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ABSTRACT

NLP tasks such as language models or document classification involve classifica-
tion problems with thousands of classes. In these situations, it is difficult to get
high predictive accuracy and the resulting model can be huge in number of param-
eters and inference time. A recent, successful approach is the softmax tree (ST):
a decision tree having sparse hyperplane splits at the decision nodes (which make
hard, not soft, decisions) and small softmax classifiers at the leaves. Inference here
is very fast because only a small subset of class probabilities need to be computed,
yet the model is quite accurate. However, a significant drawback is that it assumes
a complete tree, whose size grows exponentially with depth. We propose a new
algorithm to train a ST of arbitrary structure. The tree structure itself is learned
optimally by interleaving steps that grow the structure with steps that optimize
the parameters of the current structure. This makes it possible to learn STs that
can grow much deeper but in an irregular way, adapting to the data distribution.
The resulting STs improve considerably the predictive accuracy while reducing
the model size and inference time even further, as demonstrated in datasets with
thousands of classes. In addition, they are interpretable to some extent.

1 INTRODUCTION

Classification problems involving thousands to millions of classes occur naturally in many real-
world applications. Examples include predicting the next word in a sentence where the vocabulary
size can be in the order hundreds of thousands and categorizing products for e-commerce systems
where the number of distinct labels can be in the order of millions. Designing fast yet accurate
methods for these type of problems remains an active area of research.

A linear softmax model, either standalone or as the last layer in a neural network, is widely used
for general classification problems. Its inference time, however, scales linearly with the number of
classes K , which makes it very slow for large-K classification problems. A natural way to speed
it up would be through conditional computation during inference, but, by design, linear classifiers
need to evaluate the score for every class k no matter the input x. Decision trees, on the other hand,
follow a single, instance-dependent root-leaf path during prediction, and their inference time can
potentially scale logarithmically with the number of classes K . However, traditional axis-aligned
trees with constant-label leaves do not produce accurate results for problems with a large number of
classes (Choromanska and Langford, 2015).

Recently, Zharmagambetov et al. (2021) propose a novel Softmax Tree (ST) model which strikes
a good balance between linear methods and decision trees: the model takes the form of a (hard)
decision tree with sparse oblique (linear) decision nodes and small softmaxes at the leaves. To learn
these more complex forms of trees the authors adapt a recent Tree Alternating Optimization (TAO)
algorithm (Carreira-Perpiñán and Tavallali, 2018), which has the ability optimize various types of
tree-based models but only of a fixed structure and size. Experimentally, STs demonstrate much
faster inference than the linear classifier and other baselines as well as being very accurate for these
large classification tasks. However, a significant drawback of the ST training method is that it
assumes a complete tree structure, whose size grows exponentially with depth, and this limits their
power. In this paper we propose a new algorithm to train STs of arbitrary structure. The tree structure
itself is learned optimally by interleaving steps that grow the structure with steps that optimize the
parameters of the current structure. This makes it possible to learn STs that can grow much deeper
but in an irregular way, adapting to the data distribution. As we show experimentally, the resulting
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STs improve considerably the predictive accuracy while reducing the number of parameters and
inference time even further.

After reviewing related work (section 2) and discussing the difficulty of searching over tree struc-
tures (section 3), we describe the original softmax tree (ST) model and TAO-based optimization
(section 4) and our proposed adaptive softmax trees (AST) (section 5). Then (section 6) we ex-
perimentally show the superiority of ASTs over STs and other baselines for several multi-class
classification problems with a large number of classes and for language modeling.

2 RELATED WORK

Softmax approximation. While a softmax linear classifier defines a convex problem with the cross-
entropy, it has long been recognized that training it with many classes is a huge computational bottle-
neck, so that one-vs-all can often be the only affordable option, in part due to its inherent parallelism
(Deng et al., 2010). Indeed, even the extremely efficient LIBLINEAR (Fan et al., 2008) implements
one-vs-all but not the cross-entropy softmax. And, once trained, inference time in a large softmax is
also very large—for example, in a language model having a large vocabulary. Hence, much work has
been devoted to approximating the softmax classifier. The Hierarchical Softmax (HSM) (Goodman,
2001) addresses this by using a predetermined tree structure with linear decision nodes and fixed leaf
labels (corresponding to the words in vocabulary) to speed up the training of language models. Origi-
nally developed for a two-level tree, it has been extended to deeper architectures (Morin and Bengio,
2005; Mnih and Hinton, 2009). The structure of the tree can be random, or based on word similar-
ities (Brown, 1992; Le et al., 2011; Mikolov et al., 2013b), or on word frequencies (Mikolov et al.,
2013a; Le et al., 2013), or based on speed-optimal dynamic programming (Zweig and Makarychev,
2013), and optimized for GPUs (Grave et al., 2017). Training HSM-based language models is effi-
cient (usually logarithmic in vocabulary size), but it leads to no speedup at inference time: during
prediction an input instance is propagated to all the leaves. Apart from HSMs, other methods of
softmax approximation are possible, such as singular value decomposition (Shim et al., 2017) and
model compression technicuqes such as pruning or quantization (Deng et al., 2020).

