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Abstract

The minimum description length (MDL) principle has a rich history of informing1

neural network research and there are numerous algorithms for developing efficient2

neural network description lengths. Of these methods, prequential coding, based on3

the prequential approach to statistics, has proven to be highly successful. Despite4

its achievements, general prequential coding limits learning at each increment5

to a prefix of a given dataset - a constraint which is potentially misaligned with6

an effective learning process. In this paper we introduce prechastic coding, an7

alternative to the prequential approach which is based on a guided, noisy sequence8

of intermediate learning steps. In our experiments we determine that the prechastic9

coding can challenge prequential coding in certain scenarios, whilst also leaving10

significant potential for further improvement.11

1 Introduction12

Pioneered by Jorma Rissanen [1, 2, 3, 4], the MDL principle has a rich history of informing and13

advancing machine learning, underlying important work on topics such as variational inference for14

neural networks [5, 6]. At a high level, the MDL principle advocates for model selection based15

on measures of both model performance and model complexity. This viewpoint can be informally16

expressed by the notion that a good model of some data allows for the efficient transmission of both17

the data and the model. Intuitively, overly complex models which fit the data extremely well are not18

desirable as, while the model itself can achieve highly compressed lossless encodings of the data, the19

combined cost of communicating the data and the model is large.20

At first, neural networks (particularly deep learning models) appear to stand in contrast to the21

MDL philosophy as they often demonstrate compelling performance whilst having extremely high22

parameter counts. This misconception stems from a naive coding scheme where parameters are passed23

as raw floating point numbers before the lossless transmission of data. Alternate schemes which can24

be used to develop far better code lengths than the naive encoding include network compression,25

intrinsic dimension and variational approaches [5, 6, 7, 8, 9, 10]. However, Blier and Ollivier [10]26

demonstrated that all of these schemes are inferior to a method known as prequential coding.27

Prequential coding stems from the prequential approach to statistics [11] and works by sending data28

incrementally and updating the model after each transmission (see Figure 1 for a high-level visual29

diagram of an iteration). As a result, the prequential scheme leverages a model’s ability to generalise30

from limited data. Blier and Ollivier [10]’s work established the pre-eminence of prequential coding31

for description lengths of deep learning models. Subsequently prequential coding has also facilitated32

state-of-the-art results in compression as the Large Text Compression Benchmark [12], a competition33

to compress one gigabyte of English Wikipedia test, is currently topped by the nncp algorithm which34

is largely a prequential approach with some extra features [13, 14].35
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More recently, work by Bornschein et al. [15] found that the block transmission approach to prequen-36

tial coding, used by [10] to lower computational costs, could be improved using techniques from37

continuous learning. Additionally there has been significant research on the use of prequential code38

lengths as an evaluation metric for various criteria [16, 17, 18]. Despite this popularity, the prequential39

approach is not without its drawbacks as a description length/compression mechanism. Many datasets40

might not be presented in an ordering particularly conducive for learning; for example, one might41

conjecture that in many scenarios incrementally learning a body of text would be better done by42

increasing the level of abstract complexity of the concept at each iteration, rather than progressing43

through the text one word at a time. This begets the question - can one find a better general method44

of computing description lengths for neural networks? In this paper we introduce a challenger to45

prequential coding termed prechastic coding (a portmanteau of predictive and stochastic). Prechastic46

coding shifts the concept of intermediate training datasets from the prequential viewpoint of cu-47

mulative, sequential partitions to noisy views of the full dataset by allowing fake labels at broadly48

diminishing rates across the scheme. Rather than predicting subsequent individual labels in the data49

sequence, the prechastic method uses the model to iteratively denoise the stochastic, yet curated,50

intermediate datasets. In our experiments we find that in select scenarios a greedy version of the51

prechastic code approaches the performance of the prequential. However, the prechastic approach as52

presented herein also allows for significant future improvement as a core component of the method,53

i.e. the selection of guiding distributions, is left as an open-ended topic of discussion.54

2 Prechastic Coding55

In this section we will describe the specifics of the general prechastic approach along with variants of56

interest. Before we proceed, we first describe the standard supervised learning compression scenario.57

