
Low-Fidelity Video Encoder Optimization for
Temporal Action Localization

Mengmeng Xu1,2∗

mengmeng.xu@kaust.edu.sa
Juan-Manuel Pérez-Rúa1
PerezRua.JM@gmail.com

Xiatian Zhu1

xiatian.zhu@samsung.com

Bernard Ghanem2

bernard.ghanem@kaust.edu.sa
Brais Martinez1

brais.a@samsung.com

1 Samsung AI Centre Cambridge, UK 2 King Abdullah University of Science and Technology, Saudi Arabia

Abstract

Most existing temporal action localization (TAL) methods rely on a transfer learn-
ing pipeline, first optimizing a video encoder on a large action classification dataset
(i.e., source domain), followed by freezing the encoder and training a TAL head
on the action localization dataset (i.e., target domain). This results in a task dis-
crepancy problem for the video encoder – trained for action classification, but used
for TAL. Intuitively, joint optimization with both the video encoder and TAL head
is an obvious solution to this discrepancy. However, this is not operable for TAL
subject to the GPU memory constraints, due to the prohibitive computational cost
in processing long untrimmed videos. In this paper, we resolve this challenge by
introducing a novel low-fidelity (LoFi) video encoder optimization method. Instead
of always using the full training configurations in TAL learning, we propose to
reduce the mini-batch composition in terms of temporal, spatial or spatio-temporal
resolution so that jointly optimizing the video encoder and TAL head becomes oper-
able under the same memory conditions of a mid-range hardware budget. Crucially,
this enables the gradients to flow backwards through the video encoder conditioned
on a TAL supervision loss, favourably solving the task discrepancy problem and
providing more effective feature representations. Extensive experiments show that
the proposed LoFi optimization approach can significantly enhance the perfor-
mance of existing TAL methods. Encouragingly, even with a lightweight ResNet18
based video encoder in a single RGB stream, our method surpasses two-stream
(RGB + optical flow) ResNet50 based alternatives, often by a good margin. Our
code is publicly available at https://github.com/saic-fi/lofi_action_localization .

1 Introduction

Video analysis has become an increasingly important area of research, encompassing multiple relevant
problems such as action recognition [8, 13], temporal action localization [68, 7, 12, 22, 59, 60, 55, 67,
15], video grounding[36, 65, 64, 66, 49, 16, 24], and video question answering [25, 31]. Among those,
temporal action localization (TAL) [68, 22] is a fundamental task, as natural videos are not temporally
trimmed. Given an untrimmed video, TAL aims to identify the start and end points of all action
instances and recognize their category labels simultaneously. A typical TAL model is based on deep
convolutional neural networks (CNNs) composed of two modules: a video encoder and a TAL head.
The video encoder is often shared across different TAL methods (e.g., G-TAD [60], BC-GNN [3])

∗Work done during an internship at Samsung AI Centre.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/saic-fi/lofi_action_localization


by taking a specific off-the-shelf action classification model (e.g., C3D [51], I3D [8], TSM [33]),
with the differences residing only in the TAL head. However, instead of short (e.g., 10 seconds)
trimmed video clips as in action recognition, the input videos to a TAL model are characterized by
much longer temporal duration (e.g., 120 seconds). This causes unique computational challenges that
remain unsolved, particularly in model optimization.

In standard optimization of a TAL model, a two-stage transfer learning pipeline is often involved:

1. First, the video encoder is optimized on a large source video classification dataset (e.g.,
Kinetics [28]) and, optionally, finetunned on the trimmed version of the target dataset under
action classification supervision;

2. Second, the video encoder is frozen and the TAL head is optimized on the target action
localization dataset (e.g., ActivityNet [22], HACS [68]) under TAL task supervision.

With this widely-used TAL training pipeline, the video encoder is only optimal for action classification
but not for the target TAL task. Specifically, the video encoder is trained so that different short
segments within an action sequence are mapped to similar outputs, thus encouraging insensitivity to
the temporal boundaries of actions. This is not desirable for a TAL model. We identify this as a task
discrepancy problem. Consequently, the final TAL model could suffer from suboptimal performance.

Indeed, jointly optimizing all components of a CNN architecture end-to-end with the target task’s
supervision is a common practice, e.g., training models for object detection in static images [18, 46,
38]. Unfortunately, this turns out to be non-trivial for TAL. As mentioned above, model training is
severely restricted by the large input size of untrimmed videos and subject to the memory constraint
of GPUs. This is why the two-stage optimization pipeline as described above becomes the most
common and feasible choice in practice for optimizing a TAL model. On the other hand, existing
transfer learning methods mostly focus on tackling the data distribution shift problem across different
datasets [70, 50], rather than the task shift problem we study here. Regardless, we believe that solving
this limitation of the TAL training design bears a great potential for improving model performance.