Decision tree based methods. Decision trees enjoy fast prediction and interpretability, but tra-
ditional methods such CART (Breiman et al., 1984) and C5.0 (Quinlan, 1993) have low accuracy
for problems with a large number of classes (Choromanska and Langford, 2015). This is due to a
suboptimal training (greedy recursive partitioning) and limited modeling ability (axis-aligned splits
and constant-label leaves). The trees can be made more complex by allowing for oblique (hy-
perplane) splits (Breiman et al., 1984) and small linear classifiers at the leaves (Daumé III et al.,
2017). However, this leads to a more difficult optimization problem for which various heuris-
tics and gradient approximations have been proposed (Jernite et al., 2017; Daumé III et al., 2017).
Zharmagambetov et al. (2021) adopts a recent Tree Alternating Optimization approach to learn these
types of models, but it is limited only to trees of fixed depth and structure. Decision trees are usu-
ally ensembled to boost the prediction accuracy but traditional implementations are not suitable for
problems with a large number of classes. Si et al. (2017) adapts gradient boosting trees to output
ℓ0-regularized sparse prediction and applies this to many-class problems. Besides tree-based tech-
niques, other methods exist such as sampling (Joshi et al., 2017) and hashing (Medini et al., 2019).

Conditional computation. There is growing interest in having neural networks use only a small
portion of its computational graph to enable fast prediction. Although several works Shazeer et al.
(2017); Hazimeh et al. (2020); Veit and Belongie (2018) have shown promising results in terms of
runtime and accuracy tradeoff, the non-differentiability of the conditional computation makes it
difficult to apply continuous gradient-based optimization (Hazimeh et al., 2021). One way to achieve
this is to train a continuous model, such as a soft tree, and harden its decisions a posteriori, but this
leads to degradation in accuracy, as observed in (Zharmagambetov et al., 2021). In our adaptive
softmax trees, conditional computation is built in by design during training and inference.

Growing NNs and neural architecture search. The idea of growing the NN architecture by adding
more neurons during training has a long history (Fahlman and Lebiere, 1990; Gallant, 1993; Fritzke,
1994; Bruske and Sommer, 1995; Evci et al., 2022). A related, recently very active area that aims
to learn an optimal NN structure is Neural Architecture Search (reviewed by Elsken et al. (2019);
Ren et al. (2021)). A major issue in learning/growing NN architectures is the vast number of choices:
layerwise or depthwise growth, how to connect neurons, etc. With trees the search space more
directed: either expanding leaves or pruning nodes. Tanno et al. (2019) adaptively grow and train
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soft neural trees (where an input instance follows all root-leaf paths with a positive probability) using
backpropagation, but their trees are very small (just a few leaves), thus limiting the potential gains
in inference speed.

3 OPTIMIZING TREES OVER PARAMETERS AND STRUCTURES

Learning a tree-based model has two important difficulties. One is that the space of tree structures is

huge: with n nodes (in total), there are 1
n+1

(

2n
n

)

ordered trees (Knuth, 1997), which already exceeds

one million for n = 14. The other is that a tree (making hard decisions) defines a non-differentiable,
highly non-convex optimization problem.

The traditional, widely used approach for learning axis-aligned trees is based on greedy top-down
induction (Breiman et al., 1984; Quinlan, 1993): starting from the root node, recursive splits are
fixed (so they optimize a local purity criterion) until the tree is fully grown. This is usually followed
by a form of pruning to reduce overfitting. While suboptimal, this two-step process does a local
search over tree structures and can produce adequate results with simple axis-aligned constant-leaf
trees, but it works poorly with more complex trees, e.g. with oblique or neural nodes.

The Tree Alternating Optimization (TAO) algorithm (Carreira-Perpiñán and Tavallali, 2018), re-
viewed in section 4, works by optimizing the parameters of each node in alternation, for a tree
of given structure. It does a much better job at optimizing a complex tree, as it can monotonically
decrease a loss function, regularization and tree model of very general form. It also does a restricted
form of structure search: an ℓ1 penalty sparsifies the node weight vectors, which can make nodes
redundant and thus pruned, resulting in a learned structure that is a subtree of the initial tree. But,
beyond that, TAO does not search over tree structures, and in particular it cannot learn a bigger tree
than the initial one.

The original Softmax Tree (Zharmagambetov et al., 2021), consisting of a tree with oblique (hard)
splits and softmax leaves, relied directly on TAO to optimize the cross-entropy. It used as initial
tree a complete tree of depth ∆ and 2∆ softmaxes each having k classes. By tuning these two
hyperparameters ∆ and k, it achieved good results on large, many-class datasets. But it has a major
limitation: the number of nodes grows exponentially with the depth, which is thus computationally
limited in memory and time (to ∆ ≈ 14 in that paper), which in turn forces the softmaxes to use
many classes (large k). If the tree was deeper, the softmaxes could be smaller, accelerating the
inference. Crucially, depending on the data distribution, the tree may need to be quite deep in some
parts and shallow in others, i.e., an unbalanced structure. If we could guess the right structure,
we could have TAO use that from the beginning, but guessing it is far from simple. Using, say, a
structure from a CART tree does not work at all. This calls for searching over structures properly as
proposed in our Adaptive Softmax Trees (ASTs), described in section 5. And, as it turns out, we find
in our experiments that ASTs achieve higher test accuracy than using a complete ST of the same
depth (which is far more costly).

