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Summary
Goal-conditioned reinforcement learning (GCRL) aims to train agents capable of achiev-

ing arbitrary goals, a task made significantly harder in offline settings where rewards and en-
vironment interaction are unavailable. Contrastive Reinforcement Learning (CRL) is a goal-
conditioned framework that learns value functions through contrastive objectives, enabling ef-
fective policy learning from offline datasets without reward labels or environment interaction.
In parallel, model-based reinforcement learning (MBRL) has shown that learning predictive
representations of environment dynamics can significantly improve policy performance and
sample efficiency. While both approaches learn features that anticipate future states, their
integration remains underexplored. In this work, we investigate whether model-based predic-
tive representations can enhance CRL’s similarity-based value estimation. We propose Model-
based Representations for Contrastive Reinforcement Learning (MR-CRL), a simple exten-
sion that augments CRL with predictive state and dynamics encoders trained using a novel
cross-entropy loss objective over latent dynamics predictions. We evaluate multiple integra-
tion strategies within the CRL architecture and find that MR-CRL outperforms the original
CRL baseline on 4 out of 18 tasks in the OGBench benchmark, with significant gains in both
low- and high-dimensional environments. While gains are not universal, our results suggest
that model-based inductive biases can enhance training goal-reaching on some tasks.

Contribution(s)
1. We propose MR-CRL, a simple extension to contrastive reinforcement learning that inte-

grates model-based predictive representations into the critic architecture.
Context: Context: MR-CRL draws on well-established insights from two distinct rein-
forcement learning paradigms: model-based RL and contrastive RL. We investigate the
utility of incorporating model-based representations into a contrastive, model-free setting.

2. We introduce a cross-entropy loss for training predictive state and dynamics representations,
drawing on techniques from self-supervised and model-based learning.
Context: Context: Prior work in model-based representation learning for model-free rein-
forcement learning primarily uses L2 reconstruction losses. Our proposed loss, inspired by
cross-entropy objectives in self-supervised and model-based RL literature, improves train-
ing stability and representation quality.

3. We evaluate multiple integration strategies for using model-based features within CRL’s
actor and critic networks and analyze their tradeoffs across tasks.
Context: Context: Our ablation study helps clarify how predictive state and state-action
embeddings influence contrastive value learning.

4. We show that MR-CRL improves over CRL in 4 out of 18 tasks in the OGBench benchmark,
particularly in low-dimensional and structured settings.
Context: Context: While improvements are not universal, results suggest that model-based
inductive biases can benefit contrastive goal-conditioned RL in specific domains.



MR-CRL: Model-based representations for Contrastive RL

MR-CRL: Leveraging Predictive Representations for
Contrastive Goal-Conditioned Reinforcement Learn-
ing

Anonymous authors
Paper under double-blind review

Abstract

Goal-conditioned reinforcement learning (GCRL) aims to train agents capable of1
achieving arbitrary goals, a task made significantly harder in offline settings where re-2
wards and environment interaction are unavailable. Contrastive Reinforcement Learn-3
ing (CRL) is a goal-conditioned framework that learns value functions through con-4
trastive objectives, enabling effective policy learning from offline datasets without re-5
ward labels or environment interaction. In parallel, model-based reinforcement learning6
(MBRL) has shown that learning predictive representations of environment dynamics7
can significantly improve policy performance and sample efficiency. While both ap-8
proaches learn features that anticipate future states, their integration remains underex-9
plored. In this work, we investigate whether model-based predictive representations10
can enhance CRL’s similarity-based value estimation. We propose Model-based Rep-11
resentations for Contrastive Reinforcement Learning (MR-CRL), a simple extension12
that augments CRL with predictive state and dynamics encoders trained using a novel13
cross-entropy loss objective over latent dynamics predictions. We evaluate multiple14
integration strategies within the CRL architecture and find that MR-CRL outperforms15
the original CRL baseline on 4 out of 18 tasks in the OGBench benchmark, with sig-16
nificant gains in both low- and high-dimensional environments. While gains are not17
universal, our results suggest that model-based inductive biases can enhance training18
goal-reaching on some tasks.19