In this work, we present a simple yet effective low-fidelity (LoFi) video encoder optimization method
particularly designed for better TAL model training. It is designed to adapt the video encoder
from action classification to TAL whilst subject to the same hardware budget. This is achieved by
introducing a simple strategy characterized by a new intermediate training stage where both the video
encoder and the TAL head are optimized end-to-end using a lower temporal and/or spatial resolution
(i.e., low-fidelity) in the mini-batch construction. Compared to the standard training method, our
proposed strategy does not increase the GPU memory standard (often a hard constraint for many
practitioners). Crucially, with our LoFi training the gradients back-propagate to the video encoder
from a temporal action localization loss whilst conditioned on the target TAL head, enabling the
learning of a video encoder sensitive to the temporal localization objective.

We make the following contributions in this work. (1) We investigate the limitations of the standard
optimization method for TAL models, and consider that the task discrepancy problem hinders the
performance of existing TAL models. Despite it being a significant ingredient, video encoder
optimization is largely ignored by existing TAL methods, left without systematic investigation. (2)
To improve the training of TAL models, we present a novel, simple, and effective low-fidelity (LoFi)
video encoder optimization method. It is designed specifically to address the task discrepancy
problem with the TAL model’s video encoder. (3) Extensive experiments show that the proposed LoFi
optimization method yields new state-of-the-art performance when combined with off-the-shelf TAL
models (e.g., G-TAD [60]). Critically, our method achieves superior efficiency/accuracy trade-off
with clear inference cost advantage and good generalizability to varying-capacity video encoders.

2 Related Work

Temporal action localization (TAL) models: TAL models can be grouped by architectural design
pattern into two categories, one-stage and two-stage architectures. One-stage methods, either predict
temporal action boundaries or generate proposals, and classify them within the same network [3,
9, 21, 40, 34, 58, 60, 62]. The latter type, two-stage models, generate sets of action proposals (e.g.,
segments) [6, 12, 14, 23, 39] and then an auxiliary head is used for classification of each proposal
into an action class [35, 47, 48, 63, 69]. In this work, rather than introducing a novel model design,

2



we focus on the training of generic TAL models, with a particular aim to improve the video encoder
optimization. This is a relatively less investigated aspect in the TAL literature.

Video encoders in TAL: The video encoder is an indispensable part of a TAL model. Main design
choices include the base architecture of video encoder and its optimization procedure. With regards to
the architecture, the two-stream Temporal Segment Network (TSN) [54] is one of the most common
video encoders in existing TAL methods [3, 34, 35, 60]. Concretely, these works use two TSN
networks, one with a ResNet50 [20] backbone trained on RGB video frames, and the other with a
BN-Inception backbone [26] trained on optical flow. Other alternatives used as a video encoder for
TAL include two-stream I3D model [8] (see [19, 63]) and Pseudo-3D [45] (see [40]).

In terms of optimization, a typical paradigm is two-staged: first pre-training the video encoder and
then, in a second stage, training the TAL head of the model with the video encoder fixed. This
is constrained by the inherent hardware budget derived from having a large per-video input size.
In particular, the video encoder is pre-trained using a cross-entropy loss for action recognition on
a large-scale video classification dataset such as Kinetics [28, 64]. An optional step is to further
pre-train it on the foreground segments of the target TAL dataset [34, 60, 11, 44]. This brings a
mismatch between training and inference for the video encoder, which we call a task discrepancy
problem. More specifically, although trained to distinguish the content of different action classes, the
video encoder is less sensitive to action temporal boundaries and thus less effective for the TAL task.
In fact, due to their inherent design, CNNs have limited localization capabilities [41], unless they are
augmented with specialized localization-specific layers [37]. Additionally, the action classification
task focuses only on the foreground content whilst ignoring per-class background segments, including
the transition between foreground and background. In this paper we propose a novel low-fidelity
video encoder pre-training method to solve this limitation with existing TAL methods.

