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Abstract

We present new information-theoretic generalization guarantees through the a novel
construction of the "neighboring-hypothesis" matrix and a new family of stability
notions termed sample-conditioned hypothesis (SCH) stability. Our approach
yields sharper bounds that improve upon previous information-theoretic bounds in
various learning scenarios. Notably, these bounds address the limitations of existing
information-theoretic bounds in the context of stochastic convex optimization
(SCO) problems, as explored in the recent work by Haghifam et al. (2023).

1 Introduction

Information-theoretic upper bounds for generalization error have recently been developed since the
seminal works of [52, 67]. On the one hand, these bounds have attracted increasing interest due to
their distribution dependence and algorithm dependence, making them highly suitable for reasoning
the generalization behavior of modern deep learning. In fact, subsequent studies have demonstrated
that information-theoretic bounds can effectively track the dynamics of generalization error in deep
neural networks [40, 60, 23, 61, 62, 25, 64]. On the other hand, recent studies [58, 19, 23, 20, 25] have
revealed the expressive nature of information-theoretic bounds in the distribution-free setting. Notably,
the conditional mutual information (CMI) framework proposed by [58] has shown great promise by
establishing connections to VC theory [59] and matching minimax rates for the binary classification
[19, 20]. Additionally, in the case of the 0− 1 loss and the realizable setting, where an interpolating
algorithm attains zero empirical risk, information-theoretic bounds give an exact characterization of
the generalization error [20, 64], thereby providing the tightest possible generalization bound.

Nonetheless, information-theoretic bounds have been extensively discussed due to their two main
deficiencies. The first deficiency concerns the unbounded nature of the original input-output mutual
information (IOMI) bounds [67, 4, 32, 31]. To address this issue, several techniques have been
developed, including the chaining method [2], the individual technique [9] or random subset technique
[40], and the Gaussian noise perturbation technique [41]. Notably, the CMI bound [58] stands out
as it has a finite upper bound for any learning scenario due to its supersample construction. These
techniques are now often applied jointly for analyzing generalization [18, 49, 70, 63, 23, 25, 64].
The second deficiency concerns the sub-optimal convergence rate of information-theoretic bounds.
Specifically, when the information-theoretic quantities, whether IOMI or CMI, are bounded by
constants, the bounds exhibit a decaying rate in the order of O(1/

√
n), where n is the sample size.

In contrast, generalization errors in practice may decay at a faster rate, e.g., O(1/n). To address
this limitation, several works, inspired by some PAC-Bayesian literature, have proposed fast-rate
information-theoretic bounds [24, 25, 64], demonstrating a good characterization in some instances
of non-convex settings such as deep learning. More recently, [65, 66, 71] present IOMI bounds for
the Gaussian mean estimation problem, that achieve optimal convergence rates, contrasting previous
bounds [9, 70].
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The issue of slow convergence in information-theoretic bounds has recently been amplified by the
observation that these bounds may not even vanish. [21] highlight this limitation in the context
of stochastic convex optimization (SCO) problems [55]. Specifically, [21] shows that all existing
information-theoretic bounds, including the CMI bound [58], the Gaussian noise perturbed IOMI
bound [41], the individual IOMI bound [9], the evaluated CMI (e-CMI) bound [58] and the functional
CMI (f -CMI) bound [23], fail to vanish in at least one of the counterexamples they constructed.
These failures stem from the dimension-dependent nature of current information-theoretic quantities
[31], appearing an intrinsic barrier for overcoming these limitations. However, if we dissect the
process by which these bounds are derived, opportunities do exist. Specifically, recall that all these
information-theoretic bounds are built upon the Donsker-Varadhan (DV) variational representation of
the KL divergence [44, Theorem 3.5] (see Lemma A.2 in the Appendix). Using this representation,
a generalization upper bound is derived in terms of information-theoretic quantity and a cumulant-
generating function (CGF), as illustrated below.

Generalization Error ≤ inf
Para.>0

IOMI or CMI + CGF
Para.

.

Particularly note that the CGF depends on certain choice of the auxiliary function in the DV formula.
Then, except for the IOMI or CMI itself, the tightness of the generalization bound hinges on two
key factors: the selection of the DV auxiliary function and the approach used to bound the CGF, the
latter of which often requires additional assumptions specific to the chosen DV auxiliary function.
The most common choices for the DV auxiliary function involve making assumptions such as sub-
Gaussian loss or bounded loss. For instance, in the case of IOMI bounds, the DV auxiliary function is
typically chosen as the single loss or average loss, and the sub-Gaussian assumption (or boundedness
assumption) is utilized. In CMI bounds, the DV auxiliary function is defined as the difference in
loss between a training sample and a “ghost” sample, and the boundedness property is employed.
We now note that exploiting bounded loss is the fundamental reason behind the failures in SCO
problems. Although [21] does not explicitly rely on boundedness, they do make use of the product of
the Lipschitz constant and the diameter of the hypothesis domain, which essentially serves as an upper
bound for the loss. The product does not vanish with n, thereby neutralizing the potential to include
another decaying factor in the bound. Arguably, at least for these SCO problems, the selection of the
DV auxiliary function may not be optimal, for example, the resulting CGF= O(1/n), giving vacuous
generalization guarantees. This analysis inspires us to explore alternative DV auxiliary function
and to adopt different assumptions for bounding the CGF. For instance, we may devise appropriate
stability assumptions and create opportunities to upper bound the CGF using a term in O(β2/n),
where β is the stability parameter that decays as n. This is promising in light of the capability of the
stability-based framework in explaining the generalization of SCO problems [6, 56, 22, 5].

In this paper, we combine information-theoretic analysis with stability notions to develop IOMI
bounds and CMI bounds that improve upon previous information-theoretic bounds for stable learning
algorithms, achieving faster convergence rates. The main contributions of our paper are summarized
below.

• We introduce our new notions of algorithmic stability, referred to as sample-conditioned hypoth-
esis (SCH) stability. We also present a novel construction of a sample-dependent hypothesis
matrix, where each column is a neighborhood pair of hypotheses obtained from two training
samples that differ in only one element, inspired by the supersample setting of CMI [58].

• We present new IOMI bounds, which explicitly include the SCH stability parameters and are
shown superior to previous bounds for stable learning algorithms.

• We show that the sample-dependent hypothesis matrix, similar to the supersample matrix, enjoys
a symmetry property. Exploiting this symmetry, we establish novel CMI bounds. Specifically,
we present hypotheses-conditioned CMI bounds that are analogous to the previous supersample-
conditioned CMI bounds. Additionally, we derive sample-conditioned CMI bounds exploiting
other assumptions. Notably, these bounds introduce novel CMI quantities and include SCH
stability parameters. In particular, the new CMI quantities remain boundedness as the original
CMI. Consequently, these CMI bounds vanish no slower than their stability parameters. In
addition, we also obtain a second-moment generalization bound that matches the tightest known
bound in the literature [14] under the same condition.

• We apply our new bounds to a convex-Lipschitz-bounded (CLB) example in which previous
information-theoretic bounds fail to explain generalization [21], and show that the new IOMI
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and CMI bounds vanish, benefiting from SCH stability. Additionally, we discuss another CLB
example where the uniform stability parameter is non-vanishing or has a slow convergence rate,
but our information-theoretic bounds remain tight up to a constant.

• We extend our analysis to derive information-theoretic generalization bounds based on Bernstein
condition, which leverages a connection between stability and Bernstein condition. We also
show that stability can be incorporated into generalization bounds to obtain stronger results
using alternative information-theoretic quantities such as the loss difference based CMI, e-CMI
and f -CMI. Furthermore, we illustrate the expressiveness of our new CMI notions under the
distribution-free setting.

2 Preliminaries

Probability and Information Theory Notation Unless otherwise noted, a random variable will
be denoted by a capitalized letter, and its realization by the corresponding lower-case letter. The
distribution of a random variable X is denoted by PX , and the conditional distribution of X given Y
is denoted by PX|Y . When conditioning on a specific realization y, we use the shorthand PX|Y=y or
simply PX|y . Denote by EX expectation over X ∼ PX , and by EX|Y=y (or EX|y) expectation over
X ∼ PX|Y=y . The entropy of a random variable X is denoted by H(X), and the KL divergence of
probability distribution P with respect to Q is denoted by DKL(P ||Q). The mutual information (MI)
between random variables X and Y is denoted by I(X;Y ), and the conditional mutual information
between X and Y given Z is denoted by I(X;Y |Z). We also define the disintegrated mutual
information as Iz(X;Y ) ≜ DKL(PX,Y |Z=z||PX|Z=zPY |Z=z), following the notation in [40]. Note
that I(X;Y |Z) = EZ [I

Z(X;Y )].

Generalization Error and Uniform Stability We consider the supervised learning setting, where
we have a domain of instances Z = X × Y , with input and label spaces denoted by X and
Y respectively. The distribution of an instance is given by µ, and we have a training sample
S = {Zi}ni=1 ∼ µn. Let R ∈ R be a source of randomness (a random variable independent of
S over an appropriate space R), from which a learning algorithm A : Zn × R → W takes the
training sample S and R as input, and outputs a hypothesis W = A(S,R) ∈ W . To evaluate the
quality of the output hypothesis W , we use a loss function ℓ : W ×Z → R+

0 . Given a fixed w, we
define the population risk Lµ(w) ≜ EZ′ [ℓ(w,Z ′)], where Z ′ ∼ µ is a testing instance. The quantity
Lµ = EW [Lµ(W )] is then the expected population risk. For a fixed w ∈ W , the empirical risk
on S is defined as LS(w) ≜ 1

n

∑n
i=1 ℓ(w,Zi). Similarly, we define the expected empirical risk as

L̂n = EW,S [LS(W )]. Thus, the expected generalization error is given by Eµ(A) ≜ Lµ − L̂n.

We now give two notions of uniform stability [6, 13], where s ≃ si denotes two training sets s and si

that differ only at the ith element. We say a learning algorithm A is β1-weakly uniformly stable if

sup
s≃si,z

ER

∣∣ℓ(A(s,R), z)− ℓ(A(si, R), z)
∣∣ ≤ β1,

and β2-strongly uniformly stable if

sup
s≃si,z

sup
r

∣∣ℓ(A(s, r), z)− ℓ(A(si, r), z)
∣∣ ≤ β2.

Remark 2.1. Notably the weak uniform stability above is the standard in the literature. It is evident
that if A is β-strongly uniformly stable, it must also be β-weakly uniformly stable. It is also worth
noting that for deterministic algorithms (e.g., GD or fixed permutation SGD), the two notions are
identical. We note that in this paper, when speaking of uniform stability, we refer to the strong notion.

Let S′ = {Z ′
i}ni=1 ∼ µn be an independent copy of S, and let S\i = S \ {Zi} so Si = S\i ∪ {Z ′

i}.

The following well-known result (e.g., [6, Lemma 7], [54, Thm. 13.2]) is frequently used in this
paper.
Lemma 2.1. For any algorithm A, we have Lµ = ES,S′,R

[
1
n

∑n
i=1 ℓ(A(Si, R), Zi)

]
, and

Eµ(A) = ES,S′

[
1

n

n∑
i=1

[
EA(Si,R)|S,Z′

i
ℓ(A(Si, R), Zi)− EA(S,R)|Sℓ(A(S,R), Zi)

]]
. (1)
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Supersample and Sample-Conditioned Hypothesis Stability Following [58], let Z̃ ∈ Zn×2

be a supersample matrix with n rows and 2 columns, each entry drawn independently from
µ. We index the columns of Z̃ by 0, 1 and denote the ith row of Z̃ by Z̃i, with entries
(Z̃i,0, Z̃i,1). We often use the superscripts + and − to respectively replace the subscripts 0

and 1, i.e., writing Z̃+
i for Z̃i,0 and Z̃−

i for Z̃i,1. Correspondingly, Z̃+
[n] and Z̃−

[n] denote the

first and second columns, respectively. Additionally, we will use Z̃+
[n]∼i to denote Z̃+

[n] in

which the ith element Z̃+
i is replaced with the corresponding element Z̃−

i in the second column.