In line with Blier and Ollivier [10]’s work on prequential coding we will use this setting throughout58

the remainder of the paper in order to develop the prechastic approach (although we note that this is59

by no means a necessity and is simply for pedagogical reasons). Consider a sender and a receiver60

who both have a copy of a sequence of N inputs x1:N and have agreed to some identically initialised61

learning model. The latter agreement often involves a high level description of an architecture62

and initialisation procedure along with a mutual seed for a pseudorandom number generator. The63

input data is randomly ordered yet identical for both the sender and the receiver. Each xi has a64

corresponding label yi ∈ {1, 2, . . .K} which are, initially, only known to the sender. The sender65

would like to transmit y1:N to the receiver using as little information as possible.66

Consider a sequence of probability distributions Q1, Q2, . . . QT each defined over {1, 2, . . .K}N .67

Each individual Qi assigns probabilities to all KN possible permutations of labels, both true or false,68

to the dataset x1:N . Samples from Q1, Q2, . . . QT constitute successive, intermediate datasets for the69

selected model to train on and we shall therefore refer to them as the guiding distributions. Since,70

until the final transmission, only the sender knows all of the true labels y1:N , the sender must use this71

information to compute guiding distributions which lead to an efficient code length.72

To initiate the general prechastic algorithm, the receiver creates predictions for all the labels for the73

dataset from its copy of the untrained model. We will denote these predictions as P1 and note that74

in many circumstances P1 is likely to be an approximate uniform distribution over all KN possible75

predictions. The sender computes an identical copy of P1 and transmits some sample q1 ∼ Q176

using O(KL[Q1 ∥ P1]) bits; possible machinery for this is discussed below in the section on relative77

entropy coding. Q1 could be pre-determined or computed once P1 has been calculated. The receiver78

then uses the noisy labels q1 to train the model and create an updated set of predictions P2.79

This process is repeated for a total of T iterations with the sender transmitting some sample from80

Qi at each step to the receiver who, subsequently, uses this sample to train their model and form81

updated predictions Pi+1. The sum cost of these transmissions, including a final lossless encoding82

of y1:N , constitutes the total code length for the prechastic approach. A full diagram of the process83

in comparison with the prequential approach can be found in Figure 1. A summary of the general84

prechastic coding algorithm is given in Algorithm 1.85

The difference between the prequential and prechastic methods boils down to a difference in how86

the intermediate training datasets are viewed: in the prequential approach such intermediate datasets87

are expanding restrictions of the original dataset; in the prechastic approach they are noisy views of88

the entire original dataset with an overall trend towards less noise. While deep learning models have89
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Figure 1: High level overview of an iteration of prequential coding (top) and prechastic coding
(bottom). Both the sender and the receiver model are trained identically, i.e. MS ≡ MR. This diagram
slightly differs from the presentation in Algorithm 1 as each iteration begins with model training.

the ability to reach negligible levels of training error on noisy labels, training regimens are typically90

crafted for performance on unseen data. For this reason, if the guiding distributions are selected91

carefully, we should in expectation see improvements between the prechastic iterations. We explore92

quantitative results further in Section 3; however, we will first discuss relative entropy coding as well93

as specific prechastic algorithms.94

Relative Entropy Coding Consider the following communication scenario: a sender would like95

to send a sample from a distribution Q to a receiver who only has access to a distribution P . The96

sender does not care which particular sample is transmitted, only that it comes from the distribution97

Q. Relative entropy coding (REC) algorithms communicate such a sample with an expected code98

length of O(KL[Q ∥ P ]) [19, 20]. Initial work by Harsha et al. [21] proposed a computationally99

intractable rejection sampling algorithm; later, Havasi et al. [22] used an importance sampling100

approach which first generates M =
⌈
2KL[Q ∥ P ]

⌉
samples from the P distribution.1 Each sample101

x is weighted according to the ratio Q(x)/P (x) and, after normalisation, the resulting categorical102

distribution is sampled to select an index from 1 to M. This index is then transmitted at a cost of103

log2(M) ≈ KL[Q ∥ P ]. Critically, Havasi et al. [22] demonstrated that, via a result from Chatterjee104

1Note that in all instances in this paper, the Kullback-Leibler divergence is given in bits - many of the papers
referenced in this section instead use nats.
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Algorithm 1 The generic prechastic coding algorithm.