At the heart of improvement of ASTs is the interplay between tree depth ∆ and leaf softmax width
k. In a complete ST, the inference time is O(D(∆ + k)) (actually less if the weight vectors and
softmaxes are sparse and some tree paths are shallower than∆), and typically∆ ≪ k. This improves
greatly over a single softmax, O(DK), if ∆+ k ≪ K . In ASTs, an irregular tree structure makes
it possible to reduce k further by increasing ∆ selectively for each branch. Besides, in our ASTs we
learn the number of classes kj for each leaf j automatically, so that some leaves specialize on a few
select classes while others handle more classes, which affords further speedups. The inference time
is then O(D(∆j + kj)) for each leaf j, and usually larger ∆j are associated with smaller kj .

4 SOFTMAX TREES (STS) AND TREE ALTERNATING OPTIMIZATION (TAO)

We now describe the Softmax Tree (ST) model and the extension of TAO to train them over a
fixed tree structure (Zharmagambetov et al., 2021). Let {(xn, yn)}Nn=1 ⊂ R

D × {1, . . . ,K} be our
training set of size N of D-dimensional input features and K classes. Write the Softmax Tree as
τ (x;Θ), a rooted binary tree with a set of decision (internal) nodes Ndec and a set of leaf nodes
Nleaf. Each decision node i ∈ Ndec has a routing function gi(x; θi): R

D → {lefti, righti} ⊂
{Ndec∪Nleaf} that sends an instance x to its left or to its right child. We use oblique (linear) decision
nodes: “if wT

i x + wi0 ≥ 0 then gi(x) = righti, otherwise gi(x) = lefti” where the learnable
parameters are θi = {wi, wi0}. Note how the routing function makes hard decisions, unlike soft
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trees, where an instance x is propagated to both children with a positive probability. Each leaf
j ∈ Nleaf contains a predictive function fj(x; θj): R

D → {1, . . . ,K} that produces the actual
output of the tree τ (x;Θ) for an instance x. In Softmax Trees, fj(x; θj) takes the form of a small
softmax linear classifier: fj(x; θj) = σ(Wjx+wj0) where θj = {Wj ∈ R

k×D, wj0 ∈ R
k} are

the learnable parameters, and σ(·) is the softmax function. The leaf predictor function fj(x; θj) can
output only k nonzero probabilities, with k ≤ K , for a set of k classes (this set is learned); for all
the other K−k classes fj(x; θj) assigns exactly zero probability. For problems with a large number
of classes we want k ≪ K to allow for fast inference. The predictive function of the whole Softmax
Tree τ (x;Θ) then works by routing an instance x to exactly one leaf through a root-leaf path of
(oblique) decision nodes and applying that leaf’s small softmax predictor function. Overall, a ST
can be seen as a hierarchical collection of local softmax classifiers each operating on a small subset
of classes.

Now we describe how the TAO algorithm applies in learning a ST. TAO is a general method for
learning a precisely stated objective function and decision tree model. Unlike CART-type methods,
conceptually it works similarly to how one would optimize a (say) neural network: by taking an
initial tree structure (network architecture) and parameters (network weights) it performs alternat-
ing optimization over the nodes (gradient descent in a neural net) to monotonically decrease the
objective function. Unlike with neural nets and soft decision trees, gradient-based optimization is
not applicable because hard decision trees are non-differentiable functions. Given a Softmax Tree
τ (x;Θ) of fixed structure (e.g. a complete tree of depth ∆) and initial parameters (e.g. random), the
goal of TAO is to optimize the following objective function:

E(Θ) =

N
∑

n=1

L(yn, τ (xn;Θ)) + λ
∑

i∈Ndec

‖wi‖1 + µ
∑

j∈Nleaf

‖Wj‖1 (1)

where L(·, ·) is the cross-entropy loss, Θ = {wi, wi0}i∈Ndec
∪ {Wj,wj0}j∈Nleaf

are the set of all
learnable model parameters, and there is an ℓ1 penalty over the weight vectors to promote sparsity
via hyperparameters λ, µ ≥ 0. In general, we use the same regularization value for both decision
nodes and leaves λ = µ, but in some experiments we explore the effect of the leaf sparsity µ.

The TAO algorithm is based on two theorems. First, the separability condition states that eq. (1)
separates over a set of non-descendant nodes, e.g. all the nodes at a given depth. This is a con-
sequence of a tree making hard decisions. All such non-descendant nodes can be optimized inde-
pendently and in parallel. Second, the reduced problem over a node states that optimizing the
top-level problem of eq. (1) over the parameters of a given node i ∈ {Ndec ∪ Nleaf} reduces to a
simpler, well-defined problem involving only the training instances that currently reach that node i
(the reduced set Ri ⊂ {1, . . . , N}). The exact form of the reduced problem differs for leaves and
for decision nodes:

• For a decision node i ∈ Ndec, the top-level problem of eq. (1) reduces to a weighted 0/1 loss
binary classification problem:

Ei(wi, wi0) =
∑

n∈Ri

cn L(yn, gi(xn;wi, wi0)) + λ ‖wi‖1 (2)

where L(·, ·) is the 0/1 loss, yn ∈ {lefti, righti} is a pseudolabel indicating the “best” child
(i.e., the child that gives the lower value of the loss) for the instance xn, and cn ≥ 0 is the loss
difference between the “other” child and the “best” child for the instance xn. This problem over
an oblique node is in general NP-hard, but it can be approximated well with a surrogate loss such
as the cross-entropy (i.e., solving a logistic regression). We can ensure monotonic decrease of
the top-level objective (1) by accepting the update only if it improves (2) (in practice we find this
unnecessary).