Z̃+
1 Z̃−

1

Z̃+
2 Z̃−

2
...

...
Z̃+
n Z̃−

n

A
=⇒

W̃+ W̃−
1

W̃+ W̃−
2

...
...

W̃+ W̃−
n

Table 1: Supersample (Left) and the
induced hypotheses (Right).

Let W̃+ = A(Z̃+
[n], R), and W̃−

i = A(Z̃+
[n]∼i, R) for each

i ∈ [n]. That is, W̃+ and each W̃−
i are obtained by two

“neighboring” training samples, namely those differ only on
one instance (the ith instance). We then construct matrix W̃ ∈
Wn×2, where the ith row W̃i = (W̃+

i , W̃−
i ) = (W̃i,0, W̃i,1)

and W̃+
i = W̃+ for all i ∈ [n], as shown in Table 1. Unlike the

supersample matrix, elements in W̃ are identically distributed
but not independent. In this case, Eq. (1) can be rewritten as

Eµ(A) =
1

n

n∑
i=1

E
Z̃+

i ,W̃i

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+

i , Z̃+
i )
]
. (2)

The summand in Eq (2) exhibits an interesting “symmetry”: for any i,

E
Z̃+

i ,W̃i

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+

i , Z̃+
i )
]
= E

Z̃−
i ,W̃i

[
ℓ(W̃+

i , Z̃−
i )− ℓ(W̃−

i , Z̃−
i )
]
. (3)

That is, the +/− superscripts in the summand of Eq (2) can be flipped for any i. We may then use
n binary ({0, 1}-valued) variables (U1, U2, . . . , Un) := U to govern whether we choose to flip the
signs for each of the n terms, where Ui = 0 indicates “no flipping”. Let U i ≜ 1− Ui, we have

Eµ(A) =
1

n

n∑
i=1

E
Z̃i,W̃i,Ui

[
ℓ(W̃i,Ui

, Z̃i,Ui)− ℓ(W̃i,Ui , Z̃i,Ui)
]

=
1

n

n∑
i=1

E
Z̃i,W̃i,Ui

[
(−1)Ui

(
ℓ(W̃−

i , Z̃i,Ui)− ℓ(W̃+
i , Z̃i,Ui)

)]
(4)

=E
W̃ ,E,U

[
1

n

n∑
i=1

(−1)Ui

(
ℓ(W̃−

i , Ẑi)− ℓ(W̃+
i , Ẑi)

)]
, (5)

where in Eq. (4) we have chosen U to be an i.i.d. Bernoulli-( 12 ) sequence, and in Eq. (5) we have
renamed Z̃i,Ui as Ẑi and denoted E ≜ (Ẑ1, Ẑ2, . . . , Ẑn). Note that E, induced by U from Z̃, contains
n instances, each serving to evaluate the loss difference between a pair of hypotheses (W̃−

i , W̃+).
The polarities of these evaluations are governed by U .

We now define some new notions of stability.

Definition 2.1 (Sample-Conditioned Hypothesis (SCH) Stability). Let S ∼ µn, W and W i generated
via W = A(S,R) and W i = A(Si, R). Let Zw,wi denote the support of the conditional distribution
PZi|w,wi , and Ws denote the support of the conditional distribution PW |s. We introduce four types
of SCH stability, referred to types A, B, C, D. Specifically, a learning algorithm A is

a) γ1-SCH-A stable if ∀i ∈ [n], sup
w∈∪s∈ZnWs

sup
z∈Z

∣∣ℓ(w, z)− EW i|w
[
ℓ(W i, z)

]∣∣ ≤ γ1, (6)

b) γ2-SCH-B stable if ∀i ∈ [n], ES,R,Z′

[(
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

])2] ≤ γ2
2 , (7)

c) γ3-SCH-C stable if ∀i ∈ [n], EW,W i

[
sup

zi∈ZW,Wi

∣∣ℓ(W, zi)− ℓ(W i, zi)
∣∣] ≤ γ3, (8)

d) γ4-SCH-D stable if ∀i ∈ [n], ES,Z′
i,R

[(
ℓ(W,Zi)− ℓ(W i, Zi)

)2] ≤ γ2
4 , (9)
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where Z ′ in Eq. (7) is an independent instance drawn from µ.
Remark 2.2. By definition, we can see γ2 ≤ γ1, and it is expected that γ4 ≤ γ3. Note that all of
them are smaller than β2. In addition, it is expected that γ2, γ3 and γ4 are smaller than β1, although
the relationship between γ1 and β1 is uncertain. Moreover, it is also expected that γ4 is larger than
γ2 due to the independence of Z ′ in Eq. (7). We emphasize that supreme supw in Eq. (6) is taken over
the sample-dependent hypothesis space ∪s∈ZnWs, not the whole hypothesis space W . Notably, the
notion of “hypothesis set stability” in [16] is closely related to our SCH stability. In fact, γ1-SCH-A
stable implies γ1-hypothesis set stable. Due to space constraints, we provide further elaboration on
the definition of SCH stability in Appendix B.

3 IOMI Bounds for Stable Algorithms

We are now in a position to give the IOMI bounds for stable learning algorithms.
Theorem 3.1. If the learning algorithm A is γ1-SCH-A stable, then

|Eµ(A)| ≤
√
2γ1
n

n∑
i=1

√
I(W̃+; Z̃+

i ) ≤
√
2γ1
n

n∑
i=1

√
I(W̃+; Z̃+

i |W̃−
i ).

We note that I(W̃+; Z̃+
i ) = I(W̃−

i ; Z̃−
i ) = I(W ;Zi), the only difference between the first bound in

Theorem 3.1 and the previous individual IOMI bound in [9] is that the sub-Gaussian variance proxy
is replaced by the stability parameter γ1 in our bound. In fact, while we use W̃ to better understand
the appearance of γ1 in the IOMI bounds, the first bound in Theorem 3.1 itself does not necessarily
rely on the supersample and the construction of W̃ .

In addition, if A is a deterministic algorithm, the term I(W̃+; Z̃+
i |W̃−

i ) in the second bound is
tighter than the mutual information stability or erasure information studied in [46, 23], that is,
I(W̃+; Z̃+

i |W̃−
i ) ≤ I

(
W̃+; Z̃+

i |Z̃+
[n]\i

)
(see Remark C.1 in the Appendix for an explanation).

Proof Sketch of Theorem 3.1. Motivated by Lemma 2.1 and Eq. (2), the main innovation in this proof
is to let the auxiliary function in DV be the “relative loss” instead of the single loss, namely we let
g(w̃+

i , z̃
+
i ) = E

W̃−
i |w̃+

[
ℓ(W̃−

i , z̃+i )
]
− ℓ(w̃+, z̃+i ) and let the auxiliary function f = t · g for t > 0

in Lemma A.2. This enables us to utilize Eq. (6) to bound the CGF. The remaining steps are routine.
The complete proof can be found in Appendix C.1.

The following corollary, immediately following from γ1 ≤ β2, suggests a clear improvement over
the previous IOMI bound for the uniformly stable deterministic algorithm with vanishing β2.

Corollary 3.1. If A is β2-uniform stable, then |Eµ(A)| ≤
√
2β2

n

∑n
i=1

√
I(W̃+; Z̃+

i ).

A key message conveyed in this paper, as shown in the proof of Theorem 3.1, is the importance
of carefully selecting the DV auxiliary function and appropriate assumptions for various learning
scenarios. Corollary 3.1 also suggests a potential enhancement for uniform stability in the certain
deterministic setting, provided that I(W ;Zi) also vanishes appropriately with n.

Similar to [40, 49, 23, 25], we also give an R-conditioned IOMI bound below.

Theorem 3.2. If A is β2-uniform stable, we have |Eµ(A)| ≤
√
2β2

n

∑n
i=1 ER

√
IR(W̃+; Z̃+

i ).

This disintegrated IOMI bound is not directly comparable to the bounds in Theorem 3.1, but it
is equivalent to Corollary 3.1 for deterministic algorithms. With additional assumptions, we may
remove the square-root in Theorem 3.1, accelerating the decay of IOMI as shown in Theorem 3.3.
Theorem 3.3. Under the same conditions in Theorem 3.1, if A is further γ2-SCH-B stable, then

|Eµ(A)| ≤ γ1
n

n∑
i=1

I(W̃+; Z̃+
i ) + 0.72

γ2
2

γ1
.

Notice that γ2
2/γ1 ≤ γ2

1/γ1 = γ1. If γ2
2/γ

2
1 decays faster than 1

n

∑n
i=1

√
I(W̃+; Z̃+

i ), then Theo-
rem 3.3 is qualitatively strictly stronger than Theorem 3.1.
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4 CMI Bounds for Stable Algorithms

Hypotheses-Conditioned CMI Bounds In this section, we give a handful of CMI bounds based
on a new information-theoretic quantity.
Theorem 4.1. Suppose that there exists ∆1 : W2 → R such that for every w̃i = (w̃+

i , w̃
−
i ),

supzi∈Z
w̃

+
i

,w̃
−
i

∣∣ℓ(w̃+
i , zi)− ℓ(w̃−

i , zi)
∣∣ ≤ ∆1(w̃i). Then,

|Eµ(A)| ≤
√
2

n

n∑
i=1

min

{
E
W̃i

[
∆1(W̃i)

√
IW̃i(Ẑi;Ui)

]
,

√
E
W̃i

[
∆1(W̃i)2

]
I(Ẑi;Ui|W̃i)

}
.

Furthermore, if A is γ3-SCH-C stable, then such a ∆1 exists and

|Eµ(A)| ≤
√
2γ3
n

n∑
i=1

√
sup
w̃i

Iw̃i(Ẑi;Ui).

Compared to the standard supersample-conditioned CMI bound [58] in terms of I(W ;U |Z̃), which
assesses how well one can infer the “training-set membership” from the output hypothesis, our new
CMI quantity, namely I(Ẑi;Ui|W̃i), measures our ability to decide if an instance Ẑi contributes
to the training of W̃+

i or to the training of W̃−
i when we know it contributes to only one of them.

When W̃+
i and W̃−

i are similar, this decision (i.e., determining Ui) is difficult, giving rise to small
I(Ẑi;Ui|W̃i). Additionally, for uniformly stable algorithms, supwi

∆1(w̃i) ≤ β2 and it is also

expected that E
W̃i

[
∆1(W̃i)

2
]
≤ β2

1 . Moreover, if we simply replace γ3 by an upper bound of ℓ, the

second bound of Theorem 4.1 becomes a uniform convergence bound if Iw̃(Ẑi;Ui) vanishes with n.

Proof Sketch of Theorem 4.1. Again we find motivation in Lemma 2.1. Additionally, the sym-
metry exhibited in Eq. (5), analogous to the symmetry between Z̃+

i and Z̃−
i used in deriving

the standard CMI bounds, allows a similar development. Specifically, letting g(w̃i, ẑi, ui) =
(−1)ui

(
ℓ(w̃−

i , ẑi)− ℓ(w̃+
i , ẑi)

)
and f = t · g for t > 0 in Lemma A.2 enables the bounding of the

CGF via invoking the assumptions in the theorem. The complete proof is given in Appendix D.1.