1: S initialises a model MS.
2: R initialises an identical model MR.
3: for i := 1 to T do
4: Pi :=M(· | x1:N ) where M ≡ MR ≡ MS.
5: S generates a sample qi ∼ Qi.
6: S transmits O(KL[Qi ∥ Pi]) bits which enable R to recreate qi.
7: MR is trained on qi.
8: MS is trained on qi in an identical manner.
9: end for

10: S encodes y1:N using MS(y1:N | x1:N ).
11: S transmits the code for y1:N to R.
12: R decodes y1:N using MR(y1:N | x1:N ).

and Diaconis [23], setting M =
⌈
2KL[Q ∥ P ]

⌉
was a sufficiently large sample size to keep the bias in105

the sampling low. In our experimental section we make use of the importance sampling procedure in106

a first-pass approach to selecting the guiding distributions. Further work on REC and REC-related107

methods include: Flamich et al. [19] who suggested a method of dividing the transmission process108

into a sequence of intermediary steps, Flamich et al. [20], who introduced approaches based on A∗
109

sampling [24], Li and Gamal [25]’s research on Poisson functional representation, and Theis and110

Ahmed [26]’s Ordered Random Coding method (presented under the framework of the related reverse111

channel coding problem [27]). In some sense, carefully selecting guiding distributions can achieve a112

similar intermediary effect to the auxiliary variable method of Flamich et al. [19] as it also mitigates113

much of the exponential runtime effects.114

2.1 The Greedy Prechastic Algorithm115

We shall now describe an effective greedy approach to the prechastic approach which considers116

potential Pi+1 values. Rather than choosing a specific Qi from a process such as the minimisation117

of an optimisation problem as in Appendix A, the greedy approach generates G samples from Pi118

then trains a model on each of these samples independently. The sample whose model, after training,119

minimises the cost of encoding the true values is then encoded via index at a cost of O(log(G)) bits.120

Note that the greedy approach, which is outlined in Algorithm 2, is a slight deviation from the general121

prechastic scheme as it does not explicitly choose a guiding distribution Qi.122

3 Experiments123

In the following experiments we evaluate the greedy prechastic algorithm in comparison with124

the prequential approach as well as two variations of the first-pass convex method described in125

Appendix A. We operate under the supervised learning scenario described in Section 2 and apply it to126

the MNIST [28] and Fashion-MNIST [29] datasets. Learning is conducted using a simple MLP with127

two 128 neuron hidden layers as well as a convolutional LeNet-style network [28].128

These models were chosen in part to accommodate for the computational cost of computing a full,129

non-batched prequential code which requires O(N2) items of data to be processed per epoch of130

training. In comparison, if we consider time contributions as primarily determined by training, the131

general prechastic scheme is O(TN) whilst the greedy scheme is O(TNG). For practical values132

of T and G that produce efficient code lengths, we found that our experiments had to restrict both133

datasets to smaller sizes of N = 128, 256, and 512 in order to lower runtimes. Despite this constraint,134

Bornschein et al. [30] found that model selection based on small dataset restrictions may give similar135

results to model selection which uses the entire dataset.136

Ten trials of prequential experiments were run for each model and dataset combination using a batch137

size of 32. The models were trained for a total of five epochs and codelengths were computed using138

the final model at the end of the fifth epoch. We did not use a scheme which evaluated code lengths at139

the end of each epoch and subsequently took the best performing model as this would have required140

transmissions of the epoch index and consequently incurred a large penalty. It was determined that141

five epochs produced reasonably efficient prequential codelengths for the models and datasets used.142
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Algorithm 2 The greedy prechastic coding algorithm.

1: S initialises a model MS.
2: R initialises an identical model MR.
3: for i := 1 to T do
4: Pi :=M(· | x1:N ) where M ≡ MR ≡ MS.

5: R and S generate identical sets of G samples p(1)
i ,p

(2)
i , . . . ,p

(G)
i ∼ Pi.

6: S initializes a model M ′.
7: V :=∞, g∗ := 1
8: for j := 1 to G do
9: S creates a clone of M ′ and trains it on p

(j)
i , obtaining M ′

j .
10: if − log2(M

′
j(y1:N | x1:N )) < V then

11: V := − log2(M
′
j(y1:N | x1:N ))

12: g∗ := j
13: end if
14: end for
15: S transmits g∗ to R at a cost of O(log(G)) bits.
16: MR is trained on p

(g∗)
i .

