Research Question: How can photoredox catalysis be used to exploit the latent reactivity of771

phosphorus ylides, allowing them to participate in a formal three-component cycloaddition772

that converts inert C–H and C=P bonds into C–C and C=C bonds, creating versatile synthetic773

building blocks in an efficient, controlled manner?774

• Hypothesis Candidate 1 (from HHS): The mechanism for activating phosphorus ylides in a775

formal three-component cycloaddition via photoredox catalysis can be articulated in four776

key steps, each supported by optimized experimental conditions:777

1. Initiation of Single-Electron Transfer (SET): Irradiation of phosphorus ylides with specific778

wavelengths of visible light (400–450 nm) from a high-intensity LED source (approximately779

20 mW/cm2), validated by studies demonstrating effective radical generation at this intensity780

(Smith et al., 2020), promotes SET using suitable photoredox catalysts (e.g., [Ru(bpy)3]2+ or781

[Ir(dF(CF3)ppy)2(bpy)]). The resulting radical cation exhibits enhanced electrophilicity due782

to significant charge localization, which is further assisted by strong electron-withdrawing783

substituents such as carbonyl or nitro groups. Empirical evidence indicates an increase in784

reactivity by up to 2.5-fold as supported by Hammett parameters.785

2. Stabilization via Zwitterionic Intermediate: The radical cation transitions to a zwitterionic786

intermediate, characterized by resonance stabilization through delocalized π-electrons787

and non-covalent interactions, such as hydrogen bonding in polar aprotic solvents like788

acetonitrile (dielectric constant ≈ 37) and DMSO (dielectric constant ≈ 47). To optimize789

stabilization, a 1:1 (v/v) mixture of these solvents will be used, taking advantage of their790

combined dielectric properties (≈ 38) to enhance charge separation and stabilize reactive791

intermediates. Literature supports this approach, showing improved reaction kinetics (Miller792

et al., 2021).793

3. Selective Nucleophilic Attack: The zwitterionic intermediate selectively engages in794

nucleophilic attacks on activated C–H and C=P bonds, particularly those adjacent to strong795

electron-withdrawing groups. Maintaining phosphorus ylide concentrations at 0.1-0.5 M796

and controlling reaction temperatures precisely within an optimized range of 10-25 °C, as797

indicated by previous studies on radical stability, will minimize side reactions. An inert798

atmosphere (nitrogen or argon) will be established by purging the reaction vessel for 30799

minutes before use, effectively mitigating oxidation. Real-time NMR (utilizing 1D and 2D800

techniques) and GC-MS metrics will be employed to monitor yield and product distribution801

effectively, specifying analytical conditions (e.g., temperature settings and flow rates) to802

ensure accurate assessment of outcomes.803

4. Concerted Formation of Products: The reaction culminates in the concerted formation of804

new C–C and C=C bonds, facilitating the synthesis of valuable carbocycles and synthetic805

building blocks. The influence of substituent identity and positioning (ortho, meta, para) on806

reactivity will be quantitatively analyzed using NMR and HPLC techniques. This systematic807

approach will provide insight into the efficiency and selectivity of the cycloaddition process,808

explaining how each factor contributes to overall reactivity.809

By integrating these components clearly and methodically, this hypothesis presents a com-810

prehensive exploration of how photoredox catalysis can unveil new reactivity pathways for811

phosphorus ylides, fully addressing the research question with explicitly defined roles of812

each mechanistic step and comprehensive definitions for specialized terms provided for813

clarity.814

• Hypothesis Candidate 2 (Greedy + self-consistency): This study aims to investigate how815

photoredox catalysis can elucidate specific reactivity mechanisms in diphenylphosphinyl816

ylides, focusing on their participation as intermediates in formal three-component cycload-817

dition reactions that convert inert alkyl C–H bonds and coordinated C=P bonds into C–C818

and C=C bonds. We will concentrate on diphenylphosphinyl ylides due to their capacity819

to facilitate charge inversion processes, which are crucial for generating stabilized radical820
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intermediates. Specifically, we will examine how the electronic structure of diphenylphos-821

phinyl ylides transforms upon excitation under visible light (e.g., at wavelengths of 400-450822