• For a leaf node j ∈ Nleaf, the top-level problem of eq. (1) reduces to a form involving the original
loss but only over the parameters of the leaf predictor function fj(·) and over its reduced set Rj :

Ej(Wj ,wj0) =
∑

n∈Rj

L(yn, fj(xn;Wj,wj0)) + µ ‖Wj‖1 (3)

where L(·, ·) is the same cross-entropy loss of eq. (1). Exactly solving this problem would

require enumerating all
(

K

k

)

class subsets, but we can approximate this well by picking the top
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input training set {xn, yn}
N
n=1,

Softmax Tree τ (·;Θ) of depth ∆.

repeat

update reduced setsRi for all nodes i;
for d = ∆ downto 0 do

for i ∈ nodes at depth d
if i is a leaf

fit a ki-class linear softmax fi(·;θi)
on the top-ki majority class points
inRi to optimize eq. (3)

else
fit a weighted 0/1 loss binary
classifier g(·;θi) to optimize eq. (2)

end if
end for

end for
until stopping criterion
return trained τ (·;Θ)

input training set {xn, yn}
N
n=1, initial depth ∆0,

softmax contraction coefficient α ∈ (0, 1)
tolerance ratio for node expansion ρ > 1.

k0 ← αK
initialize τ (·;Θ) of depth ∆0 and k0-class leaves;
fit τ (·;Θ) using TAO;
repeat

update reduced setsRj for all j ∈ Nleaf;
for j ∈ Nleaf

initialize ST τ̂ j(·; Θ̂j) of depth ∆ = 1 or 2
and with (αkj)-class softmax leaves;

fit τ̂ j(·; Θ̂j) using TAO on {xn, yn}n∈Rj
;

if
loss(τ̂j(·;Θ̂j))

loss(fj(·;θj))
< ρ then expand the leaf j

end for
update the tree τ (·;Θ) and reoptimize with TAO;

until no changes to the tree structure
return adaptively grown τ (·;Θ)

Figure 1: Left: pseudocode of TAO for learning Softmax Trees. Right: pseudocode of the proposed
adaptive growth method for ASTs; this uses TAO (left part) as a subroutine.

k majority classes in the reduced set Rj and training a k-class softmax classifier fj(·) on them.
We solve the resulting ℓ1-regularized convex problem using SAG (Schmidt et al., 2017).

While these theorems do not prescribe the order in which the nodes should be optimized,
Zharmagambetov et al. (2021) follow a reverse breadth-first search order: all the nodes at a given
depth are optimized in parallel, starting from the deepest ones until the root. Each optimization sub-
problem involves solving either ℓ1-regularized logistic regression or ℓ1-regularized k-class softmax
classifier. As an initial tree, a complete tree of a given depth ∆ is used with initial parameters set
either randomly or based on the k-means clustering assignment of training points to the leaves. The
hyperparameters of the model are the depth ∆ of the tree and the number of classes k in the leaf
softmaxes. Fig. 1 (left) outlines the pseudocode of TAO for Softmax Trees. By ensuring that each
obtained solution of the reduced problem of a decision node improves upon the previous one, TAO
has the guarantee of a monotonic decrease of the objective function (1).

Finally, node pruning occurs automatically because the ℓ1 penalty can drive a node’s weight vector
to 0. This makes the node redundant (it sends all instances to the same child) and can be removed at
the end. Thus, the final ST is a subset of the initial (complete) ST.

5 ADAPTIVE SOFTMAX TREES (ASTS)

In the previous section, TAO was used on a complete tree of depth ∆. Now, we improve this to
explore structures. The basic idea is to use two types of steps. One is a regular TAO optimization
of a ST of fixed structure (not necessarily complete); this guarantees improvement of the objective
defined globally over this ST. The other is an expansion step on a current leaf, which tries to replace
it with a shallow ST (having narrower softmaxes at its leaves). This local move can improve the
loss function but at the cost of additional decision nodes; we actually expand the leaf if overall we
improve, else we do not expand it, and try other leaf. We interleave regular and expansion steps until
convergence. Let us see this in more detail.

We first train a shallow (e.g. depth ∆ = 2) complete Softmax Tree τ (·;Θ) with relatively large
k0-class softmaxes in the leaves. The number of classes k0 is set such that the total number of
predictable classes by the model is at least the total number of classes K in the dataset: k02

∆ ≥
K . We then attempt to replace each leaf j ∈ Nleaf softmax predictor function fj(·; θj) by yet
another shallow Softmax Tree τ̂ j(·; Θ̂j) of depth ∆̂ = 1 or 2, whose leaves contain smaller k̂j-
class softmaxes, k̂j < k0. To control by how much these large softmaxes are reduced we use the
following simple heuristic: k̂j = α k0, where 0 < α < 1 is the softmax contraction coefficient
hyperparameter. We obtain this small tree τ̂ j(·; Θ̂j) by fitting it using the TAO algorithm on the
training instances that reach the leaf j, i.e., on the reduced set Rj . This step can be considered as
a recursive application of the Softmax Tree method with the goal of replacing large, flat softmaxes
with faster softmax “subtrees”. But instead of directly substituting the leaf softmax fj(·; θj) with
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the tree τ̂ j(·; Θ̂j), we first ensure that the accuracy of τ̂ j(·; Θ̂j) is at least as good as the original
softmax fj(·; θj) or within a reasonable tolerance ratio hyperparameter ρ. If this is not the case,
the leaf predictor function fj(·; θj) remains unchanged. Otherwise, the substitution happens, and
this results in the structure change of the original tree model τ (·;Θ) where it is expanded through
the leaf j (the expansion step). In this way, after attempting to expand all the leaves j ∈ Nleaf,
and assuming some or all them are expanded, we obtain a deeper Softmax Tree τ exp(·;Θexp) with
smaller leaf softmaxes which has comparable or better training accuracy and faster inference. Now,
importantly, we retrain the whole model τ exp(·;Θexp) globally using TAO (the regular step), which
will further improve the model accuracy. We repeat these local expansion and global optimization
steps until the model converges or some predetermined stopping criterion is reached. Note that if
a given leaf j could not grow at one expansion step, it can still grow in the next iteration because
of the in-between optimization step which can change the parameters of the whole model. Fig. 1
(right) outlines the proposed adaptive learning algorithm.