17: MS is trained on p
(g∗)
i in an identical manner.

18: end for
19: S encodes y1:N using MS(y1:N | x1:N ).
20: S transmits the code for y1:N to R.
21: R decodes y1:N using MR(y1:N | x1:N ).

The prechastic experiments were conducted on the greedy prechastic algorithm along with two143

variants of the first pass approach from Appendix A which were iteratively solved using the CVX144

package [31, 32]. The first variant, FPC-Q directly sampled each Qi whilst the second version, FPC-R145

used the importance sampling REC procedure of Havasi et al. [22] to indirectly sample each Qi146

through its respective Pi. Splitting the first pass approach into these two variants was done in order147

to quantify the bias affects from the importance sampling procedure. Note that because FPC-Q uses148

direct samples it is a thought experiment and not a practical compression algorithm. A running149

average of up to five of the most recently communicated samples were used as a training signal in150

order to improve stability. β was set to 7 and the cost of each iteration was logged as log2(⌈2β
∗
i ⌉)151

(note that this does not communicate the size of β∗
i itself; in practice it is likely better to simply use β152

and communicate it once). For the 128, 256, and 512 count dataset sizes, we used maximum iteration153

counts of 25, 50, and 100, respectively (the cost of transmitting the best index was included in the154

code lengths).155

For the greedy prechastic experiments, the hyper-parameter G was set to 128, i.e. 7 bits of information156

was transmitted per iteration. To increase stability in the face of small datasets, multiple samples157

were generated from Pi for each of the G trials and the average values were used for training. Note158

that while there are still only G averaged options to choose from (and thus there is still only 7 bits of159

data transmitted per iteration) larger numbers of multiple samples drive the training signal towards160

Pi. In order to balance this effect with the desired stability, for the 128, 256, and 512 count dataset161

sizes multiple sample values of 25, 5, and 2 were used, respectively. The larger datasets also required162

higher maximum iteration counts of 20, 40, and 60 for the 128, 256, and 512 count dataset sizes,163

respectively. The best result from across these iterations was taken as the code length (including the164

cost of transmitting this index). The results from the prequential, first pass, and greedy prechastic165

experiments are presented in Table 1. All code was executed on a consumer-grade build (Intel166

i7-4790k and an Nvidia RTX 3060) and the longer experiments typically took on the rough order of167

hours to a day.168

4 Conclusion169

The greedy prechastic algorithm performed well in our experiments, approaching and demonstrating170

comparable performance in the MNIST/LeNet testing suite. Further results across the remainder171

of experiments were competitive although the prequential tests consistently produced the best code172
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SIZE CODING
MNIST

MLP LENET

128

PREQ. 0.896 ± 0.008 (380.8 ± 3.2) 0.895 ± 0.005 (380.6 ± 2.1)
FPC-Q 0.981 ± 0.006 (417.0 ± 2.5) 0.997 ± 0.008 (424.1 ± 3.3)
FPC-R 1.002 ± 0.005 (425.9 ± 2.1) 1.014 ± 0.004 (431.3 ± 2.1)

GREEDY 0.948 ± 0.006 (402.9 ± 2.4) 0.933 ± 0.006 (396.5 ± 2.4)

256

PREQ. 0.726 ± 0.006 (617.7 ± 5.0) 0.710 ± 0.004 (603.6 ± 3.8)
FPC-Q 0.879 ± 0.012 (747.3 ± 10.3) 0.805 ± 0.012 (684.6 ± 10.1)
FPC-R 0.971 ± 0.006 (826.2 ± 4.9) 0.935 ± 0.010 (795.2 ± 8.6)

GREEDY 0.744 ± 0.010 (632.6 ± 7.7) 0.696 ± 0.006 (592.0 ± 5.3)

512

PREQ. 0.540 ± 0.006 (917.9 ± 9.4) 0.512 ± 0.005 (870.0 ± 7.8)
FPC-Q 0.762 ± 0.013 (1296.9 ± 22.1) 0.622 ± 0.007 (1057.8 ± 11.1)
FPC-R 0.919 ± 0.006 (1563.2 ± 9.3) 0.770 ± 0.008 (1309.0 ± 13.9)