1 Introduction20

Goal-conditioned reinforcement learning (GCRL) seeks to train agents capable of reaching arbi-21
trary goal states, enabling general-purpose policies across many tasks. When learning from offline22
datasets—without reward labels or online environment interaction—this problem becomes espe-23
cially challenging.24

Contrastive Reinforcement Learning (CRL) Eysenbach et al. (2022) offers an elegant solution to this25
challenge by learning state representations through contrastive objectives that directly encode goal-26
reaching behavior. Rather than relying on traditional temporal difference learning Sutton (1988),27
CRL trains a critic to discriminate between state-action pairs that lead to desired future states versus28
those that do not. The key insight is to parameterize the critic as an inner product between learned29
state-action embeddings and goal embeddings, creating a similarity metric that naturally captures30
goal-conditioned value functions. This approach enables agents to navigate to specified future states31
by leveraging the learned associations between current state-action pairs and their reachable out-32
comes.33

Meanwhile, model-based reinforcement learning has demonstrated significant advances in sample34
efficiency and performance by learning predictive representations of environment dynamics. Meth-35
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ods such as Dreamer (Hafner et al., 2024) and SALE (Fujimoto et al., 2023) show that training36
neural networks to predict future states and representations can inject valuable inductive biases into37
policy learning. These predictive models capture temporal structure and controllable aspects of the38
environment, leading to more informed decision-making and improved generalization.39

Notably, both CRL and MBRL learn representations that anticipate future states—yet these frame-40
works have remained largely disconnected. While CRL learns to associate state-action pairs with41
future goal states through contrastive objectives, model-based methods learn explicit predictive mod-42
els of state transitions.43

In this work, we investigate whether model-based predictive representations can enhance goal-44
conditioned policy learning within the CRL framework. We hypothesize that these predictive em-45
beddings, which capture structured and temporally coherent information through dynamics predic-46
tion, will offer a beneficial inductive bias for CRL’s similarity-based value functions.47

We propose Model-based representations for Contrastive Reinforcement Learning (MR-CRL), a48
contrastive reinforcement learning framework enhanced with model-based representations. Our key49
contributions are:50

• We introduce a novel training objective for model-based representation learning, using cross-51
entropy loss over latent dynamics predictions. This approach is inspired by insights from self-52
supervised learning methods Grill et al. (2020); Oquab et al. (2023) and discrete embeddings in53
modern MBRL works Hafner et al. (2024). Our proposed loss increases training stability of the54
model-based representations.55

• We investigate multiple strategies for integrating learned state and dynamics embeddings into56
CRL’s actor and critic networks, enabling richer goal-conditioned value estimation.57

• We demonstrate that MR-CRL outperforms the original CRL baseline on 4 out of 18 tasks in58
the OGBench benchmark, with substantial improvements in both low-dimensional and high-59
dimensional environments.60

2 Related Works61

2.1 Representation Learning62

The goal of representation learning is to learn a mapping from the input space to the latent space63
such that the mapping can be generalized to unseen data. Strong interest has risen especially in64
self-supervised methods with the promise of training on primarily unlabeled data. One such ap-65
proach is done through autoencoders such as Masked Autoencoders (He et al., 2022) which learns66
to reconstruct the original input. Alternatively, the input can be randomly augmented to provide67
two variations of the same input, one of which is passed to the online network and the other to the68
target network, as is done in BYOL (Grill et al., 2020). The model is then trained to minimize the69
difference in features between the online and target network.70

DINO is another effective method of representation learning in images that combines label-free71
knowledge distillation with self-supervised learning (Caron et al., 2021). Containing an architec-72
turally identical student network and a teacher network, the student learns to match the teacher73
network’s output by minimizing the cross-entropy loss, while the teacher’s weights are updated74
through an exponential moving average (EMA) of the student’s weights. To encourage local-global75
correlations, a multi-crop strategy is performed on the single input image to produce two global76
crops and several local crops. Only the two global crops are provided to the teacher, whereas the77
student receives all the image crops. DINO is then extended through the addition of iBOT losses78
(Zhou et al., 2022) and a more efficient implementation in DINOv2 (Oquab et al., 2023).79