The described algorithm can be motivated as performing search through the vast space of different
tree structures and parameters. Each leaf-wise local expansion step attempts to improve the model
architecture, and the subsequent optimization step of the whole current model attempts to refine
the model parameters. This process leads to a better structure and parameter values than the one
produced by TAO on a random or heuristic complete tree initialization.

5.0.1 COMPUTATIONAL COMPLEXITY

Training It is difficult to estimate the training time precisely because of the changing tree structure
and softmax sizes. A coarse upper bound results from taking the largest structure and softmax size
kmax that occur during training. If we assume that fitting softmax classifiers is linearly proportional
to the training set size, then sequential optimization of all the leaves is upper-bounded by fitting a
single kmax-class softmax for the whole training set. But after several expansion steps, the softmax
sizes are usually much smaller. Regarding the oblique decision nodes, optimizing sequentially all
them at a given depth is asymptotically equivalent to fitting a single logistic regression on the whole
training set. However, from TAO’s separability condition, optimizing all the leaves and all the
decision nodes at the same depth can be done in parallel, which can bring huge speedups.

Inference For the original Softmax Tree (assumed complete), the inference time is O(D(∆ + k)).
Compared to a singlem flat softmax on all K classes, the speed-up is dramatic: O( K

∆+k
) ≈ O(K

k
) if

k ≈ ∆+k ≪ K . For our AST, the inference time for a leaf j is O(D(∆j +kj)). The improvement
is that this results in quite smaller values of kj at the expense of slightly large values of ∆j (thin
softmaxes in deep leaves).

6 EXPERIMENTS

Our experimental results consistently demonstrate the benefit of our proposed adaptive learning
method in learning better Softmax Trees in terms of accuracy, inference time and model size for
several benchmarks in classification tasks with a large number of classes and in language modeling.
After describing our setup, we first show a detailed comparison of the proposed adaptive growth
method against the previous fixed tree approach. We then report benchmark results for document
classification and language modeling tasks. Finally, we analyze the produced tree structure and
attempt to interpret the model by visualizing it. In this section, “AST” refers to our proposed adaptive
learning method, and “ST” refers to the previous fixed tree approach.

Setup Unless otherwise stated, we use the following fixed values for these hyperparameters: the
initial tree depth ∆0 = 2 and the depth of expanding subtrees ∆̂ = 1. For all other hyperparameters
(the sparsity of decision nodes and leaves λ = µ, tolerance ratio for node expansion ρ and softmax
contraction coefficient α) we set them in accordance with cross-validation on a holdout set. All
other implementation details including hyperparameter tuning are provided in Appendix A.2.

We compare our results with other baselines specifically developed for problems with a
large number of classes. These include RecallTree (Daumé III et al., 2017), LOMTree
(Choromanska and Langford, 2015), (π, κ)-DS (Joshi et al., 2017) and MACH (Medini et al.,
2019). We use available open source implementations of the above methods or cite their results,
where applicable. For the linear one-versus-all classifier we use scikit-learn’s implementation
(Pedregosa et al., 2011). We report a misclassification error on training and test sets, average in-
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Table 1: Comparison between AST and ST. We report train and test errors, depth ∆ of the tree,
average inference time per test instance, the number of leaves, average softmax sizes in the leaves k̄
and average FLOPs per test instance. For ST we specify its leaf softmax size k, for AST the softmax
contraction coefficient α and tolerance ratio of node expansion ρ. Reported models are trained with
µ = 0.01 and models trained with µ = 0.1 are marked with ∗.

Method Etrain% Etest% ∆ inf.(µs) # leaves k̄ FLOPs

Softmax 22.3 23.2 - 53 - - 416
ST(k = 7) 0.52 8.33 7 142 128 5.27 197
ST(k = 5) 0.36 8.75 8 98 256 3.53 214
ST(from AST) 2.94 8.84 11 86 373 1.77 177

L
et

te
r

AST(α = 0.85, ρ = 1.2) 0.3 7.03 12 43 153 2.13 162
AST(α = 0.75, ρ = 1.2) 2.05 6.35 15 9 384 1.01 151

Softmax 10.9 13.0 - 411 - - 128000
ST∗(k = 90) 2.01 12.3 7 24 126 64.9 1493

A
L

O
I

ST(k = 75) 3.89 12.0 6 29 64 74.9 1871
ST(from AST) 2.37 12.8 8 18 177 38.4 1102
AST∗(α = 0.75, ρ = 1.01) 1.49 9.93 10 15 326 23.8 1016