nm) into polar intermediates, leading to the generation of stable benzylic radicals from C–H823

bond cleavage and allylic radicals from C=P bond activation—both essential for effective824

cycloaddition.825

1. Charge Inversion Mechanisms: We will clarify the mechanisms of charge inversion by826

detailing the electronic transitions involved, emphasizing the role of excited state lifetimes827

and how solvent polarity affects the stabilization of generated radicals. Our discussion will828

include specific references to known photoredox systems and their operational parameters829

in literature, enhancing our findings with context.830

2. Role of π-Stacking Interactions: We will investigate the influence of π-stacking inter-831

actions, specifying the optimal inter-ring distances and energy considerations between the832

stabilized radicals and electrophilic carbon centers from substrates like 2,6-dibromoaryl833

and 2,4-difluoroaryl. This section will include quantitative assessments of radical coupling834

reactivity, aiming to determine coupling efficiencies and product selectivity through methods835

such as 1H NMR and UV-Vis spectroscopy.836

3. Solvent and Temperature Effects: We will analyze solvent effects by conducting reactions837

in a range of solvents with varied dielectric constants, including a thorough comparison838

of polar solvents like acetonitrile and non-polar solvents like dichloromethane. We will839

detail how these solvents are expected to influence radical stabilization and the kinetics of840

cycloaddition, providing a theoretical framework based on established solvent interaction841

models. Additionally, we will justify the controlled temperature range of room temperature842

to 50°C by linking it to the expected stability of radical intermediates and the kinetics of the843

reactions, ensuring optimal conditions for product yield and selectivity.844

4. Experimental Conditions: Reactions will be conducted under carefully controlled condi-845

tions, with temperature justification focusing on maintaining the balance between radical846

stability and reaction kinetics. We will outline how these conditions directly relate to the847

completed cycloaddition mechanism and the anticipated outcomes of the study.848

By systematically elucidating these mechanisms—specifically charge inversion, π-stacking849

interactions, and solvent effects—we aim to develop robust methodologies for the efficient850

generation of versatile synthetic building blocks from simple molecular precursors.851

• Hypothesis Candidate 3 (Greedy): Investigate how photoredox catalysis enhances the re-852

activity of phosphorus ylides through selective nucleophilic attack on α, β-unsaturated853

carbonyl compounds, such as crotonaldehyde, which are activated to form stable radical854

cation intermediates via photoredox-driven single-electron transfer (SET) processes. These855

radical cations, characterized by their electrophilicity, promote effective nucleophilic attacks856

by phosphorus ylides, generating stabilized carbon radical intermediates that significantly857

enhance their reactivity in subsequent bond-forming transformations. Conduct a formal858

three-component cycloaddition by introducing a nucleophilic amine, such as ammonia or an859

aniline derivative, selected based on its electronic properties which influence the stabilization860

of the radical intermediates and affect product selectivity. Detail specific optimized reaction861

conditions, including the use of polar aprotic solvents like acetonitrile, which facilitate862

radical stability, and employ a specific light wavelength of 400 nm to ensure efficient exci-863

tation of the photocatalyst. These conditions will be designed to minimize potential side864

reactions and maximize the conversion of inert C–H and C=P bonds into desired C–C and865

C=C bonds through well-defined mechanistic pathways, addressing the nuanced interplay866

between reaction parameters and final product outcomes.867

• Expert’s Analysis: 1 accurately predicted the light source wavelength range, metal catalyst868

system, and solvent system, such as the use of Ir catalyst and acetonitrile as the solvent, all869

of which align with the original text. In contrast, 2 only correctly predicted the wavelength870

range and solvent system but failed to specify the metal catalyst system, which is crucial871

in organic chemical reactions. Therefore, 2 is inferior to 1. Finally, 3 did not predict the872

light source wavelength range or the metal catalyst system, missing several key pieces of873

information, making it the weakest.874
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G Hypothesis Search Prompt875

The following prompt is used to guide both the baseline methods and our proposed method, HHS,876

during the hypothesis refinement process. To ensure fair comparison, the prompt is designed in877

a controlled way: we use a shared core prompt across all methods, with minimal differences.878

Specifically, the portion highlighted in orange is unique to HHS and introduces the hierarchical879

structure used in its search process.880

This design isolates the effect of hierarchical search. As illustrated below, the only difference between881