A different learning paradigm is done through contrastive learning. Instead of only augmenting the80
same image to extract positive samples, contrastive learning techniques such as MoCo and SimCLR81
uses both positive samples and negative samples, where the negative samples comes from different82
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images (He et al., 2020; Chen et al., 2020). The features are learnt such that the similarity in features83
between positive samples are minimized, while the distance to negative samples are maximized.84
CLIP then extends this by combining text with images by training on image+caption pairs (Radford85
et al., 2021).86

2.2 Reinforcement Learning87

Reinforcement learning can be broadly split into model-based and model-free methods. The model-88
based method similar to our proposed method is the use of world models, first proposed by Ha &89
Schmidhuber (2018) and further developed by the Dreamer series of models (Hafner et al., 2019;90
2020; 2024), which aims to learn a dynamics model that is then used to perform imaginary rollouts91
without the need to interact with the environment. TD-MPC extends this by learning the dynamics92
of a learnt latent space instead of operating directly on the pixel space as done by Dreamer (Hansen93
et al., 2022).94

In contrast, a model-free approach that our work extends is Contrastive RL (CRL) (Eysenbach et al.,95
2022). The underlying principle behind CRL is to provide a method of learning features that can96
directly perform goal-conditioned RL, in contrast to decoupling the representation learning and97
goal-conditioned RL. This is accomplished by employing an actor critic method, where the critic98
is parameterized by two representations whose inner product represents the value function. Further99
work demonstrates that providing a single goal to CRL is sufficient for it to perform goal-conditioned100
RL, without the need for any intrinsic or extrinsic rewards (Liu et al., 2024).101

2.3 Representation Learning in RL102

Representation learning has been applied to RL in order to produce a latent space that the policy103
can more easily learn in. Methods of creating these state representations include using autoencoders104
(Finn et al., 2016) or through contrastive learning objectives (Laskin et al., 2020). SALE takes105
a different approach and learns both the state and state-action embeddings, thus providing repre-106
sentations of both the observation space and the dynamics model (Fujimoto et al., 2023). These107
embeddings are then appended to the input state and action. In contrast to world model methods,108
the embeddings are only used to improve the input to the value function, as opposed to using them109
for imaginary rollouts. This work is then extended in MR.Q, which foregoes the foregoes the input110
state and action into the value function while incorporating the reward and termination losses into111
the learning of the state and state-action embeddings (Fujimoto et al., 2025).112

3 Background113

3.1 Model-free reinforcement learning114

Reinforcement learning (RL) is a framework in which an agent interacts with an environmentM,115
making sequential decisions to maximize cumulative reward r. At each time step t, the agent ob-116
serves a state st ∈ S, selects an action at ∈ A, receives a reward r(st, at), and transitions to a new117
state st+1 according to the dynamics of the environment. The goal of the agent is to learn a policy118
π(a|s) that maximizes expected discounted return over time.119

Among the many classes of RL algorithms, this work focuses on actor-critic methods (Konda &120
Tsitsiklis, 1999). In these methods, a critic network estimates the value of a state-action pair, typi-121
cally in the form of a Q-function:122

Q(s, a) = E

[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
, (1)
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where γ is a discount factor and the expectation is taken over trajectories induced by the policy and123
environment dynamics. The actor network uses the critic network to update the policy in a direction124
that increases expected returns.125

In our work, we adopt the Deterministic Deep Policy Gradient (DDPG) algorithm (Lillicrap et al.,126
2019), a model-free actor-critic method for continuous control. The actor is represented by a deter-127
ministic policy π(s; θπ), which maps states to actions. The actor is trained with loss:128