Softmax 54.3 61.4 - 10680 - - 423722
ST(k = 70) 14.2 62.7 7 65 128 70 12279

L
S

H
T

C
1

ST(k = 50) 6.15 61.2 8 55 256 49.4 9218
ST(from AST) 9.36 68.7 9 62 511 49.7 9388
AST∗(α = 0.9, ρ = 1.2) 16.1 60.8 10 40 1006 11.5 3756

Softmax 42.4 50.2 - 16500 - - 9214
ST∗(k = 4) 48.7 51.5 8 36 30 4.6 691
AST∗(α = 0.35, ρ = 1.2) 46.3 49.5 11 16 73 4.1 586
ST∗(k = 9) 44.1 48.3 8 27 50 8.0 918
AST∗(α = 0.39, ρ = 1.2) 43.6 47.5 11 12 34 11.7 929

W
IK

I-
S

m
al

l
su

b
s.

ST(k = 95) 19.7 44.1 8 30 256 5.65 3065
ST(from AST) 21.1 44.0 8 19 65 12.5 3296
AST(α = 0.69, ρ = 1.2) 37.8 42.7 13 13 184 2.75 1437

ference time per sample on the test set and tree parameters (tree depth ∆, average leaf softmax sizes
k̄ and the number of leaves). We time inference of each sample on single CPU and average it over
the whole test set.

6.1 THE BENEFIT OF ADAPTIVE GROWTH

We first perform a detailed comparison between the models produced by our adaptive growth method
and the previous fixed tree approach. We choose 4 datasets with a large number of classes: WIKI-
Small subs., ALOI, LSHTC1 and Letter. The details about them can be found in appendix A.1.

For these sets of controlled experiments we keep node and leaf sparsity parameters λ, µ equal for
both ASTs and STs. As stated in previous sections, the AST approach expands leaves unevenly,
which produces softmaxes with different number of classes k. To ensure that comparison between
resulting models is fair and comprehensive, we train STs with biggest k from an AST and cross-
validated depth ∆. For WIKI-small we provide a pairwise comparison of multiple STs and ASTs
of similar k in Table 1. For example, the softmax size of ST∗(k = 13) and a maximum softmax
size of AST∗(α = 0.39, ρ = 1.2) are equal. Then, we use the structure of the final tree from the
AST to initialize an ST (referred as “ST(from AST)”). We keep k of leaf softmaxes but reinitialize
randomly the weights of linear classifiers in decision nodes and leaves.

Table 1 shows that ASTs considerably outperform STs in test error (up to 5% on WIKI-Small). In
many cases the performance of ST is improved as we lower the depth but lowering it too much leads
to increase in test error. Note that the depth of STs initialized from the corresponding AST differs
because of the post-pruning. Importantly, ASTs have much faster inference (up to 15 times on Letter)
and lower FLOPs. Fig. 5 in Appendix contains an additional experiment showing the improved
accuracy of ASTs over STs as a function of optimization iterations. These sets of experiments
confirm that progressive growth of a tree results in a better local optimum and justifies our approach.

6.2 TEXT CLASSIFICATION

We compare our method with other baselines (including ST) on document categorization benchmark
WIKI–Small consisting of more than 36k classes. Full dataset contains roughly 380k features and
800k training samples. Setting initial depth of AST to small values (2-3) while keeping α relatively
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Table 2: Left: text classification results. Right: language modeling results
Results on the text classification dataset
WIKI-Small. We report the test error, depth ∆
of the tree and the average inference time per
test sample in milliseconds. For STs we specify
the leaf softmax size k, and for ASTs we
specify the softmax contraction coefficient (α)
and the tolerance ratio of node expansion (ρ).

Method Etest(%) ∆ inf.(ms) Train time

RecallTree 92.64 15 0.97 53m
one-vs-all 85.71 0 10.70 > 7d
MACH 84.80 – 252.64 1445m
ST(k = 200) 84.70 8 0.18 ≈ 1000m
(π, κ)-DS 78.50 – 10.33 -
ST(k = 150) 77.26 8 0.57 ≈ 1000m
AST(α = 0.69

ρ = 1.0) 77.30 12 0.03 ≈ 2000m

AST(α = 0.60
ρ = 1.1) 76.21 12 0.04 ≈ 2000m

Results on the language modeling dataset
PTB. Along with the test error, depth ∆ of the
tree, and the average inference time per sample
in microseconds, we report the average perplex-
ity (PPL) over the test set instances for which
the model outputs nonzero probability. The per-
centage of such instances is shown in paren-
thesis. For all AST models we set ρ = 1.0.

Method Etest(%) ∆ inf.(µs) PPL(%nnz)

HSM 91.1 18 421 575 (100%)
one-vs-all 87.5 0 705 220 (100%)
ST(k = 50) 86.5 8 58 17 (44%)
ST(k = 100) 86.5 7 58 27 (51%)
ST(k = 400) 86.4 5 64 71 (67%)
AST(α = 0.3) 86.4 12 17 10 (37%)
AST(α = 0.4) 86.1 12 18 13 (44%)
AST(α = 0.5) 86.2 11 19 24 (51%)
AST(α = 0.75) 86.3 12 20 7 (33%)

high (0.55-0.88) generates extremely big softmaxes in the initial tree, subsequently, causing slow
training. Two ways to avoid mitigate this problem: 1) initializing with a bigger initial tree (depth of
5-6) 2) initializing with smaller α (0.007-0.02) while keeping α in expanding subtrees high (0.7).
As a result, as AST expands it covers more and more classes.