GREEDY 0.620 ± 0.006 (1055.3 ± 9.8) 0.517 ± 0.004 (878.7 ± 6.0)

SIZE CODING
FASHION-MNIST

MLP LENET

128

PREQ. 0.718 ± 0.011 (305.2 ± 4.7) 0.836 ± 0.008 (355.4 ± 3.2)
FPC-Q 0.909 ± 0.013 (386.5 ± 5.4) 0.980 ± 0.009 (416.5 ± 3.9)
FPC-R 0.994 ± 0.013 (422.6 ± 5.3) 1.018 ± 0.007 (433.1 ± 3.1)

GREEDY 0.851 ± 0.007 (361.7 ± 3.0) 0.926 ± 0.007 (393.7 ± 2.9)

256

PREQ. 0.555 ± 0.010 (472.4 ± 8.3) 0.715 ± 0.004 (608.3 ± 3.3)
FPC-Q 0.746 ± 0.010 (634.3 ± 8.9) 0.869 ± 0.008 (739.3 ± 7.0)
FPC-R 0.897 ± 0.011 (763.1 ± 9.5) 0.952 ± 0.009 (809.5 ± 7.4)

GREEDY 0.619 ± 0.007 (526.7 ± 6.0) 0.743 ± 0.007 (631.6 ± 5.6)

512

PREQ. 0.447 ± 0.005 (761.0 ± 8.4) 0.577 ± 0.004 (980.8 ± 7.2)
FPC-Q 0.688 ± 0.008 (1170.5 ± 13.2) 0.756 ± 0.007 (1285.5 ± 11.2)
FPC-R 0.815 ± 0.008 (1386.1 ± 12.9) 0.868 ± 0.007 (1476.6 ± 12.1)

GREEDY 0.494 ± 0.004 (840.8 ± 7.6) 0.619 ± 0.004 (1053.5 ± 6.4)
Table 1: Results from prechastic and prequential experiments on restrictions of the MNIST and
Fashion-MNIST datasets. The average compression ratio and the average size in bits are presented
along with their corresponding standard error values.

lengths. However, across the largest datasets of size 512, the absolute compression ratio of the greedy173

approach was never more than eight percent greater than the prequential (less than fifteen percent in174

terms of relative performance to the prequential). Expectedly, as a first-pass at selecting the guiding175

distributions, the convex results fared worse than the greedy algorithm. However, the comparison176

between FPC-Q and FPC-R performance did yield insights into the underlying REC algorithm used177

in FPC-R. As there was a large drop-off from the FPC-Q results down to the FPC-R the importance178

sampling approach of Havasi et al. [22] clearly introduced a significant amount of sampling bias.179

Looking beyond these experiments, the prechastic approach is a highly flexible coding scheme with180

potential for further development and improvement. Because the general prechastic scheme does not181

prescribe a specific method for selecting the guiding distributions, future work should investigate182

more advanced selection techniques to further improve prechastic code lengths. The greedy method183

could also potentially be improved by considering higher order decisions at each iteration. Future184

research might also consider the reduction of computational costs which partially necessitated dataset185

size restrictions during the experiments. Bornschein et al. [30] found that model selection based186

on small dataset restrictions may provide similar results to using the entire dataset, however, if one187

would still like to use large datasets one possible method might be to bootstrap from smaller datasets188

up to large ones, spreading the prechastic iterations across smaller views of the original dataset.189
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A First-Pass Convex Approach277

One of the central problems left unanswered by the general prechastic approach is how to select the278

guiding distributions. Choosing efficient Q1, Q2, . . . QT is a challenging problem which essentially279

requires one to design an appropriately difficult curriculum for potentially complex learning models.280

The following is a rudimentary attempt designed largely to illustrate the difficulties of selecting the281

guiding distributions. Consider the convex optimization problem282
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min
βi,[Qi]