Lactor(θ
π) = −Es∼D [Q(s, π(s; θπ))] , (2)

where D is the replay buffer. This loss encourages the actor to choose actions that maximize the129
critic’s predicted value, i.e., the expected return.130

3.2 Model-based representation learning for model-free reinforcement learning131

A growing body of work has investigated how predictive representations, learned via model-based132
objectives, can benefit model-free actor-critic algorithms (Fujimoto et al., 2023; 2025). These ap-133
proaches aim to inject structure and temporal coherence into the learned embeddings, improving134
generalization and sample efficiency without explicitly planning over future trajectories.135

In these approaches, two neural networks are used to encode latent dynamics: a state encoder z1 :136
S → Rd that maps raw observations to compact representations, and a state-action encoder z2 :137
Rd × A → Rd that predicts the next state’s embedding from the current state representation z1(s)138
and action a. These encoders are trained with a dynamics reconstruction loss:139

Ldynamics(st+1, st, at) = ∥sg(z′1(st+1))− z2(z1(st), at)∥
2
, (3)

where sg denotes stopgrad and z′1 is a target encoder whose parameters are updated periodically140
every p iterations. This loss encourages z2 to produce accurate predictions of the future latent state.141
This structured learning objective encourages representations that capture controllable aspects of the142
environment and are predictive of future states. It promotes temporally coherent representations that143
model the environment’s dynamics without explicitly constructing a generative model.144

To capture long-range and self-consistent representations, the final loss is summed over a rolled-out145
trajectory of length H:146

Lmodel =

H∑
h=1

Ldynamics(st+h, st+h−1, at+h−1) (4)

Once trained, the encoders can be used to augment the actor and critic networks in various ways.147
For the actor, one can condition the policy on both the raw state and its representation, i.e.,148
π(a | s, z1(s)), or even use the representation alone, π(a | z1(s)). For the critic, value functions149
can be defined using a combination of state and action embeddings, Q(s, a, z1(s), z2(z1(s), a)) or150
Q(z2(z1(s), a)) depending on whether raw inputs are retained. We explore several such architectural151
variants in the ablations 5.2.152

3.3 Goal-Conditioned Reinforcement Learning153

In goal-conditioned reinforcement learning (GCRL), the agent is tasked with reaching a specific goal154
state sg ∈ S. The environment is defined by states st ∈ S, actions at ∈ A, initial state distribution155
p0(s), transition dynamics p(st+1 | st, at), and a goal distribution pg(sg). Each goal defines a156
different task, making GCRL a form of multi-task RL (Veeriah et al., 2018; Schaul et al., 2015).157

We adopt a goal-reaching reward defined by the likelihood of arriving at the goal in the next time158
step: rg(st, at) = (1− γ) p(st+1 = sg | st, at). Such a reward definition avoids the need for user-159
defined distance metrics and aligns with prior work on goal-reaching objectives (Andrychowicz160
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et al., 2018; Pong et al., 2020; Eysenbach et al., 2022). The agent learns a goal-conditioned policy161
π(a | s, sg) that maximizes the expected return over sampled goals:162

max
π

Esg∼pg, τ∼π(·|sg)

[ ∞∑
t=0

γtrg(st, at)

]
. (5)

We define the corresponding goal-conditioned Q-function as163

Qπ
sg (s, a) = Eτ∼π(·|sg)

[ ∞∑
t′=t

γt
′−trg(st′ , at′) | st = s, at = a

]
. (6)

This formulation allows learning policies that are capable of reaching and remaining at arbitrary164
goal states, using shared experience across many goals.165

3.4 Contrastive Reinforcement Learning166

Contrastive reinforcement learning (CRL) is a goal-conditioned reinforcement learning framework167
that learns value functions using contrastive objectives derived from self-supervised representation168
learning (Eysenbach et al., 2022). Rather than relying on traditional bootstrapped temporal differ-169
ence (TD) targets, CRL reframes value estimation as a discriminative task: identifying whether a170
given state-action pair (s, a) leads to a specific goal state g in the future.171