HHS and the baseline (Greedy Search + Self-Consistency) lies in the hierarchical prompting. The882

core content—including the role of the assistant, editing instructions, and structural expectations—is883

kept identical.884

This enables a controlled ablation-style comparison, attributing observed improvements specifically885

to the hierarchical design.886

The complete prompt is as follows:887

You are assisting with scientist’s research. Given their research question, a survey on the past methods888

for the research question, and a preliminary coarse-grained research hypothesis for the research889

question, please help to make modifications into the coarse-grained hypothesis, to make it one step890

closer to a more effective and more complete fine-grained hypothesis.891

The modification can be two-folds: (1): delete or change an existing improper detail or information892

in the existing hypothesis; (2) add and integrate one detail to the existing hypothesis. If you choose893

to add a detail, do not simply append new information to the existing hypothesis. Instead, think894

thoroughly how the new detail relates to the existing components and integrate it seamlessly into895

the hypothesis to create a new coherent and unified hypothesis. In addition if you choose to add a896

detail to a general information, if the corresponding general information is correct, you should try to897

keep the corresponding general information in the updated hypothesis and also mention the details,898

instead of replacing the general information with the details. In this way, it would be much easier for899

scientists to understand both the general infomration/structure and the details from your generated900

hypothesis. It would be also easier for scientists to propose better details, inspired by your suggested901

details, following the general information.902

Please remind that this is about research: research is about discover a new solution to the problem903

that ideally is more effective and can bring new insights. Usually we don’t need the hypothesis to904

contain lots of known tricks to make it work better: we want to explore the unknown, which ideally is905

more effective than the known methods and can also bring in new insights. Therefore, a research906

hypothesis is usually about a small set (usually less than eight) of major components (and lots of907

details on how to implement these major components), which overall composes a novel and complete908

solution to the research question, which potentially can bring in new insights. Hypotheses that include909

an excessive number of irrelevant or unnecessary major components, which do not contribute to910

addressing the research question, are less favorable, as we only want to know exactly what are the key911

components that fundamentally make the hypothesis work. If you think any ancillary components that912

can truly assist with the research question, you may mention what are the key components and what913

are the ancillary components to avoid the ambiguity of which components are the key component.914

The reaction mechanism, however, is not classified as a major component or detail (and therefore not915

limited by the number of major components). Instead, a novel and valid reaction mechanism can be a916

good source of insights. If previous hypothesis already contains too many major components, you917

should consider to replace some of the major components with more effective ones (but not to add918

more major components), or to give more details to the existing major components for clarity and919

ease of implementation (instead of adding or replacing major components).920

Here we are searching for the fine-grained hypothesis in a hierarchical way. The rationale is that, we921

can classify any complete set of modifications into several hierarchy, with different levels of details. If922

we do not search in a hierarchical way, we need to consider all the available details in all hierarchy923

levels for each search step, which (1) has a very high complexity, and (2) first search a low-level detail924

might largely influence the following search of a high-level detail: it might stuck in one high-level925

detail corresponding to the already searched low-level detail without considering the other low-level926

details corresponding to other high-level details, making the search process stuck in a local minumum927

at the beginning.928
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Here we roughly classify all possible modifications into five hierarchies: (1) Mechanism of the929

Reaction: Describes how the reaction proceeds at a conceptual level, focusing on electron flow, bond930

formation and breaking, and any intermediates or transition states involved. This is the theoretical931

“blueprint” that explains why the reaction works; (2) General Concept or General Component Needed:932

Identifies the type of reagent or functional group required (e.g., “a strong acid,” “a Lewis base,”933

“an activated aromatic ring”) without committing to a specific chemical. It outlines the broader934

roles that are necessary for the mechanism to proceed; (3) Specific Components for the General935

Concept: Narrows down from the general category to a particular substance (e.g., “concentrated936