Notably, our new CMI quantity in the bound preserves the boundedness of the original CMI in [58],
that is, I(Ẑi;Ui|W̃ ) ≤ H(Ui) = log 2. Furthermore, parallel to supersample-conditioned CMI being
smaller than IOMI [18], a similar result for hypotheses-conditioned CMI is given below.

Theorem 4.2. For any A and µ, we have I(Ẑi;Ui|W̃i) ≤ I(W ;Zi).

Similar to Theorem 3.3, we present a CMI bound without square-root, which could be much stronger
in certain regimes.
Theorem 4.3. Let ∆1 be defined in the same way as in Theorem 4.1, and we let Λ(w̃i) =

EẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]/
∆1(w̃i)

2, then

|Eµ(A)| ≤ 1

n

n∑
i=1

E
W̃i

[
∆1(W̃i)

(
IW̃i(Ẑi;Ui) + 0.72Λ(W̃i)

)]
. (10)

If A is further β2-uniform stable and γ4-SCH-D stable, then

|Eµ(A)| ≤ β2

n

n∑
i=1

I(Ẑi;Ui|W̃i) + 0.72
γ2
4

β2
. (11)

Note that it is valid to set γ3 = E
W̃i

[
∆1(W̃i)

]
, which can be viewed as a generalization bound in its

own right. Additionally, it can be verified that Λ(w̃i) ≤ 1 for any w̃i. As IW̃i(Ẑi;Ui) ≤ log 2 ≈ 0.69,
Eq. (10) can be further upper bounded by 1.41γ3. This ensures that Eq. (10) will decay no slower
than O(γ3).

We also present a second moment generalization bound.
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Theorem 4.4. Assume that A is β2-uniform stable and symmetric with respect to S, i.e. it does not
depend on the order of the elements in S. Let ℓ(·, ·) ∈ [0, 1], then

EW,S

[
(Lµ(W )− LS(W ))

2
]
≤ 4β2

2

(
1.5I(E;U |W̃ ) + 0.82

n
+ 1

)
+

1

n
.

Since I(E;U |W̃ ) ≤ O(n), the bound can be further upper bounded by O(β2
2 +1/n), which matches

the previous tight bound for the second moment generalization error in [14, Thm. 1.2]. Notice that
[14, Thm. 1.2] only holds for the deterministic setting, while our bound also holds for randomized
algorithms, and we also give a stronger result in Appendix D.4 based on our SCH stability notions.

Supersample-Conditioned CMI Bounds It is also possible to give Z̃-conditioned CMI bounds
that explicitly contain the stability parameters. Let Wi = W̃i,Ui and W i = W̃i,Ui

, we have the
following results.
Theorem 4.5. Suppose there exists ∆2 : Z → R such that supw,wi∈W2

zi

∣∣ℓ(w, zi)− ℓ(wi, zi)
∣∣ ≤

∆2(zi) for every zi, where W2
zi is the support of the conditional distribution PW,W i|zi . Then,

|Eµ(A)| ≤
√
2

n

n∑
i=1

min

{
EZ̃+

i

[
∆2(Z̃

+
i )

√
IZ̃

+
i (Wi,W i;Ui)

]
,

√
EZ̃+

i

[
∆2(Z̃

+
i )2
]
I(Wi,W i;Ui|Z̃+

i )

}
.

The proof is deferred to Appendix D.5. The interpretation of the CMI quantity I(Wi,W i;Ui|Z̃+
i )

appears identical to our earlier CMI quantity I(Ẑi;Ui|W̃i). A closer look in fact reveals that
the two quantities are mathematically equal. To see this, first note I(Ẑi;Ui|W̃i) = H(Ui) −
H(Ui|Ẑi, W̃i) and I(Wi,W i;Ui|Z̃+

i ) = H(Ui)−H(Ui|Z̃+
i ,Wi,W i). Let random variable A1 =

(Ẑi, W̃
+
i , W̃−

i ) and let A2 = (Z̃+
i ,Wi,W i), these two random variables are identically distribution

(since P
W̃+

i
= P

W̃−
i

, PZ̃+
i

= PZ̃−
i

and Ui ∼ Bernoulli−( 12 ) and also we have PA1|Ui
= PA2|Ui

so PA1,Ui
= PA2,Ui

, which gives us H(Ui|A1) = H(Ui|A2). This indicates that I(Ẑi;Ui|W̃i) =

I(Wi,W i;Ui|Z̃+
i ).

In Theorem 4.5, a data-dependent hypothesis space W2
zi is defined. A similar concept has been

utilized in the hypothesis set cross-validation (CV) stability studied in [16]. Furthermore, [16] derives
some bounds based on either their transductive Rademacher complexity or their hypothesis set CV
stability. They show that these two notions dominate in different learning scenarios. Given the close
relationship between the supersample construction and the Rademacher complexity [58, 64], and the
inspiration behind our W̃ construction, our framework is likely to have a fundamental connection
to [16]. Additionally, obtaining the similar results of Z̃-conditioned CMI as in Theorem 4.3-4.4 is
warranted, which may require some stability notions analogous to the average CV-stability in [16].

5 Convex–Lipschitz–Bounded (CLB) Problems

We now discuss two examples of the convex-Lipschitz-bounded (CLB) problem, a subclass of SCO
problems.

The first example is previously given in [21, Thm. 17], in which nearly all previous information-
theoretic bounds are non-vanishing. We will demonstrate that our CMI bounds are non-vacuous in
this example.
Example 1. Let d ∈ N and Z = {e(i) : i ∈ [d]} where e(i) is a one-hot vector with 1 at the
i-th coordinate. Let µ = Unif(Z). Given a sample S = {Zi}ni=1 drawn i.i.d. from µ, we choose
the 1-Lipschitz convex loss function ℓ(w, z) = −⟨w, z⟩ and use GD to select a hypothesis w from
W = {w ∈ Rd : ||w|| ≤ 1}. Let the number of GD iterations be T = n2 and let the learning rate be
η = 1

n
√
n

.

Let µ̂ = 1
n

∑n
i=1 zi be the sample mean. In this deterministic setting, it’s easy to see that

wt =

{
ηtµ̂ if ηt||µ̂|| ≤ 1,

ηtµ̂/||ηtµ̂|| otherwise.
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Let µ̂i be the sample mean of si and let wi
t be its corresponding hypothesis at time t. Notice that

Euclidean projection does not increase the distance between projected points, namely non-expansive
[22, Lemma 4.6]. Hence, whether wt = ηtµ̂ or its truncated version ηtµ̂/||ηtµ̂|| limited within
the unit ball, we have ||wt − wi

t|| ≤ ||ηtµ̂ − ηtµ̂i|| ≤ O(ηt/n). Recall that the loss function is
1-Lipschitz, we have |Eµ(A)| ≤ β2 ≤ O(ηt/n). In this example, ηT/n = 1/

√
n so β2 ∈ O(1/

√
n).

One can also directly obtain this rate from [22, 5].

Now following the same setting in [21], if we let d = 2n2, we can find that I(WT ;Zi) ∈ Ω(1) (see
[21, Thm. 17] or Appendix F). Thus, IOMI itself could not explain the generalization of GD in this
problem. Furthermore, all our CMI quantities including those in Section 6 also have the order of
Ω(1), that is, they fail to vanish as n → ∞ (see Appendix F for more elaboration).

Therefore, the stability parameter β2 should not be replaced by some constant (e.g., the upper bound
of the loss function) in the IOMI or CMI bound. In fact, for our CMI bounds, due to their boundedness
property, we have the following corollary.

Corollary 5.1. If A is β2-uniform stable, we have β2

n

∑n
i=1

√
I(Ẑi;Ui|W̃i) ≤ O(β2).

Corollary 5.1 provides a solution to the the non-vanishing limitation of the previous information-
theoretic bounds in Example 1 (and also the counterexample in [21, Thm. 4]), as it can explain
generalization as long as the stability-based bound is sufficient. Thus, the shortfalls of information-
theoretic bounds in analyzing deterministic algorithms for CLB problems are tempered by the
stability-based framework.

We now show another CLB Example from [21, Thm. 3] where A is not uniformly stable, and we will
see information-theoretic bounds in this paper are tight up to a constant. This example is also studied
in [42, Sec. 5].
Example 2. Let W ∈ Rd be a ball with radius R0, and let the input space be Z = {z0/R0,−z0/R0}
where z0 ∈ W such that ||z0|| = R0. Let µ = Unif(Z). Consider a convex and L-Lipschiz loss
function ℓ(w, z) = −L⟨w, z⟩. In addition, A is any empirical risk minimization (ERM) algorithm.

In this example, β2 = 2LR0 is a constant. [21] has shown that |Eµ(A)| ≥ LR0√
2n

and I(W ;S) ≤ 1

(see [21, Thm. 3] or Appendix F for an explanation). This gives us 2LR0

n

∑
i=1

√
I(W ;Zi) ≤

2LR0

√
I(W ;S)

n ≤ 2LR0√
n

. Thus, the distribution-dependent property of IOMI can improve the

stability-based bound in this case. In addition, we know that I(Ẑi;Ui|W̃i) ≤ I(W ;Zi) from
Theorem 4.2, our new CMI bounds are also tight (up to a constant) in this example.

Notably, we can construct an additional example building upon Example 2, where A is uniformly
stable but the uniform stability itself results in a slow convergence rate for generalization error.
Specifically, let R0 = 1

d and let d =
√
n, then β2 ∈ O(1/

√
n) while |Eµ(A)| ≥ L√

2n
. Note that the

information-theoretic bounds in this paper can still provide a tight rate, namely O(1/n).

These examples demonstrate that our bounds can improve both the stability-based bound and
information-theoretic bounds in some learning scenarios.

Additional applications of our bounds are discussed in Appendix G.

6 Extensions

Connection with Bernstein Condition The Bernstein condition is commonly used to derive fast-
rate generalization bound for both PAC-Bayes bounds [69, 10, 36, 17] and stability-based bounds
[28], then it is natural to explore the relationship between our fast-rate bounds and the Bernstein
condition, formally defined below.
Definition 6.1 (Bernstein Condition). Assume that w∗ = argminw∈W Lµ(w) is a risk minimizer. We
say that the Bernstein assumption is satisfied with some B > 0 and κ ∈ [1,+∞) if for any w ∈ W ,

EZ

[
(ℓ(w,Z)− ℓ(w∗, Z))

2
]
≤ B (Lµ(w)− Lµ(w

∗))
1
κ .

This condition can be easily satisfied in many common situations [1, 28]. In the following proposition,
we can see that the Bernstein condition implies the γ2-SCH-B stability.
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Proposition 1. If the Bernstein condition is satisfied with some B and κ, then A is γ2-SCH-B stable,
where γ2

2 = 4BEW

[
(Lµ(W )− Lµ(w

∗))
1
κ

]
.

Therefore, invoking the Bernstein condition, we can obtain the fast-rate bound as presented in
Theorem 3.3, where we need to assume the loss is bounded, as shown below as a by-product.
Corollary 6.1. If the Bernstein condition is satisfied with κ = 1 and ℓ ∈ [0, C], then

|Eµ(A)| ≤ C

n

n∑
i=1

I(W ;Zi) +
2.88B

C
(Lµ − Lµ(w

∗)) .

Recently, [65, 66] use the unexpected excess risk as the DV auxiliary function and invoke the
(η, c)-central condition to establish some optimal-rate bounds for specific learning problems, e.g.,
Gaussian mean estimation. This again highlights the significance of selecting appropriate DV
auxiliary functions and corresponding assumptions tailored to different learning problems. It is
worth mentioning that the Bernstein condition also implies their (η, c)-central condition. Therefore,
unifying these conditions can be considered as a potential avenue for future research.

Loss Difference, Evaluated, and Functional CMI for Stable Algorithms Similar to [64], we
derive some tighter bounds based on the loss difference.