βi −
N∑
j=1

log2

(
[Qi]j,yj

)

s.t.
N∑
j=1

KL[[Qi]j ∥ [Pi]j ] ≤ βi

K∑
k=1

[Qi]j,k = 1, ∀j

0 ≤ [Qi]j,k ≤ 1, ∀j, k

where [Qi] is an N ×K matrix which represents N independent categorical distributions across283

the label classes for each of the inputs. For an input xj , the prediction rendered by the model Pi284

is denoted as [Pi]j . [Qi]j,k is the probability of label k given the distribution [Qi]j . Note that the285

budget variable βi is implicitly non-negative. The cost function measures the order of information286

that would have to be transmitted for the receiver to draw single sample from Qi along with the287

cost of sending the true labels y1:N if the receiver were to form predictions using Qi. Naturally, it is288

unlikely that the receiver will be able to predict in a manner identical to Qi after training on a single289

sample; however, Qi is used as Pi+1 would require model training.290

By minimizing the cost function over βi and [Qi], a trade-off is struck between the quality of291

guidance and the rough cost of communicating a sample. In our experiments we also bound βi to a292

hyper-parameter β by introducing the constraint βi ≤ β. This change allowed us to limit the rate of293

change of the guiding distributions over the iterations and also avoid intractably high computational294

costs from the REC importance sampling procedure.295
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Justification: The paper contains all the necessary information to reproduce the experimental365

results to the extent required to justify the claims and conclusions.366

Guidelines:367

• The answer NA means that the paper does not include experiments.368

• If the paper includes experiments, a No answer to this question will not be perceived369

well by the reviewers: Making the paper reproducible is important, regardless of370

whether the code and data are provided or not.371

• If the contribution is a dataset and/or model, the authors should describe the steps taken372

to make their results reproducible or verifiable.373

• Depending on the contribution, reproducibility can be accomplished in various ways.374

For example, if the contribution is a novel architecture, describing the architecture fully375

might suffice, or if the contribution is a specific model and empirical evaluation, it may376

be necessary to either make it possible for others to replicate the model with the same377

dataset, or provide access to the model. In general. releasing code and data is often378

one good way to accomplish this, but reproducibility can also be provided via detailed379

instructions for how to replicate the results, access to a hosted model (e.g., in the case380

of a large language model), releasing of a model checkpoint, or other means that are381

appropriate to the research performed.382

• While NeurIPS does not require releasing code, the conference does require all submis-383

sions to provide some reasonable avenue for reproducibility, which may depend on the384
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to reproduce that algorithm.387

(b) If the contribution is primarily a new model architecture, the paper should describe388
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to have some path to reproducing or verifying the results.398

5. Open access to data and code399
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tions to faithfully reproduce the main experimental results, as described in supplemental401

material?402
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Justification: Code for the relevant algorithms is available upon request.404
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versions (if applicable).422
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results?428

Answer: [Yes]429

Justification: The paper specifies all the necessary experimental details needed to understand430

the results.431
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• The answer NA means that the paper does not include experiments.433
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material.437

7. Experiment Statistical Significance438
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information about the statistical significance of the experiments?440

Answer: [Yes]441

Justification: The standard error is provided for all experimental results.442
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• The answer NA means that the paper does not include experiments.444

• The authors should answer "Yes" if the results are accompanied by error bars, confi-445
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the main claims of the paper.447
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• It should be clear whether the error bar is the standard deviation or the standard error454

of the mean.455

• It is OK to report 1-sigma error bars, but one should state it. The authors should456

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis457

of Normality of errors is not verified.458

• For asymmetric distributions, the authors should be careful not to show in tables or459

figures symmetric error bars that would yield results that are out of range (e.g. negative460

error rates).461

• If error bars are reported in tables or plots, The authors should explain in the text how462

they were calculated and reference the corresponding figures or tables in the text.463

8. Experiments Compute Resources464

Question: For each experiment, does the paper provide sufficient information on the com-465

puter resources (type of compute workers, memory, time of execution) needed to reproduce466

the experiments?467

Answer: [Yes]468

Justification: All computational resources are fully documented in the experiments section469

of the paper.470

Guidelines:471

• The answer NA means that the paper does not include experiments.472

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,473

or cloud provider, including relevant memory and storage.474

• The paper should provide the amount of compute required for each of the individual475

experimental runs as well as estimate the total compute.476

• The paper should disclose whether the full research project required more compute477

than the experiments reported in the paper (e.g., preliminary or failed experiments that478

didn’t make it into the paper).479

9. Code Of Ethics480

Question: Does the research conducted in the paper conform, in every respect, with the481