While current TAL literature mostly relies on pre-training through supervised learning, the rapid
advancement of self-supervised learning makes it a promising alternative [2, 4, 42, 43, 56]. Some
works have focused on finding effective temporal-related pretext tasks, from frame ordering learnt
through triplets of frames [43], to sorting the frames of a sequence [30], distinguishing whether
sequences are played forward or backwards [56] or through playback speed-related pretext tasks [4,
61, 53, 27]. These methods exploit video-specific characteristics to force the network to focus on
some sort of semantic content within video, inducing representations capturing long-term temporal
semantic relations, but force invariance to or ignore the relative positioning of the snippets within the
action instances. They are thus not suited for pre-training the video encoder of a TAL model.

Very recent works [1, 59] have exploited some of the aforementioned techniques for better pre-training
of action localization models. For example, localization-tailored data augmentation and classification
is adopted by [59]. However, these works introduce a large amount of extra video data and additional
stream networks, both of which are expensive in terms of memory and computation. In contrast, our
method aims to improve TAL modelling directly without the need for learning from extra training
video data and using an expensive second network, nor relying on optical flow obtained at high
computational cost.

3 Method

A TAL model takes as input a long untrimmed video with a varying number of frames. For design
convenience, it is typical to represent a varying-length video by decomposing it into a fixed-length
sequence of L snippets. The definition of a snippet is the same as in action recognition, where first a
number of consecutive frames (e.g., 64) is selected and then sub-sampled with stride r (e.g., stride
8 to obtain 8-frame snippets). To represent a snippet, one first applies a video encoder to extract
frame-level feature vectors and then averages them to obtain the snippet-level feature representation
[6, 12, 17, 35]. The resulting snippet feature sequence is denoted as X ∈ RC×L, where C is the
feature dimension of each snippet, and L is the number of snippets.

In the training set, each video is associated with its ground truth, consisting of a set of action instance
annotations Ψ. In particular, each action instance is represented as a segment, each including the start
time, the end time, and the action class label. The objective is to train a TAL model that can accurately
localize all the target action instances in a given untrimmed video. To that end, the model predicts a

3



clip classification
pre-training

T-LoFi TAL optimization

fewer 
clips

S-LoFi TAL optimization

smaller 
clips full fidelity TAL training

ST-LoFi TAL optimization

fewer, 
smaller 

clips

T-
Lo

Fi
 s

am
pl

er

S-
Lo

Fi
 s

am
pl

er

ST
-L

oF
i s

am
pl

erbackpropagation

video encoder

TAL headclassifier

shared backbone
weights

video

video video

video

clip

…

… …

…

cl
as

si
fie

r

Lo
Fi

 T
AL

Lo
Fi

 T
AL

Lo
Fi

 T
AL

fu
ll 

fid
el

ity
 T

AL

Figure 1: Schematic overview of the proposed TAL model training procedure. Three stages
are involved during model training: (1) Pre-training the video encoder under action classification
task’s supervision on an auxiliary video dataset (e.g., Kinetics [28]); (2) Low-fidelity (low mini-batch
configuration in the spatial, temporal, or spatio-temporal resolution of training videos) optimization
of the video encoder together with the TAL head under TAL task’s supervision on the target dataset;
This is the key stage introduced in this paper for resolving the task discrepancy problem without
memory overhead increase. (3) Training the TAL head in the full fidelity configuration under TAL
task’s supervision on the target dataset.

varying number of action instances Φ, each comprised of the predicted temporal boundaries, action
class, and confidence score.

3.1 Model Training Procedure

Our training procedure consists of three stages as depicted in Figure 1. (1) First, we pre-train the
video encoder by action classification supervision on a large video dataset (e.g., Kinetics [28]).
(2) Second, we conduct low-fidelity (LoFi) optimization of the video encoder with a TAL head
on the target dataset (Sec. 3.2). This is under TAL supervision with the objective loss function
derived from the ground-truth Ψ and model prediction Φ. To this end, we propose to reduce the
mini-batch configuration in terms of the spatial and temporal resolution of the input as otherwise
end-to-end optimization cannot satisfy the hardware constraints. Crucially, by training on the target
task and target dataset, the task discrepancy gap can be reduced. (3) Last, we freeze the already
end-to-end optimized video encoder and train the TAL head of choice from scratch on the target
dataset at full spatial and temporal resolutions. Note that in this setup, we cannot perform end-to-end
optimization of the final TAL model, limited by the hardware memory constraint. Next, we will detail
the proposed LoFi training.

3.2 Low-Fidelity Training Configurations

Formally, we define the full fidelity configuration of a mini-batch as

Ωf = L×H ×W, (1)

where L specifies the temporal resolution, and H ×W refers to the 2D spatial resolution. Under
the full fidelity regime and with a certain memory size constraint, only the TAL head can be trained
whilst leaving the video encoder frozen. In order to enable the video encoder to be optimized
end-to-end together with the TAL head under the TAL task’s supervision, we design four low-fidelity
configurations for the mini-batch.