Theorem 6.1. Let ∆Li = ℓ(Wi, Z̃
+
i )− ℓ(W i, Z̃

+
i ). If A is β2-uniform stable, then

|Eµ(A)| ≤
√
2β2

n

n∑
i=1

min

{√
I(∆Li;Ui),EZ̃+

i

√
IZ̃

+
i (∆Li;Ui)

}
≤

√
2β2

n

n∑
i=1

√
I(∆Li;Ui|Z̃+

i ).

We note that while it is feasible to replace β2 in the (disintegrated) CMI bounds above with certain
sample-conditioned hypothesis stability, it is not possible to apply the same substitution for the
unconditional MI bound in Theorem 6.1.

Furthermore, notice that ∆Li − (Li, L̄i)− (Fi, F i)− (Wi,W i) forms a Markov chain given Z̃+
i ,

wherein (Li, L̄i) are the loss pair evaluated at Z̃+
i using (Wi,W i), and (Fi, F i) are label predictions

of Z̃+
i using (Wi,W i). By the data-processing inequality, one can obtain e-CMI bound [58, 25], f -

CMI bound [23] and recover I(Wi,W i;Ui|Z̃+
i ) based bound from Theorem 6.1: I(∆Li;Ui|Z̃+

i ) ≤
I(Li, L̄i;Ui|Z̃+

i ) ≤ I(Fi, F i;Ui|Z̃+
i ) ≤ I(Wi,W i;Ui|Z̃+

i ). Additionally, notice that we can also
apply the similar technique for the hypotheses-conditioned CMI, which should give the same results.

Expressiveness of New CMI Notions Under Distribution-Free Setting Previous works [58, 19,
20, 23, 25] have demonstrated that the CMI framework is expressive enough to establish connections
with VC theory in the distribution-free learning setting. Here, we further illustrate the expressiveness
of the sample-conditioned CMI discussed in this work.
Theorem 6.2. Let Z = X × {0, 1}, and let F = {fw : X → {0, 1}|w ∈ W} be a functional
hypothesis class with finite VC dimension d. Let n > d + 1, for any algorithm A, we have
1
n

∑n
i=1

√
I(Fi, F̄i;Ui|Z̃+

i ) ≤ O
(√

d
n log

(
n
d

))
.

Like the previous works, this bound matches the classic result of the uniform convergence bound [59].
Notice that the result could be extended to multi-class classification with finite Natarajan dimension
[39] by proceeding similarly to [25, Thm. 8].

We invoke Theorem 6.2 to demonstrate that our new information-theoretic quantities have the
same expressive power as standard CMI quantities. The expressiveness result for the (functional)
hypotheses-conditioned CMI is expected to align with Theorem 6.2. This alignment is due to the
equivalence between hypotheses-conditioned CMI and supersample-conditioned CMI, as discussed
in Theorem 4.5.

7 Related Works and Additional Discussions

Stability-Based Framework vs. Information-Theoretic Framework Using stability methods
to analyze generalization errors can be traced back to several seminal works, such as [51, 11, 12,
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34, 27]. It is worth noting that stability arguments have proven particularly effective in analyzing
the learnability of SCO problems [56], where traditional uniform convergence bounds may not be
sufficient to explain the generalization behavior. The application of stability approaches has gained
popularity for providing high-probability guarantees since the work of [6]. Recent advancements
have further sharpened the convergence rates of high-probability generalization upper bounds for
uniformly stable algorithms in a series of works [14, 15, 8, 28]. While information-theoretic bounds
are commonly used to analyze the in-expectation generalization, it is expected that combining them
with the stability framework will yield sharper high-probability bounds.

Additionally, we note that in the realizable setting, where A is an interpolating algorithm, information-
theoretic bounds exhibit greater power than stability-based bounds. For instance, in the case of the
0− 1 loss, information-theoretic bounds can achieve the known optimal minimax rates [19] and even
provide exact characterizations of the generalization error [20, 64]. However, it should be noted that
due to the inherent fitting-stability tradeoff property [54, Sec. 13.4], interpolating algorithms tend to
be unstable, rendering stability arguments inapplicable. Given the prevalence of zero empirical risk in
modern deep learning [68], it is natural to question whether information-theoretic bounds require the
stability-based approach for analyzing non-convex (and potentially non-smooth and non-Lipschitz
continuous) learning scenarios.

Connection Between Two Frameworks in Previous Works The connection between information-
theoretic bounds, including some PAC-Bayes bounds, and algorithmic stability has been explored
in previous literature [46, 33, 48, 29, 58, 23, 3, 47]. These works primarily focus on either regarding
the information-theoretic quantities as notions of distributional stability [46, 67, 29, 58, 3] and/or
converting information-theoretic quantities to some other algorithmic stability notions [58, 23, 47].
The later often relies on the addition of Gaussian noise to the hypotheses (or assuming that the prior
and posterior distributions are Gaussian in PAC-Bayes). In [33], the authors also combine the DV
formula with stability assumptions, where they derive some PAC-Bayes bounds. However, comparing
these bounds with others is challenging in general due to the presence of their hyperparameter stability.

Comparison with Standard CMI While our IOMI quantity aligns with the previous work [9], the
new CMI quantity I(Ẑi;Ui|W̃i) (or equivalently I(Wi,W i;Ui|Z̃+

i )) may not be directly comparable
to the standard individual CMI I(W ;Ui|Z̃i) in [49, 70]. Specifically, we have I(Ẑi;Ui|W̃i) =

H(Ui) − H(Ui|Ẑi, W̃i) and I(W ;Ui|Z̃i) = H(Ui) − H(Ui|W, Z̃i). The relationship between
H(Ui|Ẑi, W̃i) and H(Ui|W, Z̃i) is not trivial. Exploring and quantitatively comparing these CMI
measures would be an intriguing research direction.

Leave-One-Out CMI Our construction of W̃ bears resemblance to the leave-one-out (LOO) setting,
where there are also n+ 1 hypotheses. It is worth noting that LOO-CMI has been recently proposed
in concurrent works [20, 47]. In LOO-CMI, the supersample Z̃ = Z[n+1] consists of n+ 1 instances,
and U is an index uniformly drawn from [n+ 1] to select one hold-out instance. Consequently, ZU

represents the testing data, while Z[n+1]\U serves as the training sample. In this context, LOO-CMI
can be defined as I(W ;U |Z̃). Notice that this quantity still fails to explain the generalization in
Example 1. The LOO setting is often associated with the stability-based framework [6], and it is
expected that the n + 1-supersample induced W̃ could yield new CMI bounds that also contain
the SCH stability notions. Nevertheless, in this paper, we do not adopt the LOO setting because
in that case, H(U) = log (n+ 1), the LOO-CMI bound is no longer upper bounded by a constant
independent of n (note that the LOO-CMI bound for general setting in [20, Thm. 2.5] does not
contain the 1/

√
n factor).

8 Concluding Remarks

We propose a novel construction of the hypothesis matrix and a new family of stability notions called
sample-conditioned hypothesis stability. Leveraging these concepts, we derive sharper information-
theoretic bounds for stable learning algorithms. Several promising avenues for future research include
comparing our new CMI quantities with the standard CMI in a quantitative manner, analyzing the
generalization of gradient-based optimization algorithms like SGD using our bounds, and establishing
new high-probability generalization guarantees. Further discussions can be found in Appendix H.
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Appendices
A Some Useful Lemmas

In this paper, there are some equivalent forms of the generalization error we will study, e.g., Eq. (2)
and Eq. (5) in the main text, which are presented in the following lemma.

Lemma A.1. Let Wi = W̃i,Ui
and W i = W̃i,Ui

. For any learning algorithm A, the following
equations hold

Eµ(A) =
1

n

n∑
i=1

E
Z̃+

i ,W̃i

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+

i , Z̃+
i )
]
, (12)

=
1

n

n∑
i=1

E
W̃i

[
E
Ẑi,Ui|W̃i

[
(−1)Ui

(
ℓ(W̃−

i , Ẑi)− ℓ(W̃+
i , Ẑi)

)]]
, (13)

=
1

n

n∑
i=1

EZ̃+
i

[
EWi,W i,Ui|Z̃+

i

[
(−1)Ui

(
ℓ(W i, Z̃

+
i )− ℓ(Wi, Z̃

+
i )
)]]

. (14)

Proof. This lemma is a consequence of Lemma 2.1, with further utilizing some symmetric properties.
Recall Eq. (1) in Lemma 2.1,

Eµ(A) =EZ̃+
[n]

,Z̃−
[n]

[
1

n

n∑
i=1

[
E
W̃−

i |Z̃+
[n]

,Z̃−
i
ℓ(W̃−

i , Z̃+
i )− E

W̃+|Z̃+
[n]

ℓ(W̃+, Z̃+
i )

]]
,

=E
Z̃+

[n]
,W̃

[
1

n

n∑
i=1

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+, Z̃+

i )
]]

,

=
1

n

n∑
i=1

E
Z̃+

i ,W̃i

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+, Z̃+

i )
]
.

Note that Eq. (2) in the main text is from the second equation above, which is used to derive individual
IOMI bounds in Section 3.

Similar to the standard setting for CMI bounds, where the role of each Z̃+
i and Z̃−

i can be exchanged,
a key observation here is that for each i, W̃+

i and W̃−
i can also be exchanged arbitrarily. That is to

say,

Eµ(A) =
1

n

n∑
i=1

E
Z̃−

i ,W̃i

[
ℓ(W̃+

i , Z̃−
i )− ℓ(W̃−

i , Z̃−
i )
]

(15)

also holds true. Notice that we do not change the definitions of any the random variable, e.g.,
W̃+ = A(Z̃+

[n], R) and W̃−
i = A(Z̃+

[n]∼i, R).

What differs from the standard CMI is that the roles of the whole sequences Z̃+
[n] and Z̃−

[n] are not

exchangeable with each other. Here, when we exchange each Z̃+
i and Z̃−

i , we need to keep the other
positions in S unchanged.

By introducing Ui ∼ Unif({0, 1}), we have

Eµ(A) =
1

n

n∑
i=1

E
Z̃+

i ,W̃i

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+

i , Z̃+
i )
]
,

=
1

n

n∑
i=1

E
Z̃i,W̃i,Ui

[
ℓ(W̃i,Ui

, Z̃i,Ui
)− ℓ(W̃i,Ui

, Z̃i,Ui
)
]
.
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To obtain Eq. (13), notice that Ẑi = Z̃i,Ui , we have

Eµ(A) =
1

n

n∑
i=1

E
Ẑi,W̃i,Ui

[
ℓ(W̃i,Ui

, Ẑi)− ℓ(W̃i,Ui , Ẑi)
]

=
1

n

n∑
i=1

E
Ẑi,W̃i,Ui

[
(−1)Ui

(
ℓ(W̃−

i , Ẑi)− ℓ(W̃+
i , Ẑi)

)]
. (16)

This, as we have already seen in Eq. (5) in the main text, is used to derive hypotheses-conditioned
CMI bounds in Section 4. It’s easy to see that when Ui = 0, Eq. (16) becomes Eq. (12), and when
Ui = 1, we obtain Eq. (15) via Eq. (16).

To obtain Eq. (14), we let Wi = W̃i,Ui
, W i = W̃i,Ui

, and fix Ẑi = Z̃+
i . Similarly,

Eµ(A) =
1

n

n∑
i=1

EZ̃+
i

[
EWi,W i,Ui|Z̃+

i

[
(−1)Ui

(
ℓ(W i, Z̃

+
i )− ℓ(Wi, Z̃

+
i )
)]]

.

This is used to derive supersample-conditioned CMI bounds in Section 4. It’s easy to see that both
Ui = 0 and Ui = 1 will give us Eq. (12).