The left part of Table 2 shows that AST performs better on the test set than most of the baselines.
Moreover, our approach shows 6 times faster inference than ST (AST contains on average 44 classes
in the leaves). Note increasing number of TAO iterations during leaf expansion or global optimiza-
tion (or both) may lead to much better results at a cost of training time.

6.3 LANGUAGE MODELING

Penn Treebank (PTB) is a popular dataset often used for language modeling. We compare the perfor-
mance of our AST model on this task against Hierarchical Softmax (HSM), STs and linear one-vs-all
clasifiers. The details regarding the dataset preprocessing, implementation of the baselines and the
hyperparameter tuning can be found in Appendix A.3.

Perplexity score PPL = exp(− 1
N

∑N

n=1 logPr(yn|xn)) can be undefined for models that can out-
put exacly zero probability. This can happen with STs where an instance x reaches a leaf whose
softmax does not specialize in the true class y, and thus gets Pr(y|x = 0). Therefore, in estimating
the PPL we only include the instances for which the model outputs nonzero probability. Although
a linear classifier provides positive probability for all the classes, it could not predict correctly 58%
of all K ≈ 6k classes on both training and test sets, i.e., the outputted score Pr(y|x), though being
positive, was not a maximum, not even in the top-10 for many instances. For our AST models it is
possible control the percentage of points for which the model outputs positive probability by tuning
the hyperparameter α, which appendix A.4 explores in-detail.

The left part of Table 2 shows the results on PTB. It is clear that our method outperforms other
baselines in both top-1 test error and in inference time by a considerable margin. The performance
of AST can be even further improved by more optimization iterations.

6.4 TREE STRUCTURE AND INTERPRETABILITY

Fig. 2 shows how the number of classes present in the leaves changes with depth. Theoretically the
number of classes in the leaves should only monotonically decrease with depth. Such deviations due
to two reasons: 1) number of classes in the reduced set of the given depth is lower then theoretical
upper limit; 2) post pruning brings leafs closer to root.

The intrinsic tree structure of our model allows for its interpretation by visualizing its structure
and parameters. To show this, we train an AST on a small subset of Amazon Reviews dataset
(He and McAuley, 2016) which contains text reviews for the products in the Amazon website. From
four high-level product categories (Sports, Toys, Home, Tools) we select 50 subcategories with the
highest number of reviews. We select up to 300 reviews from each subcategory, and extract tf-idf
transformed bag-of-words features. This results in a dataset of size about 60k with features of size
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Figure 2: AST for the Wiki-Small subs. dataset. Size of the blue nodes shows the actual number of
classes in the leaves after pruning. Green shows theoretical max values at each aligned depth.
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Figure 3: Visualization of an AST tree for a subset of Amazon Reviews dataset.

of 11k and 200 classes. We keep 20% of the dataset as test set, and train a relatively smaller AST
on this problem to be able to visualize it in the paper. Initial tree has depth ∆0 = 2, and α = 0.25,
and we limit the expansion steps up to 2. The resulting tree has accuracy of 53%, and depth ∆ = 6,
and is visualized in fig. 3. The general observation reveals the hierarchical structure, where we can
observe some subtrees specializing on similar groups of classes (e.g. decision node 9 specializes
mostly on Toy classes). Looking at the decision node weights in the root-leaf path one can get
a local interpretation of why the tree sends a point to that particular leaf, and a small and sparse
softmax model at the leaf is also considered interpretable. Another key observation is that for the
most part similar classes tend to be grouped in the same leaf, which is quite remarkable given that
the tree is initialized randomly unaware of any class information.

7 CONCLUSION

Softmax Trees are an effective model for many-class problems which capitalize on the conditional
computation of decision trees and the ability to define local softmax classifiers that handle small
subsets of classes, both of which make inference very fast. However, the existing algorithm operates
on a fixed, complete tree, which considerably limits the depth of any individual leaf and results in
local softmaxes being wider than necessary. Our Adaptive Softmax Tree solves this by learning the
tree structure: it interleaves local expansion steps that turn a wide softmax into a Softmax Subtree
with thinner softmaxes, with a global TAO-based optimization of the entire tree. Our experimental
results convincingly show this results in improved accuracy, inference time and model size.
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A APPENDIX

A.1 DATASETS

Dataset Ntrain Ntest D K

Letter 16 000 4 000 16 26
ALOI 97 200 10 800 128 1000
LSHTC1 80 552 19 873 271 022 2657
WIKI–Small (subs.) 20 000 10 000 54 188 200
WIKI–Small 796 617 199 155 380 078 36 504
PTB 400 097 34 633 150 5 970

Table 3: Datasets used in the experiments: number of train and test instances (Ntrain, Ntest), number
of features D, number of classes K .

To create the subsampled Wiki-Small dataset, we randomly select equal number of samples from
each class to avoid imbalance. This is done with two purposes: 1) smaller dataset allows to train for
much higher number of iterations (to eliminate undertraining); 2) reduces time of a single experiment
which facilitates more precise hyperparameter search. Further, we remove features that remain
constant for all the training and test points. As a result, input features of the subsampled WIKI-Small
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have D = 37k dimension represented as normalized bag-of-words. For LSHTC1, we eliminate
all classes that contain less then 10 samples per class. We used tf-idf feature representations of
D = 271k dimension and K = 2657 classes. Table 3 summarizes the used dataset statistics.