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?482

Answer: [Yes]483

Justification: The research conducted for this paper fully conforms with the NeurIPS Code484

of Ethics.485

Guidelines:486

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.487

• If the authors answer No, they should explain the special circumstances that require a488

deviation from the Code of Ethics.489

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-490

eration due to laws or regulations in their jurisdiction).491

10. Broader Impacts492

Question: Does the paper discuss both potential positive societal impacts and negative493

societal impacts of the work performed?494

Answer: [NA]495

Justification: There is no direct mechanism for societal impact.496

Guidelines:497

• The answer NA means that there is no societal impact of the work performed.498

• If the authors answer NA or No, they should explain why their work has no societal499

impact or why the paper does not address societal impact.500

• Examples of negative societal impacts include potential malicious or unintended uses501

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations502

(e.g., deployment of technologies that could make decisions that unfairly impact specific503

groups), privacy considerations, and security considerations.504
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• The conference expects that many papers will be foundational research and not tied505

to particular applications, let alone deployments. However, if there is a direct path to506

any negative applications, the authors should point it out. For example, it is legitimate507

to point out that an improvement in the quality of generative models could be used to508

generate deepfakes for disinformation. On the other hand, it is not needed to point out509

that a generic algorithm for optimizing neural networks could enable people to train510

models that generate Deepfakes faster.511

• The authors should consider possible harms that could arise when the technology is512

being used as intended and functioning correctly, harms that could arise when the513

technology is being used as intended but gives incorrect results, and harms following514

from (intentional or unintentional) misuse of the technology.515

• If there are negative societal impacts, the authors could also discuss possible mitigation516

strategies (e.g., gated release of models, providing defenses in addition to attacks,517

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from518

feedback over time, improving the efficiency and accessibility of ML).519

11. Safeguards520

Question: Does the paper describe safeguards that have been put in place for responsible521

release of data or models that have a high risk for misuse (e.g., pretrained language models,522

image generators, or scraped datasets)?523

Answer: [NA]524

Justification: The paper poses no such risks.525

Guidelines:526

• The answer NA means that the paper poses no such risks.527

• Released models that have a high risk for misuse or dual-use should be released with528

necessary safeguards to allow for controlled use of the model, for example by requiring529

that users adhere to usage guidelines or restrictions to access the model or implementing530

safety filters.531

• Datasets that have been scraped from the Internet could pose safety risks. The authors532

should describe how they avoided releasing unsafe images.533

• We recognize that providing effective safeguards is challenging, and many papers do534

not require this, but we encourage authors to take this into account and make a best535

faith effort.536

12. Licenses for existing assets537

Question: Are the creators or original owners of assets (e.g., code, data, models), used in538

the paper, properly credited and are the license and terms of use explicitly mentioned and539

properly respected?540

Answer: [Yes]541

Justification: All creators are properly credited in the text.542

Guidelines:543

• The answer NA means that the paper does not use existing assets.544

• The authors should cite the original paper that produced the code package or dataset.545

• The authors should state which version of the asset is used and, if possible, include a546

URL.547

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.548

• For scraped data from a particular source (e.g., website), the copyright and terms of549

service of that source should be provided.550

• If assets are released, the license, copyright information, and terms of use in the551

package should be provided. For popular datasets, paperswithcode.com/datasets552

has curated licenses for some datasets. Their licensing guide can help determine the553

license of a dataset.554

• For existing datasets that are re-packaged, both the original license and the license of555

the derived asset (if it has changed) should be provided.556
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• If this information is not available online, the authors are encouraged to reach out to557

the asset’s creators.558

13. New Assets559

Question: Are new assets introduced in the paper well documented and is the documentation560
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• The answer NA means that the paper does not release new assets.565
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asset is used.570

• At submission time, remember to anonymize your assets (if applicable). You can either571

create an anonymized URL or include an anonymized zip file.572

14. Crowdsourcing and Research with Human Subjects573
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or other labor should be paid at least the minimum wage in the country of the data586
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• Depending on the country in which research is conducted, IRB approval (or equivalent)599

may be required for any human subjects research. If you obtained IRB approval, you600

should clearly state this in the paper.601

• We recognize that the procedures for this may vary significantly between institutions602

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the603

guidelines for their institution.604
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