Like all the previous information-theoretic bounds, the following lemma is widely used in our paper.
Lemma A.2 (Donsker-Varadhan (DV) variational representation of KL divergence [44, Theorem 3.5]).
Let Q, P be probability measures on Θ, for any bounded measurable function f : Θ → R, we have
DKL(Q||P ) = supf Eθ∼Q [f(θ)]− lnEθ∼P [exp f(θ)].

We also invoke some other lemmas as given below.
Lemma A.3 (Hoeffding’s Lemma [26]). Let X ∈ [a, b] be a bounded random variable with mean µ.

Then, for all t ∈ R, we have E
[
etX
]
≤ etµ+

t2(b−a)2

8 .
Lemma A.4 (Popoviciu’s inequality [45]). Let M and m be upper and lower bounds on the values
of any random variable X , then Var(X) ≤ (M−m)2

4 .

The following lemma is from [35, Lemma 2.8], we provide a self-contained proof.

Lemma A.5. Let h(x) = ex−x−1
x2 be the Bernstein function. If a random variable X satisfies

E [X] = 0 and X ≤ b, then E
[
eX
]
≤ eh(b)E[X

2].

Proof. It’s easy to verify that h(x) is an increasing function for x > 0. Thus, h(x) ≤ h(b) for x ≤ b.
Then,

ex = x+ 1 + x2h(x) ≤ x+ 1 + x2h(b).

For the bounded random variable X with zero mean, we have

E
[
eX
]
≤ E [X] + 1 + E

[
X2h(b)

]
≤ eh(b)E[X

2].

The last inequality is by ex ≥ x+ 1. This completes the proof.

B Further Elaborations on SCH Stability

We note that the reason we introduce four types of SCH stability in Definition 2.1 is that solely using
β2 in our bounds might be too loose, as it considers the supremum over all sources of randomness. By
incorporating SCH stabilities, we aim to demonstrate that theoretically, we can achieve significantly
tighter stability parameters.

The basic set up is as follows. Assume a random sample S gives rise to W . For each Zi ∈ S, we
construct Si by replacing Zi with another independently drawn instance; call training result W i, the
neighbor of W .

In a), γ1-SCH-A stability measures the difference between the loss of w and the expected loss of its
neighbor W i at a worst z and the worst possible w. While in (b), γ2-SCH-B stability measures the

16



square of this difference, not in the worst case, but in an average case, where the average is over an
independently Z ′ for the loss evaluation, the training sample, and the algorithm randomness. Since
“average is smaller than worst”, γ2 ≤ γ1.

In c), we consider the difference between the loss of W and the loss of its neighbor when evaluated at
the worst possible Zi that when included in S gives rise to W . The expected value of this difference
is γ3-SCH-C stability.

In d), γ4-SCH-D stability measures the expected squared difference between the loss of W and the
loss of its neighbor when evaluated at Zi (a member of S). For a similar “average smaller worst”
reason, one expects that γ4 ≤ γ3.

We expect that γ2, γ3, and γ4 are all smaller than β1. This is because in β1, we consider the worst
evaluated instance, whereas in the other cases, we take the expectation over all instances. Additionally,
in Theorem 4.1, we expect that E

W̃i
∆1(W̃i)

2 ≤ β2
1 , this is because β1-stability holds for all the

possible s and si, namely it holds for all the (w,wi) pair (that shares the same randomness) while in
E
W̃i

∆1(W̃i)
2, we take the expectation of these pairs.

We expect γ2 ≤ γ4 due to the following reason: first by Jensen’s inequality, we have
ES,R,Z′

[
ℓ(W,Z ′)− EW i|W ℓ(W i, Z ′)

]2 ≤ EW,W i,Z′
[
ℓ(W,Z ′)− ℓ(W i, Z ′)

]2
, then since Z ′ is an

independent of both W and W ′, Z ′ can be regarded as a testing point for both W and W ′, we could ex-
pect that the expectation of ℓ(W,Z ′)−ℓ(W i, Z ′) is small. While in ES,Z′

i,R

[
ℓ(W,Zi)− ℓ(W i, Zi)

]2
,

Zi is a training point for obtaining W , so ℓ(W,Zi) could be small in general, and Zi is a test-
ing point for W i. Therefore, it is reasonable to expect EW,W i,Z′

[
ℓ(W,Z ′)− ℓ(W i, Z ′)

]2 ≤
ES,Z′

i,R

[
ℓ(W,Zi)− ℓ(W i, Zi)

]2
, namely γ2 ≤ γ4.

As a concrete example, let ℓ be zero-one loss and assume A is an interpolating algo-
rithm and and randomly makes predictions for unseen data. By Jensen’s inequality, γ2

2 ≤
EW,W i,Z′

[
ℓ(W,Z ′)− ℓ(W i, Z ′)

]2
= EW,Z′ [ℓ(W,Z ′)] − 2EW,W i,Z′

[
(ℓ(W,Z ′)ℓ(W i, Z ′))

]
+

EW i,Z′
[
ℓ(W i, Z ′)

]2
, where we use ℓ2 = ℓ for zero-one loss. Since Z ′ is an unseen data for

both W and W i, we have γ2
2 ≤ EW i,Z′

[
ℓ(W i, Z ′)

]2
+ 1

2 − 1
2 = EW i,Z′

[
ℓ(W i, Z ′)

]2
. While in

this case γ2
4 = EW i,Zi

[
ℓ(W i, Zi)

]2
so γ2 ≤ γ4.

C Omitted Proofs and Additional Discussions in Section 3

C.1 Proof of Theorem 3.1

Proof. Let g(w̃+, z̃+i ) = E
W̃−

i |w̃+

[
ℓ(W̃−

i , z̃+i )
]
−ℓ(w̃+, z̃+i ) be the average loss difference between

w̃+ and its neighboring hypothesis, and let f = t · g for t > 0 in Lemma A.2. Let Z̃+′

i be an
independent copy of Z̃+

i , then

E
W̃+,Z̃+

i

[
g(W̃+, Z̃+

i )
]
≤ inf

t>0

I(W̃+; Z̃+
i ) + logE

W̃+,Z̃+′
i

[
etg(W̃

+,Z̃+′
i )
]

t
. (17)

Since Z̃+′

i is independent of both W̃−
i and W̃+, and W̃−

i and W̃+ are identically distributed, we
have

E
W̃+,Z̃+′

i

[
g(W̃+, Z̃+′

i )
]
= E

W̃−
i ,Z̃+′

i

[
ℓ(W̃−

i , Z̃+′

i )
]
− E

W̃+,Z̃+′
i

[
ℓ(W̃+, Z̃+′

i )
]
= 0.

By the definition of γ1-SCH-A stability,

sup
w̃+,z

∣∣∣EW̃−
i |w̃+

[
ℓ(W̃−

i , z)
]
− ℓ(w̃+, z)

∣∣∣ ≤ γ1,
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so g(W̃+, Z̃+′

i ) is a zero-mean random variable bounded in [−γ1, γ1]. By Lemma A.3, we have

E
W̃+,Z̃+

i

[
g(W̃+, Z̃+

i )
]
≤ inf

t>0

I(W̃+; Z̃+
i ) + logE

W̃+,Z̃+′
i

[
etg(W̃

+,Z̃+′
i )
]

t

≤ inf
t>0

I(W̃+; Z̃+
i ) +

t2γ2
1

2

t

=

√
2γ2

1I(W̃
+; Z̃+

i ),

where the last equality is obtained by optimizing the bound over t, i.e. letting t =

√
I(W̃+;Z̃+

i )

2γ2
1

.

Recall Eq. (12) in Lemma A.1 and applying Jensen’s inequality to the absolute function, the first
bound is then obtained by

|Eµ(A)| ≤ 1

n

n∑
i=1

∣∣∣EW̃+,Z̃+
i

[
g(W̃+, Z̃+

i )
]∣∣∣ ≤ γ1

n

n∑
i=1

√
2I(W̃+; Z̃+

i ),

Furthermore, by the chain rule of mutual information,

I(W̃−
i ; Z̃+

i |W̃+) + I(W̃+; Z̃+
i ) = I(W̃+; Z̃+

i |W̃−
i ) + I(W̃−

i ; Z̃+
i ). (18)

Notice that I(W̃−
i ; Z̃+

i ) = 0 in the RHS, we have

I(W̃+; Z̃+
i ) ≤ I(W̃+; Z̃+

i |W̃−
i ),

which will give us the second bound. This concludes the proof.

Remark C.1 (Comparison with Mutual Information Stability [46, 23]). To compare with the mutual
information stability I

(
W̃+; Z̃+

i |Z̃+
[n]\i

)
, recall Eq.(18): I(W̃+; Z̃+

i |W̃−) = I(W̃−
i ; Z̃+

i |W̃+) +

I(W̃+; Z̃+
i ), and similarly we also have I(W̃+; Z̃+

i |Z̃+
[n]\i) = I(Z̃+

[n]\i; Z̃
+
i |W̃+) + I(W̃+; Z̃+

i ).

Thus, we only need to compare I(W̃−
i ; Z̃+

i |W̃+) and I(Z̃+
[n]\i; Z̃

+
i |W̃+). Notice that for a determin-

istic A, we have I(W̃−
i ; Z̃+

i |W̃+) ≤ I(Z̃+
[n]\i, Z̃

−
i ; Z̃+

i |W̃+). Since Z̃−
i ⊥⊥

(
W̃+, Z̃+

[n]

)
, we further

have I(Z̃+
[n]\i, Z̃

−
i ; Z̃+

i |W̃+) = I(Z̃+
[n]\i; Z̃

+
i |W̃+), which gives us the desired result:

I(W̃+
i ; Z̃+

i |W̃−) ≤ I
(
W̃+; Z̃+

i |Z̃+
[n]\i

)
.

C.2 Proof of Theorem 3.2

Proof. The proof is nearly the same to the proof of Theorem 3.1, except that now the randomness
of the algorithm is given for each DV auxiliary function, so the randomness of W̃i is completely
controlled by Z̃.

Let g(w̃+, z̃+i , r) = E
W̃−

i |w̃+,r

[
ℓ(W̃−

i , z̃+i )
]
− ℓ(w̃+, z̃+i ) and let f = t · g for t > 0 in Lemma A.2.

Let Z̃+′

i be an independent copy of Z̃+
i , then

E
W̃+,Z̃+

i |r

[
g(W̃+, Z̃+

i , r)
]
≤ inf

t>0

I(W̃+; Z̃+
i |R = r) + logE

W̃+,Z̃+′
i |r

[
etg(W̃

+,Z̃+′
i ,r)

]
t

.

Notice that

E
W̃+,Z̃+′

i |r

[
g(W̃+, Z̃+′

i , r)
]
= E

W̃−
i ,Z̃+′

i |r

[
ℓ(W̃−

i , Z̃+′

i )
]
− E

W̃+
i ,Z̃+′

i |r

[
ℓ(W̃+

i , Z̃+′

i )
]
= 0

still holds since Z̃+
i and Z̃−

i are i.i.d. drawn.
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Thus, g(W̃+, Z̃+′

i , r) is a zero-mean random variable bounded in [−β2, β2]. By Lemma A.3, the
remaining part is routine:

E
W̃+,Z̃+

i |r

[
g(W̃+, Z̃+

i , r)
]
≤
√
2β2

2I(W̃
+; Z̃+

i |R = r).

Thus,

|Eµ(A)| ≤ 1

n

n∑
i=1

∣∣∣EW̃+,Z̃+
i ,R

[
g(W̃+, Z̃+

i , R)
]∣∣∣ ≤ β2

n

n∑
i=1

ER

√
2IR(W̃+; Z̃+

i ),

This completes the proof.