At the core of CRL is a critic function that measures the compatibility between state-action pairs172
and goal states. This critic is parameterized as a dot product between two learned representations:173

f(s, a, g) = ϕ(s, a)⊤ψ(g), (7)

where ϕ(s, a) encodes the state-action pair and ψ(g) encodes the goal. This similarity score serves174
as an unnormalized proxy for the Q-function:175

Qπ
g (s, a) ∝ exp(f(s, a, g)). (8)

The critic is trained via a contrastive binary classification loss, which encourages high similarity176
between state-action pairs and future goal states they actually reach (positive pairs), and low simi-177
larity for mismatched pairs (negative samples). This loss, known as the NCE-binary objective (Ma178
& Collins, 2018), is defined as:179

Lcontrastive = log σ
(
ϕ(s, a)⊤ψ(s+f )

)
+ log

(
1− σ

(
ϕ(s, a)⊤ψ(s−f )

))
, (9)

where s+f is a goal actually reached in the future from (s, a) and s−f is a randomly sampled goal180
state. Minimizing this loss encourages the critic to act as a probabilistic classifier that captures181
goal-reaching likelihoods under the current policy.182

The actor is trained using the learned critic to select actions that increase the probability of reaching183
a desired goal. We adopt a deterministic actor, trained with a modified DDPG-style objective. Given184
the offline nature of the training setting, we add a behavior cloning loss to ensure policy stability.185
The full actor loss is:186

Lactor = −Es,g [f(s, π(s, g), g)] + αEs,a

[
∥π(s, g)− a∥2

]
, (10)

where α is a weighting coefficient for the behavior cloning regularization.187

This contrastive formulation leads to a simple yet effective actor-critic algorithm for goal-reaching188
tasks. Unlike traditional TD-based RL, CRL requires no value bootstrapping, target networks, or189
auxiliary rewards, and is naturally suited for learning from static offline datasets.190
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4 Methodology191

Our method trains state encoders to learn predictive representations with model-based losses, and192
uses the state encoder features within the critic networks of CRL. We hypothesize that predictive193
representations can help the critic learn more informative similarity scores between state-action194
pairs and future goal states, thus enhancing the performance of CRL in offline settings.195

4.1 Training the Encoder for Model-Based Representations196

We incorporate the state encoders z1 : S → Rd that maps raw observations to latent features, and a197
state-action encoder z2 : Rd×A → Rd that predicts the future latent state from the current encoded198
state and action.199

Our experiments found that training state encoders with L2 loss, as in the prior work of Fujimoto200
et al. (2023; 2025), did not yield significant gains over the CRL baseline. Furthermore, the state201
encoder losses 4 were non-smooth and non-monotonic, indicating that the network was struggling202
to learn the dynamics 2. We instead propose using cross-entropy (CE) loss to learn more effective203
representations. CE is advantageous for two reasons: (1) In self-supervised learning, especially in204
teacher-student frameworks like DINO and BYOL (Caron et al., 2021; Grill et al., 2020; Oquab et al.,205
2023; Hinton et al., 2015), CE encourages the student to match the teacher’s semantic structure,206
yielding richer, transferable features. (2) In model-based RL, DreamerV3 (Hafner et al., 2024) uses207
discrete latents and KL-divergence (a form of CE) to enhance stability and generalization. These208
findings suggest CE promotes structure and information retention, making it well-suited for learning209
predictive encoders in RL.210

Let m(·) denote a projection head, and τs, τt be the respective temperatures for the student and211
teacher outputs. The L2 dynamics loss 3 is replaced by CE:212

Ldynamics = CE (sg(softmax(m′(z′1(st+ 1)/τt))), softmax(m(z2(z1(st), at)/τs))) , (11)

wherem′, z′1 denote slowly updated target networks and sg denotes stopgrad. Similar to prior model-213
based representation works, this loss is computed over horizon segments of length H to enforce214
temporal consistency.215