HCl” for a strong acid, “benzene” for an aromatic ring). This makes the reaction hypothesis testable937

by specifying which chemicals fulfill the roles; (4) Full Details of the Specific Components: Provides938

exact structural or molecular information—such as SMILES strings, IUPAC names, purity, or CAS939

numbers. These details ensure clarity and reproducibility so researchers know precisely which940

substances to use; (5) Experimental Conditions: Specifies the practical setup—temperature, pressure,941

solvent system, reaction time, atmosphere, and any work-up procedures. This final layer describes942

how to carry out the reaction in a laboratory setting. And we are searching for modifications943

hierarchy by hierarchy: hierarchy (1) first, and then hierarchy (2), and so on. Hypothesis from944

a higher hierarchy is an expansion of the hypothesis from its previous hierarchy, with additional945

information described above.946

The research question is:947

The survey is:948

Now please help to make modifications into the coarse-grained hypothesis, to make it one step closer949

to a more effective and more complete fine-grained hypothesis. Please do not include the expected950

performance or the significance of the hypothesis in your generation. Please answer the question in951

the following response format. (response format: ’Reasoning Process: Revised Hypothesis: ’)952

H Expert Analysis of Hypothesis Quality953

H.1 Convergence to Ground-Truth Local Optima954

To complement our quantitative evaluations, we asked domain experts to qualitatively assess how955

well the hypotheses generated by HHS aligned with the expert-annotated fine-grained hypotheses in956

our benchmark.957

The distribution of expert assessments across all evaluated examples is as follows:958

• Reached a completely different region—likely a distinct local optimum with scientific959

plausibility: 60%960

• Reached the vicinity of the ground-truth local optimum, but with differing details:961

24%962

• Reached the vicinity of the ground-truth local optimum, but failed to fully elaborate or963

specify the key details: 16%964

Here, the “ground-truth local optimum” refers to the expert-extracted fine-grained hypothesis from a965

publication, which serves as the reference target. “Reaching the vicinity of a local optimum” indicates966

that the generated hypothesis converges to a coherent and internally consistent formulation that is967

conceptually close to the ground-truth hypothesis, though not necessarily identical in detail.968

The relatively high divergence rate (60%) reflects an inherent tradeoff in our experimental setup. For969

many research questions, multiple hypotheses can be plausible yet structurally distinct. Guiding the970

model toward the exact ground-truth hypothesis requires:971

1. initializing the search process from a starting point sufficiently close to the ground-truth972

optimum;973

2. but avoiding initialization that is too close or too specific, as this would risk leaking the974

ground-truth answer.975

To strike this balance, we derive the initial search point from the annotated coarse-grained hypothesis976

hc by applying an ambiguation procedure. This involves removing or abstracting key details to977
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produce a generalized version of hc—for example, replacing “a specific protein” with “a protein” or978

“a catalyst”—thus preserving the overall research direction while preventing answer leakage.979

Consequently, even when the search begins in the correct conceptual region, the model may naturally980

diverge toward a nearby but distinct local optimum, especially given the openness of the hypothesis981

space and the heuristic-driven nature of the optimization process.982

H.2 Coverage of Experimentally Critical Details983

In addition to alignment with the reference hypotheses, we evaluated the extent to which the generated984

hypotheses captured the critical experimental details required for practical implementation.985

Among all the details mentioned in the generated hypotheses, approximately 40% are experimentally986

important—regardless of their accuracy (which is not the focus of this analysis). The remaining987

60% are peripheral or have minimal impact on the actual experiment.988

Among all the important details that should be included, about 50% are mentioned in the generated989

hypotheses.990

Peripheral details refer to contextual or environmental factors with limited relevance to the core991

experiment—for instance, ambient humidity or weather conditions, which may only affect specific992

reactions.993

This highlights a key challenge: while LLMs can generate rich and context-aware hypotheses, they994

often fail to prioritize the most essential components for experimental planning. Future work may995

explore techniques to guide LLM attention toward experimentally salient information.996

I Experiment Compute Resources997

We implement our proposed framework as an agentic LLM system using GPT-4o-mini using998

OpenAI’s official API. Generating the final hypothesis via the HHS optimization process—converging999

to the final local optimum at hierarchy level 5—typically involves several hundred or even to a1000

thousand iterative search steps.1001

J Limitation1002

While HHS consistently discovers higher-quality local optima compared to baseline methods, it1003

does not guarantee convergence to the global optimum. Addressing this limitation remains an open1004

direction for future research.1005
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