C.3 Proof of Theorem 3.3

Proof. Let h(x) = ex−x−1
x2 be the Bernstein function. Similar to the proof of Theorem 3.1,

we let g(w̃+, z̃+i ) = E
W̃−

i |w̃+

[
ℓ(W̃−

i , z̃+i )
]
− ℓ(w̃+, z̃+i ). We have already known that

E
W̃+,Z̃+′

i

[
g(W̃+, Z̃+′

i )
]
= 0 and

∣∣∣g(W̃+, Z̃+′

i )
∣∣∣ ≤ γ1. By Lemma A.5,

logE
W̃+,Z̃+′

i

[
etg(W̃

+,Z̃+′
i )
]
≤h(γ1t)t

2E
W̃+,Z̃+′

i

[(
E
W̃−

i |W̃+

[
ℓ(W̃−

i , Z̃+′

i )
]
− ℓ(W̃+, Z̃+′

i )
)2]

≤h(γ1t)t
2γ2

2 ,

where the second inequality is by the definition of γ2-SCH-B stability.

Plugging the above into Eq. (17),

E
W̃+,Z̃+

i

[
g(W̃+, Z̃+

i )
]
≤ inf

t>0

I(W̃+; Z̃+
i ) + logE

W̃+,Z̃+′
i

[
etg(W̃

+,Z̃+′
i )
]

t

≤ inf
t>0

I(W̃+; Z̃+
i )

t
+ h(γ1t)tγ

2
2 .

Usually we have γ2
2 ≤ γ2

1 ≤ γ1, we let t = 1/γ1, then

h(γ1t)tγ
2
2 =

h(1)γ2
2

γ1
≈ 0.72

γ2
2

γ1
.

Thus,

|Eµ(A)| ≤ γ1
n

n∑
i=1

I(W̃+; Z̃+
i ) +

0.72γ2
2

γ1
.

This concludes the proof.

D Omitted Proofs in Section 4

D.1 Proof of Theorem 4.1

Proof. We now prove the first bound. Let g(w̃i, ẑi, ui) = (−1)ui
(
ℓ(w̃−

i , ẑi)− ℓ(w̃+
i , ẑi)

)
. By

Lemma A.2, we have

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i = w̃i) + logEẐi,U ′
i |w̃i

[
etg(w̃i,Ẑi,U

′
i)
]

t
. (19)

Since U ′
i ⊥⊥ Ẑi, we have EU ′

i
[g(w̃i, ẑi, U

′
i)] = EU ′

i

[
(−1)U

′
i

(
ℓ(w̃−

i , ẑi)− ℓ(w̃+
i , ẑi)

)]
= 0 for any

w̃i and ẑi. Ergo,
EẐi|w̃i

[
EU ′

i

[
g(w̃i, Ẑi, U

′
i)
]]

= 0.
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By the definition of ∆1(w̃i),∣∣∣g(w̃i, Ẑi, U
′
i)
∣∣∣ = ∣∣∣ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

∣∣∣ ≤ sup
zi∈Zw̃i

∣∣ℓ(w̃−
i , zi)− ℓ(w̃+

i , zi)
∣∣ ≤ ∆1(w̃i).

Thus, g(w̃i, Ẑi, U
′
i) is a zero-mean random variable bounded in [−∆1(w̃i),∆1(w̃i)] for a fixed w̃i.

By Lemma A.3, we have

EẐi,U ′
i |w̃i

[
etg(w̃,Ẑi,U

′
i)
]
≤ e

t2∆1(w̃i)
2

2 .

Plugging the above into Eq. (19),

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i = w̃i) +
t2∆1(w̃i)

2

2

t
(20)

=∆1(w̃i)

√
2I(Ẑi;Ui|W̃i = w̃i).

Recall Eq. (14) in Lemma A.1 and by Jensen’s inequality for the absolute function, the first bound is
obtained:

|Eµ(A)| ≤ 1

n

n∑
i=1

E
W̃i

[
∆1(W̃i)

√
2IW̃i(Ẑi;Ui)

]
. (21)

To prove the second bound, we return to Eq. (20), and take expectation over W̃i first. By Jensen’s
inequality,

E
Ẑi,Ui,W̃i

[
g(W̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i) +
t2E

W̃i
[∆(W̃i)

2]
2

t
(22)

=

√
2E

W̃i

[
∆(W̃i)2

]
I(Ẑi;Ui|W̃i).

Therefore, we have the second bound as below

|Eµ(A)| ≤ 1

n

n∑
i=1

√
2E

W̃i

[
∆(W̃i)2

]
I(Ẑi;Ui|W̃i). (23)

For the second part of Theorem 4.1, notice that it’s valid to let γ3 = E
W̃i

[
∆(W̃i)

]
, then recall

Eq. (21),

|Eµ(A)| ≤ 1

n

n∑
i=1

E
W̃i

[
∆(W̃i)

√
2IW̃i(Ẑi;Ui)

]
≤

√
2γ3
n

n∑
i=1

√
sup

w̃i∈(Ws)2s∈Zn

Iw̃i(Ẑi;Ui).

This completes the proof.

D.2 Proof of Theorem 4.2

Proof. The proof is similar to [18, Theorem 2.1]. By the chain rule,

I(Ẑi;Ui, W̃i) = I(Ẑi;Ui|W̃i) + I(Ẑi; W̃i). (24)

Since H(Ẑi|Ui, W̃i) = H(Ẑi|Wi, Ui, W̃i) = H(Ẑi|Wi), we have I(Ẑi;Ui, W̃i) = H(Ẑi) −
H(Ẑi|Ui, W̃i) = H(Ẑi) − H(Ẑi|Wi) = I(Ẑi;Wi). Thus, I(Ẑi;Ui, W̃i) = I(Ẑi;Wi). Recall
Eq. (24) and by the non-negativity of mutual information, we have I(Ẑi;Ui|W̃i) ≤ I(Wi; Ẑi). Note
that I(Wi; Ẑi) = I(W̃+

i ; Z̃+
i ) = I(W ;Zi). This completes the proof.
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D.3 Proof of Theorem 4.3

Proof. We first return to Eq. (19) in the previous proof, and we have already known that g(w̃i, Ẑi, U
′
i)

is a zero-mean random variable bounded in [−∆1(w̃i),∆1(w̃i)] for a fixed w̃i.

By Lemma A.5, we have

logEẐi,U ′
i |w̃i

[
etg(w̃i,Ẑi,U

′
i)
]
≤h (∆1(w̃i)t) t

2EẐi,U ′
i |w̃i

[
g(w̃i, Ẑi, U

′
i)

2
]

=h (∆1(w̃i)t) t
2EẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]
.

Plugging the above into Eq. (19),

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i = w̃i)

t
+ h (∆1(w̃i)t) tEẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]
.

(25)

Let t = 1
∆1(w̃i)

, we have

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ ∆1(w̃i)I(Ẑi;Ui|W̃i = w̃i)+0.72

EẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]
∆1(w̃i)

.

Let Λ(w̃i) = EẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]/
∆1(w̃i)

2, then

|Eµ(A)| ≤ 1

n

n∑
i=1

E
W̃i

[
∆1(W̃i)

(
IW̃i(Ẑi;Ui) + 0.72Λ(W̃i)

)]
.

For the second part, if A is further β2-uniform stable, recall Eq. (25) and by the non-decreasing
property of h, we have

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i = w̃i)

t
+h (β2t) tEẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]
.

Let t = 1
β2

and taking expectation over W̃i, we have

E
Ẑi,Ui,W̃i

[
g(W̃i, Ẑi, Ui)

]
≤β2I(Ẑi;Ui|W̃i) + 0.72

E
Ẑi,W̃i

[(
ℓ(W̃−

i , Ẑi)− ℓ(W̃+
i , Ẑi)

)2]
β2

=β2I(Ẑi;Ui|W̃i) + 0.72
γ2
4

β2
,

where the equality is by the definition of γ4-SCH-D stability.

Thus,

|Eµ(A)| ≤ 1

n

n∑
i=1

β2I(Ẑi;Ui|W̃i) + 0.72
γ2
4

β2
.

This concludes the proof.

D.4 Proof of Theorem 4.4

We present a stronger version of Theorem 4.4.
Theorem D.1. Under the same conditions in Theorem 4.1, and we further assume that A is γ2-SCH-B
stable and symmetric with respect to S, i.e. it does not depend on the order of the elements in the
training sample. Let ∆̄1(W̃ ) = 1

n

∑n
i=1 ∆1(W̃i)

2, we have

EW,S

[
(LS(W )− Lµ(W ))

2
]
≤ 6

n
E
W̃

[
∆̄1(W̃ )

(
IW̃ (E;U) +

log 3

2

)]
+

1

n
+ 4γ2

2 .
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Then Theorem 4.4 is a corollary of Theorem D.1.

Proof of Theorem 4.4. For β2-uniform stable algorithm, by ∆̄1(W̃ ) ≤ β2
2 and γ2

2 ≤ β2
2 , we have

EW,S

[
(LS(W )− Lµ(W ))

2
]
≤6β2

2

n

(
I(E;U |W̃ ) +

log 3

2

)
+

1

n
+ 4β2

2

=4β2
2

(
1.5I(E;U |W̃ ) + 0.82

n
+ 1

)
+

1

n
.

This completes the proof.

Before we prove Theorem D.1, we need to first obtain the following lemma.

Lemma D.1. Under the same conditions in Theorem 4.1, let ∆̄1(W̃ ) = 1
n

∑n
i=1 ∆1(W̃i)

2, we have

EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− LS(W )

)2
 ≤ 3

n
E
W̃

[
∆̄1(W̃ )

(
IW̃ (E;U) +

log 3

2

)]
.

Proof of Lemma D.1. Here we borrow some proof techniques used in [58, Thm. 2].

Let g(w̃, ẑi, ui) = (−1)ui
(
ℓ(w̃−

i , ẑi)− ℓ(w̃+
i , ẑi)

)
and let G ∼ N (0, 1) be an independent standard

Gaussian random variable. Let f = t · ( 1n
∑n

i=1 g)
2 in Lemma A.2, then

EE,U |w̃

( 1

n

n∑
i=1

g(w̃, Ẑi, Ui)

)2
 ≤ inf

t>0

I(E;U |W̃ = w̃) + logEE,U ′|w̃

[
et(

1
n

∑n
i=1 g(w̃,Ẑi,U

′
i))

2]
t

= inf
t>0

I(E;U |W̃ = w̃) + logEE,U ′|w̃

[
EG

[
e

G
√

2t
n

∑n
i=1 g(w̃,Ẑi,U

′
i)
]]

t
(26)

= inf
t>0

I(E;U |W̃ = w̃) + logEG,E|w̃

[∏n
i=1 EU ′

i

[
e

G
√

2t
n g(w̃,Ẑi,U

′
i)
]]

t

≤ inf
t>0

I(E;U |W̃ = w̃) + logEG

[
e

G2t
∑n

i=1 ∆1(w̃i)
2

n2

]
t

(27)

≤ inf
t∈

(
0, n2

2
∑n

i=1
∆1(w̃i)

2

)
I(E;U |W̃ = w̃) + log

(
1
/√

1− 2t
∑n

i=1 ∆1(w̃i)2

n2

)
t

(28)

= inf
t∈

(
0, n2

2
∑n

i=1
∆1(w̃i)

2

) I(E;U |W̃ = w̃)− 1
2 log

(
1− 2t

∑n
i=1 ∆1(w̃i)

2

n2

)
t

,

where Eq. (26) is by the moment generating function of Gaussian distribution: EG

[
eλG

]
= e

λ2

2

for all λ ∈ R, Eq. (27) is by Lemma A.3 and Eq. (28) is by the moment generating function of
chi-squared distribution: EG

[
eλG

2
]
≤ 1√

1−2λ
for λ < 1

2 .