4.2 Contrastive RL with Learned Encoders216

To exploit these representations, we redefine the critic used in contrastive RL. The critic function217
f(s, a, g) is now expressed using predictive features as:218

f(s, a, g) = ϕ(s, a, z′1(s), z
′
2(z

′
1(s)))

⊤ψ(g), (12)

where ϕ, the critic’s state-action encoder, is a function of the state, action, and their predictive219
embeddings computed using frozen target encoders z′1 and z′2, and ψ(g) is the critic’s goal encoder.220

Since the critic encoder ϕ is trained to align with future goal states reachable from (s, a), it ben-221
efits from incorporating model-based features—specifically, the predictive embedding z2(s, a) and222
the compact state representation z1(s). Together, these components provide temporally rich infor-223
mation about future dynamics and concise, informative representations of the current state. Their224
effectiveness is validated in the results section 5.1.225

In the ablations 5.2, we explored how the inclusion of model-based representations affects other226
components of the architecture—namely the goal encoder ψ and the policy network π. We also227
tested the effect of omitting z1(s) altogether. Our results indicate that while incorporating these228
changes can lead to performance gains on several tasks, they can also degrade performance on others.229
This highlights an important tradeoff: although model-based features introduce useful inductive230
bias, their utility can vary across environments depending on the nature of the task and the quality231
of the learned representations.232
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The actor and critic networks are trained following the standard CRL framework, using the DDPG233
objective for the actor and the contrastive binary classification loss (Equation 9) for the critic.234

4.3 Training Procedure235

Networks

Encoders
State encoder z1(s)
State-action encoder z2(a, z1(s))
Projector m(·)
Contrastive RL actor-critic
Critic goal ψ(g)
Critic state-action ϕ(s, a, z1(s), z2(a, z1(s)))
Policy a ∼ π(s, g)

Training Loop

for t in 1 : T
Sample batch (s, a, r, s′, g)
Update encoder networks z1, z2,m with 11.
Update critic networks ϕ, ψ with 9.
Update policy π(s, g) with 2.
if t%p = 0 then

Update target networks:
z′1, z

′
2,m

′ ← z1, z2,m

Figure 1: Networks and training loop describing MR-CRL.

Algorithm 1 outlines the training procedure. At each training step, the encoders and CRL actor-critic236
networks are updated with a training batch. The weights of the frozen encoder target networks are237
copied every p training steps.238

5 Experiments239

Benchmark We evaluate our method on the OGBench benchmark (Park et al., 2025), a diverse suite240
designed for offline goal-conditioned reinforcement learning. OGBench includes tasks that require241
long-horizon planning, stitching subgoals, and reasoning over noisy or suboptimal data, providing242
a comprehensive testbed for general-purpose policy learning. Our experiments span 18 tasks drawn243
from six environment families, covering both state-based locomotion and manipulation domains.244

Specifically, we use three categories of manipulation tasks: Puzzle, which requires solving L̈ights245
Out-̈style grid puzzles via robot-arm button presses; Cube, which involves rearranging and stacking246
colored blocks; and Scene, which requires sequential manipulation of drawers, buttons, and other247
interactive objects. Each of these tasks features variants based on grid size or data type, such as248
play (expert-like) and noisy (highly noised expert trajectories) datasets. For locomotion, we use249
three maze-based navigation environments: PointMaze, AntMaze, and HumanoidMaze. These tasks250
involve controlling agents with increasing degrees of freedom—ranging from a 2D point mass to251
a quadrupedal ant and a 21-DoF humanoid robot—to reach goal locations in challenging mazes.252
Dataset variants include navigate (expert-like), explore (random), and stitch (disjoint segments),253
each presenting unique algorithmic challenges.254

Baseline The main baseline we compare to is CRL Eysenbach et al. (2022), as this work directly255
extends upon the original method.256