A.2 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Both ST and AST were implemented in Python 3.8.10 and parallelized using Ray 2.2.0
(Moritz et al., 2018). l1-regularized logistic regression in the decision nodes implemented in scikit-
learn (Pedregosa et al., 2011) was solved using LIBLINEAR (Fan et al., 2008) and in the leaves -
using SAGA (Defazio et al., 2014).

For ST, a search of hyperparameters was performed on separate holdout set. We found that λ = 0.01
leads to best performance for most datasets and λ = 1 - for WIKI-Small. For smaller datasets we
set the number of TAO iterations high (up to 100), we report average of 5 runs and set number
of LIBLINEAR and SAGA iterations to 100. For larger experiments, TAO iterations are set to
40 with average of 3 runs and the number of LIBLINEAR and SAGA iterations is set to 100 and
50 respectively. Trees were initialized using random initialization as well as k-means initialization
described in Zharmagambetov et al. (2021).

For AST, both leaf and node sparsity parameters were cross-validated separately on a range between
0.01 and 100. It was found that for Letter and subsampled WIKI-Small λ = µ = 0.01, and for ALOI
and LSHTC1 λ = µ = 0.1 performs best. For large datasets λ = µ = 1 produces best results. We
initialized initial tree as well as stumps during expansion using median split. This way nodes have
almost the same number of samples and training in parallel becomes faster and generally produces
better accuracy. The number of LIBLINEAR and SAGA iterations is similar to one in ST. One way
of speeding up expansion process is to use weight matrix of expanding decision node to warm-start
optimization in leaves. This way SAGA converges much faster for the same tolerance. Number of
TAO iterations in during the expansion is set to 10 and to 15 during global reoptimization, but in
many cases it converges faster.

A.3 LANGUAGE MODELING EXPERIMENTS

The Penn Treebank contains around 1M tokens and vocabulary size of 10k words. Similar to
Zharmagambetov et al. (2021), we filter out rare words and obtain word embeddings using pre-
trained GloVe (Pennington et al., 2014). We predict the next word based on previous 3 words. To
form a preprocessed dataset, we simply concatenate word vector representations. As a result prepro-
cessed PTB consists of roughly 400k training samples, 150 features and 5970 classes. For baselines,
we used one-vs-all classifier from scikit-learn with ℓ1 regularizationλ = 1 and Hierarchical Softmax
from Mikolov et al. (2013a) implemented in Pytorch. We further compare AST and ST of different
leaf softmax sized (k) to show that AST wins not only in terms of top-1 test error but is up to 4 times
faster in inference.

A.4 CONTROLLING LEAF SOFTMAX SIZES FOR LANGUAGE MODELING
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Figure 4: Top-1 error, average inference time and percentage of covered classes for AST of different
α=(α0, α) on PTB dataset.

13



Fig. 4 shows dependence between the proportion of covered samples of different AST models. We
found experimentally that best validation performance is achieved when λ, µ and ρ are set to 1.
Fig. 4 shows that for high values of α0 and α (α0 = 0.75, α = 0.4) tree grows extremely deep (high
number of expansion steps) while maintaining relatively big softmax in the leaves. Moreover, the
fig. 4 highlights that as softmax size decreases with tree depth so does the inference time, however
at some point it starts to go up again. Since time it takes to propagate a sample to the leaf overtakes
the time of matrix multiplication in softmax there is an optimal depth of the tree for which inference
is the fastest. On the other hand, for very small α (α0 = 0.75, α = 0.2) softmax size decreases
much faster with tree depth resulting in a small tree with very small number of classes in the leaves.
Experimentally we found that such trees do not generalize very well and typically have low class
coverage. We can specify number of expansion steps (maximum depth) of the tree to control the
minimum coverage and inference time.
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Figure 5: Final model 0-1 Train (dashed line) and Test (solid line) loss comparison against complete
Softmax Tree. Arrows show expansion of the tree. Blue line shows performance of ST, Green -
ST(AST) and Red - AST. This shows that adaptive growth gradually enhances the performance of
the model on both train and test tests (red solid and dashed lines). On the other hand, ST initialized
randomly (blue line) or on the final structure of AST (green line) is unable to improve after certain
number of iterations.
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Figure 6: Comparison of average tree depth ∆av vs softmax regularization parameter µ for different
values of ρ and α, λ = 0.01

We examine effect of softmax contraction coefficient (α), tolerance ratio for node expansion (ρ) and
leaf sparsity parameter (µ) on the final tree structure. We conduct this set of experiments 5 times on
subsampled WIKI–Small dataset to eliminate the effect of noise and any inconsistencies.

We measure average tree depth ∆av over depth of each leave in final AST. Fig. 6 shows that ∆av

tends to increase as we increase µ. More sparse softmax in the leaves means expanded subtree is
more likely to perform better on the reduced set. It subsequently leads to more leaves being expanded
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on the current depth. Maximum depth, on the other hand, does not grow significantly. Fluctuations
of average depth as we increase leaf sparsity can be explained by good local optimum for given µ. In
general it was found that as the number of TAO and SAGA (solver for softmax classifier) iterations
increases lines become more smooth.
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