Let t = n2

3
∑n

i=1 ∆1(w̃i)2
be substituted to the last equation above, we have

EE,U |w̃

( 1

n

n∑
i=1

g(w̃, Ẑi, Ui)

)2
 ≤ 3

n2

n∑
i=1

∆1(w̃i)
2

(
I(E;U |W̃ = w̃) +

log 3

2

)
. (29)
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Let ∆̄1(w̃) =
1
n

∑n
i=1 ∆1(w̃i)

2, and taking expectation over W̃ for both sides,

E
E,U,W̃

( 1

n

n∑
i=1

g(W̃ , Ẑi, Ui)

)2
 ≤ 3

n
E
W̃

[
∆̄1(W̃ )

(
IW̃ (E;U) +

log 3

2

)]
. (30)

Applying Jensen’s inequality to the square function, we have

EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− LS(W )

)2
 ≤ E

E,U,W̃

( 1

n

n∑
i=1

g(W̃ , Ẑi, Ui)

)2
.

Combining Eq. (30) with the inequality above will concludes the proof.

We are now in a position to prove Theorem D.1.

Proof of Theorem D.1.

EW,S

[
(LS(W )− Lµ(W ))

2
]

=EW,S

( 1

n

n∑
i=1

ℓ(W,Zi)− EZ′ [ℓ(W,Z ′)]

)2


=EW,S

( 1

n

n∑
i=1

ℓ(W,Zi)−
1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
+

1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− EZ′ [ℓ(W,Z ′)]

)2


≤2EW,S

( 1

n

n∑
i=1

ℓ(W,Zi)−
1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

])2


︸ ︷︷ ︸
B1

+ 2EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− EZ′ [ℓ(W,Z ′)]

)2


︸ ︷︷ ︸
B2

,

where the last inequality is by (x + y)2 ≤ 2x2 + 2y2. Notice that B1 can be bounded by using
Lemma D.1. We now focus on B2. Since EZ′ [ℓ(W,Z ′)] = 1

n

∑n
i=1 EZ′ [ℓ(W,Z ′)], we have

B2 =EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− 1

n

n∑
i=1

EZ′
[
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

]
+ EW i|W

[
ℓ(W i, Z ′)

]])2


=EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)− EZ′

[
ℓ(W i, Z ′)

]]
− 1

n

n∑
i=1

EZ′
[
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

]])2


≤2EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)− EZ′

[
ℓ(W i, Z ′)

]])2


︸ ︷︷ ︸
B3

+ 2EW

( 1

n

n∑
i=1

EZ′
[
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

]])2


︸ ︷︷ ︸
B4

.
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For B3, we apply Jensen’s inequality to move the expectation over W i outside of the square function,

B3 ≤EW 1,W 2,...,Wn,S

( 1

n

n∑
i=1

ℓ(W i, Zi)− EZ′
[
ℓ(W i, Z ′)

])2


=ES′,S,R

( 1

n

n∑
i=1

ℓ(A(Si, R), Zi)− EZ′
[
ℓ(A(Si, R), Z ′)

])2
.

Notice that S′, S and R are all independent with each other (so W i, Zi and Z ′
i are also independent

with each other). If we further let A be symmetric, namely W i does not dependent on i, then the
inequality above is equivalent to

B3 ≤EW,S′

( 1

n

n∑
i=1

ℓ(W,Z ′
i)− EZ′ [ℓ(W,Z ′)]

)2


=EW

ES′

( 1

n

n∑
i=1

ℓ(W,Z ′
i)− EZ′ [ℓ(W,Z ′)]

)2
.

Hence, the inner expectation in the RHS above is just the variance of the sample mean of n i.i.d
bounded random variables. Recall that ℓ(·, ·) ∈ [0, 1], thereby

B3 ≤ EW

[
VarZ′(ℓ(W,Z ′))

n

]
≤ 1

4n
,

where the second inequality is by Lemma A.4.

Then, for B4, we also apply Jensen’s inequality to the square function, and by the definition of
γ2-SCH-B stability, we have

B4 ≤EW,Z′

( 1

n

n∑
i=1

ℓ(W,Z ′)− EW i|W
[
ℓ(W i, Z ′)

])2


≤ 1

n

n∑
i=1

EW,Z′

[(
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

])2] ≤ γ2
2 .

Putting everthing together, we have

EW,S

[
(LS(W )− Lµ(W ))

2
]
≤2B1 + 2B2

≤2B1 + 4B3 + 4B4

≤2B1 +
1

n
+ 4γ2

≤ 6

n
E
W̃

[
∆̄1(W̃ )

(
IW̃ (E;U) +

log 3

2

)]
+

1

n
+ 4γ2

2 ,

where the last inequality is by Lemma D.1. This completes the proof.

D.5 Proof of Theorem 4.5

Proof. Let g(z̃+i , wi, w̄i, ui) = (−1)ui
(
ℓ(w̄i, z̃

+
i )− ℓ(wi, z̃

+
i )
)
. Again, by Lemma A.2, we have

EWi,W i,Ui|z̃+
i

[
g(z̃+i ,Wi,W i, Ui)

]
≤ inf

t>0

I(Wi,W i;Ui|Z̃+
i = z̃+i ) + logEWi,W i,U ′

i |z̃
+
i

[
etg(z̃

+
i ,Wi,W i,U

′
i)
]

t
.

(31)
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Similar to the previous proofs, it’s easy to see that g(z̃+i ,Wi,W i, U
′
i) is a zero-mean random variable

bounded in [−∆2(z̃
+
i ),∆2(z̃

+
i )]. Thus,

EWi,W i,Ui|z̃+
i

[
g(z̃+i ,Wi,W i, Ui)

]
≤ inf

t>0

I(Wi,W i;Ui|Z̃+
i = z̃+i ) +

t2∆2(z̃
+
i )2

2

t
. (32)

To prove the first bound, we let t =
√

I(Wi,W i;Ui|Z̃+
i =z̃+

i )

2∆2(z̃
+
i )2

, then

EWi,W i,Ui|z̃+
i

[
g(z̃+i ,Wi,W i, Ui)

]
≤ ∆2(z̃

+
i )

√
2I(Wi,W i;Ui|Z̃+

i = z̃+i ).

Recall Eq. (14) in Lemma A.1, hence,

|Eµ(A)| ≤ 1

n

n∑
i=1

EZ̃+
i

[
∆2(Z̃

+
i )

√
2IZ̃

+
i (Wi,W i;Ui)

]
. (33)

To prove the second bound, we take expectation over Z̃+
i for Eq. (32),

EWi,W i,Ui,Z̃
+
i

[
g(Z̃+

i ,Wi,W i, Ui)
]
≤ inf

t>0

I(Wi,W i;Ui|Z̃+
i ) +

t2E
Z̃

+
i
[∆2(Z̃

+
i )2]

2

t
.

Let t =

√
I(Wi,W i;Ui|Z̃+

i )

2E
Z̃

+
i
[∆2(Z̃

+
i )2]

, then

EWi,W i,Ui,Z̃
+
i

[
g(Z̃+

i ,Wi,W i, Ui)
]
≤
√

2EZ̃+
i

[
∆2(Z̃

+
i )2
]
I(Wi,W i;Ui|Z̃+

i ).

Ergo,

|Eµ(A)| ≤ 1

n

n∑
i=1

√
2EZ̃+

i

[
∆2(Z̃

+
i )2
]
I(Wi,W i;Ui|Z̃+

i ). (34)

This completes the proof.

E Omitted Proof in Section 6

E.1 Proof of Proposition 1

Proof. By Jensen’s inequality and triangle inequality, for any i ∈ [n], we have

ES,R,Z′

[(
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

])2]
≤EW,W i,Z′

[(
ℓ(W,Z ′)− ℓ(W i, Z ′)

)2]
=EW,W i,Z′

[(
ℓ(W,Z ′)− ℓ(w∗, Z ′) + ℓ(w∗, Z ′)− ℓ(W i, Z ′)

)2]
≤2EW,Z′

[
(ℓ(W,Z ′)− ℓ(w∗, Z ′))

2
]
+ 2EW i,Z′

[(
ℓ(W i, Z ′)− ℓ(w∗, Z ′)

)2]
≤4BEW

[
(Lµ(W )− Lµ(w

∗))
1
κ

]
,

where the last inequality is by the definition of the Bernstein condition. This completes the proof.

E.2 Proof of Theorem 6.1

Proof. Let g(∆ℓi, ui) = (−1)ui∆ℓi. Notice that |g(∆Li, U
′
i)| ≤ β2 and g(∆Li, U

′
i) is agian

zero-mean, then

E∆Li,Ui [g(∆Li, Ui)] ≤
I(∆Li;Ui) + logE∆Li,U ′

i

[
etg(∆Li,U

′
i)
]

t

≤β2

√
2I(∆Li;Ui).
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Thus,

|Eµ(A)| ≤ β2

n

n∑
i=1

√
2I(∆Li;Ui).

To prove the disintegrated CMI bound, we let g be defined in the same way, and the remaining
development is the same with the proof in Theorem 4.5.

For the second inequality, notice that I(∆Li;Ui) ≤ I(∆Li;Ui|Z̃+
i ) by using the chain rule of

mutual information and the independence between Z̃+
i and Ui. In addition, moving the expectation

over Z̃+
i inside the square-root function by Jensen’s inequality, we have EZ̃+

i

√
IZ̃

+
i (∆Li;Ui) ≤√

I(∆Li;Ui|Z̃+
i ).

E.3 Proof of Theorem 6.2

Proof. Before we prove Theorem 6.2, we first show the following lemma.

Lemma E.1. For any i ∈ [n], we have
∑n

i=1 I(Fi, F̄i;Ui|Z̃+
i ) ≤ I(F[n], F̄[n];U |Z̃+

[n]).

Proof of Lemma E.1. First, by I(Fi, F̄i;Ui|Z̃+
i ) = H(Ui) − H(Ui|Fi, F̄i, Z̃

+
i ) and

I(Fi, F̄i;Ui|Z̃+
[n]) = H(Ui) − H(Ui|Fi, F̄i, Z̃

+
[n]), and notice that H(Ui|Fi, F̄i, Z̃

+
[n]) ≤

H(Ui|Fi, F̄i, Z̃
+
i ), we have

I(Fi, F̄i;Ui|Z̃+
i ) ≤ I(Fi, F̄i;Ui|Z̃+

[n]). (35)

Then, using the chain rule,

I(Fi, F̄i;Ui|Z̃+
[n]) + I(F[n]\i, F̄[n]\i;Ui|Z̃+

[n], Fi, F̄i) = I(F[n], F̄[n];Ui|Z̃+
[n]).

By the non-negativity of mutual information, we have

I(Fi, F̄i;Ui|Z̃+
[n]) ≤ I(F[n], F̄[n];Ui|Z̃+

[n]). (36)

Furthermore, by the independence of each Ui (i.e. I(Ui;U[n]\i|Z̃+
[n]) = 0), we have

n∑
i=1

I(F[n], F̄[n];Ui|Z̃+
[n]) ≤ I(F[n], F̄[n];U |Z̃+

[n]). (37)

Combining Eq. (35-37) will conclude the proof.

We now prove Theorem 6.2.

For a given Z̃[n], the number of distinct values of their predictions, denoted by k, are upper bounded
by the growth function of F evaluated at n,

k ≤
d∑

i=1

(
n
i

)
≤ (

en

d
)d,

where the second inequality is by Sauer-Shelah lemma [53, 57] for n > d+ 1.