Experimental Setup We set the behavior cloning weight to α = 0.15 and the student temperature257
to τs = 1.0. The teacher temperature τt is annealed using a cosine schedule, starting at 0.04 and258
increasing to 0.07 as done in Oquab et al. (2023). Following standard setup Park et al. (2025), we259
train each agent for 1 million steps on offline datasets and evaluate performance over 20 episodes.260
Target networks are updated every p = 250 steps, and model-based representation losses are com-261
puted over rollout horizons of length H = 15, consistent with prior work Fujimoto et al. (2023;262
2025). All networks—z1, z2, ϕ, ψ, and π—are implemented as three-layer multilayer perceptrons263
(MLPs) with 512 hidden units per layer and GELU activations. We train using a batch size of 1024264
and a learning rate of 10−4.265
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Environment Dataset CRL MR-CRL

PointMaze pointmaze-medium-stitch-v0 0± 1 24 ± 9
pointmaze-large-stitch-v0 0± 0 1 ± 3

AntMaze antmaze-large-navigate-v0 83± 4 84± 6
antmaze-medium-stitch-v0 53 ± 6 32± 8

antmaze-large-stitch-v0 11 ± 2 0± 0
antmaze-medium-explore-v0 3± 2 14 ± 6

antmaze-large-explore-v0 0± 0 5 ± 6

HumanoidMaze humanoidmaze-medium-navigate-v0 60± 4 63± 7
humanoidmaze-medium-stitch-v0 36 ± 2 20± 5

humanoidmaze-large-stitch-v0 4 ± 1 0± 0

Cube cube-single-play-v0 19 ± 2 0± 1
cube-single-noisy-v0 38 ± 2 27± 4
cube-double-noisy-v0 2± 1 2± 1

Scene scene-play-v0 19 ± 2 0± 0

Puzzle puzzle-3x3-play-v0 3± 1 17 ± 6
puzzle-4x4-play-v0 0± 0 0± 0
puzzle-3x3-noisy-v0 30 ± 6 4± 2
puzzle-4x4-noisy-v0 0± 0 0± 0

Table 1: Results of experiments on OGBench datasets with standard deviations provided after the
± sign. Scores for CRL are taken directly from published work that uses eight seeds (Park et al.,
2025), whereas scores for MR-CRL are averaged across four seeds. For methods whose difference
in scores are statistically significant, as determined by a Welch’s Test with significance level 0.05,
the better score is bolded. MR-CRL outperforms CRL on 4/18 tasks but underperforms on 8/18
tasks.

z1(s)
on actor

z1(s)
on ϕ

z2(s, a)
on ϕ

z1(s)
on ψ

EMA
encoder

L2
loss Model name

✗ ✓ ✓ ✗ ✗ ✗ Baseline
✗ ✗ ✓ ✗ ✗ ✗ No state encoder
✗ ✓ ✓ ✓ ✗ ✗ Goal encoder
✓ ✓ ✓ ✗ ✗ ✗ Actor encoder
✗ ✓ ✓ ✗ ✓ ✗ EMA target
✗ ✓ ✓ ✗ ✗ ✓ L2 loss

Table 2: Ablations conducted and the associated model names.

5.1 Results266

MR-CRL is compared against CRL as a baseline in Table 1. In the PointMaze environment, MR-267
CRL significantly outperforms the baseline with a score of 24 compared to the 0 from CRL. The268
improvement is explained through the consistently lower state-action encoder loss as shown in Fig-269
ure 2. For a simple two-dimensional state space such as PointMaze, it is easy to learn the dynamics270
of the environment, as opposed to more complex higher-dimensional environments such as Cube271
and Puzzle. The strong state-action representations are then key to the performance improvement.272
Furthermore, this result shows that state and state-action embeddings are beneficial even for low-273
dimensional tasks, which was first proposed by Fujimoto et al. (2023).274

8



MR-CRL: Model-based representations for Contrastive RL

Dataset Baseline No state
encoder

Goal
encoder

Actor
encoder

EMA
target

L2
loss

pointmaze-medium-stitch-v0 24 32 26 1 0 5

antmaze-large-navigate-v0 84 60 90 88 88 86
antmaze-medium-stitch-v0 32 34 23 28 33 45

antmaze-medium-explore-v0 14 21 16 18 22 5

humanoidmaze-medium-navigate-v0 63 80 67 64 65 43
humanoidmaze-medium-stitch-v0 20 30 23 23 29 47

cube-single-noisy-v0 27 28 37 21 26 22
cube-double-noisy-v0 2 2 1 2 5 7

puzzle-3x3-play-v0 17 16 25 7 21 20
puzzle-3x3-noisy-v0 4 4 0 22 22 0

Table 3: Results of ablations. Aside from the baseline model which is averaged across four seeds,
all results are performed using a single seed. The best score in each environment is bolded. Relative
to the baseline, all methods improve and lose performance on some tasks.

Both CRL and MR-CRL perform comparably for antmaze-navigate, but differences appear between275
the stitch and explore variations, with CRL doing better on stitch and MR-CRL outperforming on276
explore. One interpretation of these results is that because the explore dataset contains random277
exploratory actions, it provides high coverage of the state-space which reduces the chances of out-278
of-distribution states during evaluation. This high coverage can then be captured in the state and279
state-action encoders, whereas CRL does not have an explicit mechanism to do so.280

In the Cube and Scene environments, MR-CRL significantly underperforms CRL likely due to an281
overestimation of the state encoder which leads to an overconfident critic prediction. Thus, the learnt282
embeddings are negatively impacting the critic’s ability to learn strong contrastive representations.283

Finally, for the Puzzle environment, which is the highest dimensional environment, MR-CRL greatly284
improves on the baseline for the play variant but underperforms on the noisy variant. One possible285
explanation of this result can be that because the noisy variant explores more of the high-dimensional286
state-space, it takes longer to learn the more vast dynamics. In contrast, the play variant’s trajectories287
are more confined to a subset of expert trajectories, thus providing a smaller, simplified state space.288
Future work should explore if increasing the training time produces better results for the noisy289
variants and other environments with complex dynamics.290

5.2 Ablations291

Ablations were conducted on where the state and state-action encoders are used, as well as applying292
an exponential moving average on the update of the state and state-action encoders. Furthermore, L2293
loss on the encoders was tested, as opposed to the cross entropy loss used in the other models. The294
different ablations are outlined and named in Table 2, with the results shown in Table 3. Although the295
results show that no one method is consistently better across all environments, some models perform296
better at specific environments. The No state encoder model performs noticeably better on the297
PointMaze and HumanoidMaze environments, which may suggest that focusing purely on learning298
the dynamics of the environment through the state-action encoder may be beneficial even though299
the critic network is smaller. Meanwhile, the EMA target model produces strong and consistent300
performance on puzzle-3x3-play and puzzle-3x3-noisy, while all other methods exhibit a difference301
in score between the two variants. This may imply that the EMA encoder may help with stabilizing302
the training especially when the state space is extremely large. However, this model is unable to303
solve the PointMaze environment.304
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Figure 2: Comparison of the encoder loss 4 curves when training encoders with L2 reconstruction
loss 3 versus the proposed CE loss 11. The proposed CE loss yields much smoother loss curves with
non-zero and non-saturating error.

With regards to the L2 loss model, it performs well on the antmaze-stitch and humanoid-stitch305
environments, but overall it does not outperform the baseline model and it only exceeds CRL on306
humanoid-medium-stitch. Figure 2 shows that the L2 encoder loss 3 curve is much less smooth and307
monotonic than the CE encoder loss 11 curve, showcasing the CE loss enhances training stability.308
Furthermore, the L2 encoder loss can degenerate to near-zero values on some tasks, while the CE309
loss stays non-zero.310

6 Conclusion311

We introduced MR-CRL, a simple yet effective extension to contrastive reinforcement learning that312
integrates model-based predictive representations. By training encoders with a novel cross-entropy313
loss and incorporating their outputs into the CRL architecture, we achieve improved performance on314
a subset of tasks in the OGBench benchmark. While not all tasks benefitted from the representations,315
our results suggest that model-based inductive biases can enhance contrastive value learning.316
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