Thus,

I(F[n], F̄[n];U
∣∣Z̃+

[n]) ≤ H(F[n], F̄[n]

∣∣Z̃+
[n]) ≤ H(F[n]

∣∣Z̃+
[n]) +H(F̄[n]

∣∣Z̃+
[n]) ≤ 2d log

(en
d

)
.

(38)
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By Jensen’s inequality and Lemma E.1, we have

1

n

n∑
i=1

√
I(Fi, F̄i;Ui|Z̃+

i ) ≤

√√√√ 1

n

n∑
i=1

I(Fi, F̄i;Ui|Z̃+
i ) ≤

√
I(F[n], F̄[n];U

∣∣Z̃+
[n])

n
.

Plugging Eq. (38) into the inequality above,

1

n

n∑
i=1

√
I(Fi, F̄i;Ui|Z̃+

i ) ≤ O

(√
d

n
log
(n
d

))
,

which completes the proof.

F CLB Exampls

In Example 1, [21, Thm. 17] demonstrates the non-vanishing behavior of individual IOMI and
e-CMI. This is primarily attributed to the dimension-dependent nature of IOMI and CMI. Specifically,
there are certain dimensional settings where IOMI can grow faster than O(n), as shown in [21,
Thm.4], and CMI approaches a certain fraction of its upper bound, as illustrated in Example 1,
resulting in non-vanishing behavior. Specifically, in Example 1, [21] employs the birthday paradox
[37, Sec. 5.1] problem to demonstrate that for a large value of d, the probability that no pair of
instances in Z̃ sharing the same non-zero coordinate (referred to as event E0) is smaller than a
constant probability (that could be independent of n). Particularly, it is shown that if d ≥ 2n−1

1−c1/(2n−1) ,

then P (E0) ≥ c ≥
(
1− 2n−1

d

)2n−1
. As an example, [21] chooses d = 2n2, resulting in c ≥ 0.1.

Failure of I(W ;Zi) Consider the case where d = 2n2. For the individual CMI [49, 70],
I(W ;Ui|Z̃i), we have the following:

I(W ;Ui|Z̃i) = log 2−H(Ui|W, Z̃i) ≥ 0.1 · log 2.

This inequality holds because when event E0 does not occur, one can determine the value of Ui

completely, as the returned hypothesis is a weighted sum of the sample. In other words, examining
the non-zero coordinates of W is sufficient to determine Ui. For an in-depth derivation of this
inequality, readers are referred to the updated version of [21], where their corrected proof involves
Fano’s inequality. Furthermore, using the relation I(W ;Zi) ≥ I(W ;Ui|Z̃i) [70], we conclude that
I(W ;Zi) ∈ Ω(1).

Failure of I(Ẑi;Ui|W̃i) Notably, our hypotheses-conditioned CMI also does not vanish for the
same reason. More precisely, when W̃i and Ẑi are given, there exists a constant probability (indepen-
dent of n) that allows us to fully determine the returned hypothesis based on Ẑi, thereby determining
the value of Ui.

Failure of I(∆Li;Ui) Furthermore, even the loss difference based CMI (e.g., as shown in Theo-
rem 6.1), which provides the tightest CMI measure, still does not vanish. This is attributed to the fact
that if the hypothesis W is independent of certain Z, there exists a constant probability where the
loss becomes zero (recall that the loss is the negative inner product of W and Z). Consequently, one
can determine the value of Ui by observing the sign of the random variable ∆Li. This also indicates
the limitations of e-CMI and f -CMI in capturing the generalization behavior for Example 1.

In Example 2, following the approach in [21], the training sample S = {Zi}ni=1 ∼ µn can be repre-
sented as S = z0

R0
(ε1, ε2, . . . , εn), where {εi}ni=1 is a sequence of independent Rademacher random

variables, i.e., εi ∼ Unif({−1, 1}). The empirical risk is given by LS(W ) = − −L
nR0

⟨W,
∑n

i=1 εi⟩.
In this case, the ERM solution is WERM = z0 if sign(

∑n
i=1 εi) = 1, and WERM = −z0 if

sign(
∑n

i=1 εi) = −1. It is clear that

sup
w,wi,z

∣∣ℓ(w, z)− ℓ(wi, z)
∣∣ ≤ sup

w,wi,z

L||w − wi|| ≤ 2LR0.
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Hence, we observe that β2 is now a constant, whereas IOMI has an upper bound:
∑n

i=1 I(W ;Zi) ≤
I(W ;S) ≤ I(W ; sign(

∑n
i=1 εi)) ≤ H(sign(

∑n
i=1 εi)) ≤ 1, where the second inequality follows

from the Markov chain S − sign(
∑n

i=1 εi)−W . This provides us with a generalization bound of
2LR0√

n
. Meanwhile, the actual generalization error satisfies Eµ(A) ≥ LR0√

2n
(see [21, AppendixB] for

a derivation). Thus, the IOMI bound is tight up to a constant, and the stability bound β2 itself is
vacuous. It is worth noting that I(Ẑi;Ui|W̃i) ≤ I(W ;Zi) ≤ 1 by Theorem4.2, indicating that the
CMI bound is also tight.

We would like to note that the failures of chained mutual information bounds [2] are not demonstrated
in the counterexamples presented in [21]. Notably, when the hypothesis is quantized, it becomes more
challenging to guess Ui or Zi. Therefore, exploring the potential of chained information-theoretic
bounds, which do not necessarily rely on stability notions, could be another avenue to explain the
generalization behavior observed in these counterexamples.

G Additional Applications

G.1 Compression Schemes

We now consider the algorithm that has a compression scheme [30]. Formally, a sample compression
scheme of size k ∈ N is a pair of maps (A1,A2). Specifically, for all samples s with n > k,
A1 : Zn → Zk compresses the sample into a length-k subsequence A1(s) ⊆ s. Then A2 :
Zk → W could be some arbitrary mapping. Hence, A(·) = A2(A1(·)). Let K be the index set
for S selected by A1, and let K be the selected index set for Si. In this case, our supersample-
conditioned CMI has an upper bound: I(Wi,W i;Ui|Z̃+

i ) ≤ I(K,K;Ui|Z̃+
i ) ≤ H(K,K|Z̃+

i ) ≤
2 log

(
n
k

)
≤ 2k log n. Then, if A is further β2-uniform stable, then we have the generalization bound

Eµ(A) ≤ O(β2

√
k log n). If β2 < O(1/

√
n), this bound improves the bound in [58]. It is unclear if

we can obtain any improved bound for stable compression schemes [7], in which case [19] provides
an optimal bound that removing the log n factor for the realizable setting. A main difficulty is that an
interpolating algorithm is usually unstable due to the fitting-stability tradeoff [54, Sec. 13.4].

G.2 Distillation Algorithm

The high-probability generalization property of distillation algorithm is studied in [16]. In the first
training stage of distillation, we obtain a w∗

s from a highly complex hypothesis space W1 based on
a training sample s. Same to [16], we assume that the first learning stage is α-sensitive, namely
||w∗

s − w∗
si || ≤ α = O(1/n). In the second stage, the algorithm A will select a hypothesis that is

λ-close to w∗
s from a less complex hypothesis space W2 = {w ∈ W : ||w−w∗

s ||∞ ≤ λ}. Let the loss
function ℓ be L-Lipschitz with respect to the first argument. Consequently, γ3 ≤ L||w∗

s −w∗
si || ≤ Lα.

Then, by Theorem 4.1, we have Eµ(A) ≤ Lα 1
n

∑n
i=1

√
2H(Ui) =

√
2 log 2Lα. Notice that the loss

here may not necessarily be bounded or sub-Gaussian, rendering previous bounds inapplicable.

G.3 Regularized Empirical Risk Minimization

Regularized Empirical Risk Minimization (ERM) learning rules involve minimizing the empirical
risk and a regularization function jointly: argminw∈W LS(w) + freg(w), where freg : W → R.
Here we specifically consider Tikhonov regularization [54], namely freg(w) = λ||w||2, where λ > 0
is a tradeoff coefficient. The regularized ERM algorithm A aims to find

w = arg min
w∈W

LS(w) + λ||w||2.

This regularization term ensures strong convexity of the training objective. Based on Theorem 4.3,
we can derive the following results.
Corollary G.1. Assume that the loss function ℓ is convex and L-Lipschitz. Then, for the regularized
ERM algorithm with Tikhonov regularization, we have

|Eµ(A)| ≤ 2L2

λn

(
1

n

n∑
i=1

I(Ẑ;Ui|W̃i) + 0.72

)
.
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Proof of Corollary G.1. By invoking [54, Corollary 13.6], we know that γ4 ≤ β2 = 2L2

λn . Plugging
the value of β2 will give us the desired result.

Corollary G.2. Assume that the loss function is ρ-smooth and nonnegative. Let λ ≥ 2ρ
n . Then, for

the regularized ERM algorithm with Tikhonov regularization, we have

|Eµ(A)| ≤ 48ρL̂n

λn

(
1

n

n∑
i=1

I(Ẑ;Ui|W̃i) + 0.72

)
.

Proof of Corollary G.2. By invoking [54, Corollary 13.7], we know that γ4 ≤ β2 = 48ρL̂n

λn . Plugging
the value of β2 will give us the desired result.

Although these bounds do not enhance the convergence rate of O(1/n) in these settings, they con-
sistently offer tighter results compared to uniform stability-based bounds if 1

n

∑n
i=1 I(Ẑ;Ui|W̃i) ≤

0.28. In addition, the expected empirical risk L̂n appears in the bound of Corollary G.2. While λ has
a lower bound, L̂n could not be arbitrarily small for the regularized ERM.

Notice that previous information-theoretic bounds could not obtain the convergence rate of O(1/n)
as in our results unless ICMI or CMI itself decays with O(1/n).

H Additional Discussions and Open Problems

Stochastic Gradient Descent (SGD) Since the influential work of [22], stability approaches have
been widely employed to provide generalization guarantees for (sub)gradient-based optimization
algorithms, such as SGD, under certain conditions like the convex-smooth-Lipschitz loss. More
recently, [5] extended the results of [22] to the non-smooth loss function in the SCO setting.

In contrast, information-theoretic (weight/hypothesis-based) bounds are typically used to analyze
the noisy version of SGD, known as SGLD [43, 40, 18, 49, 60]. Directly analyzing SGD poses
challenges because the returned hypothesis W contains a significant amount of information about S
or Zi, resulting in potentially large (even infinite) mutual information. The prevalent approach to
applying information-theoretic bounds to SGD is by introducing noise [41, 61], but this has been
shown to yield non-vanishing bounds in [21, Thm. 4].

The combination of information-theoretic bounds with stability for analyzing the generalization
of SGD presents a promising future direction. However, some potential difficulties may arise.
For instance, if we continue to use the Gaussian noise perturbation method for the weight-based
information-theoretic bounds, we would need to characterize the stability property for the perturbed
SGD, which might require techniques employed in [38]. Additionally, when combining stability
notions with loss difference based CMI (or e-CMI/f -CMI) bounds, as they cannot be unrolled using
the chain rule and data processing inequality as in the case of weight-based IOMI/CMI bounds, it may
not be possible to bound such CMI terms using trajectory-based quantities. This raises doubts about
the potential for obtaining more informative generalization bounds compared to the stability-based
bounds themselves.

Generalization Bounds beyond Mutual Information In the information-theoretic literature, it is
common to replace mutual information with alternative distributional measures, such as Wasserstein
distance based bounds and total variation based bounds [50]. A promising future direction is to
incorporate the stability property of algorithms into these bounds, as demonstrated in this work. It is
worth noting that obtaining KL divergence-based bounds should be straightforward since they rely on
the same foundational Lemma A.2 as discussed in this paper.
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