(I) Spatial Low-Fidelity (S-LoFi) In the first configuration, we lower the spatial resolution of the
input videos by a factor of rs in both spatial dimensions as:

Ωs = L× (H/rs)× (W/rs) (2)

With smaller spatial feature maps, this could effectively reduce the memory consumption of the video
encoder’s feature maps which in turn creates space to enable the learning of the video encoder.

4



(II) Temporal Low-Fidelity (T-LoFi) In the second configuration, we instead consider temporal
resolution reduction in the following form:

Ωt = (L/rt)×H ×W, (3)
where rt > 1 is the scaling factor. This corresponds to a smaller number of snippets being taken as
input by the TAL head, finally outputting less predictions in case the candidates per time location
remains the same. This reduces the memory demands of both the video encoder and the temporal
localization head.

(III) Spatio-Temporal Low-Fidelity (ST-LoFi) In the third configuration, we apply a (typically
smaller) reduction in both temporal and spatial resolutions concurrently, formulated as:

Ωst = (L/rt)× (H/rs)× (W/rs) (4)
In this setup, memory saving can be shared between the temporal and the spatial dimensions.

(IV) Cyclic Low-Fidelity (C-LoFi) Each of the above three LoFi configurations is used in isolation.
To further explore their complementary benefits, we propose to apply all of them in a structured
fashion. To that end, we take inspiration from the recently proposed multi-grid training strategy [57],
originally designed for speeding-up action recognition training. Specifically, we form a sampling
grid with the three LoFi configurations and cycle through them repeatedly. We integrate both the
short and long cycle strategies [57]. In particular, the long cycle changes the values of rt and rs at
the beginning of an epoch, and cycling through the configurations I to III after cl epochs. Instead, the
short cycle also cycles through configurations I to III, but changes rt and rs after cs batches instead.

It is important to note some practical differences with the original multri-grid training. First, contrary
to the original multi-grid method, we shift the reduction in input resolution between the temporal and
the spatial dimensions so that the per-video memory usage remains (approximately) constant. Thus,
the batch size also remains constant throughout, which simplifies training. Second, the full resolution
setting (i.e., the full fidelity) is not used at any time during the video encoder training.

We compare the above four configurations in Section 4.3. By default, we use the C-LoFi configuration
with the long cycle strategy (Long C-LoFi).

3.3 An Instantiation of LoFi

Off-the-shelf TAL model: Without loss of generality, in this study we adopt G-TAD [60], a state-
of-the-art TAL method, as our temporal localization module. However, any other standard alternative,
e.g. [34], can be adopted without any additional considerations (see Table A in supplementary
material). Relying on graph convolutions [29], G-TAD is composed of a stack of GCNeXt blocks to
obtain context-aware features. In each GCNeXt block, there are two graph convolution streams to
model two types of contextual information. One stream operates with temporal neighbors, and the
other adaptively aggregates semantic neighbors in the snippet feature space. At the end of the last
GCNeXt block, G-TAD extracts a set of sub-graphs based on pre-defined temporal anchors. With the
sub-graph of interest alignment layer, SGAlign, it represents each sub-graph using a feature vector,
which is further used as input to multiple fully-connected layers to predict the final action predictions.

To train G-TAD with our LoFi, we select one of the proposed low-fidelity variants and apply the
original TAL loss function to optimize both the video encoder and the TAL head. We initialize
G-TAD weights as in [60].

Implementation details: We use ResNet-based TSM [33] as the video encoder due to its good
accuracy-cost trade-off and reasonable memory requirements compared to 3D-based alternatives.
For the full fidelity setting (Eq. (1)), we follow the standard G-TAD protocol and represent each
video with L = 100 snippets. The full spatial resolution is H ×W = 224 × 224. We keep the
other hyper-parameters (e.g., the number of GCNeXt layers) the same as in the default G-TAD
configuration. However, the number of anchor proposals can be reduced when L is less. Concretely,
we enumerate all the possible combinations of start and end as the anchors, e.g., {(ts, te)| 0 < ts <
te < L; ts, te ∈ N ; te − ts < L}.
For LoFi training, we use an SGD optimizer. The batch size is 16 for all the training methods and
input patterns. The weight decay is 10−4 and we set the momentum to 0, which is standard for
fine-tuning [32]. The learning rate is 0.1, and it is decayed by 0.5 after every 5 epochs.

5



When we train G-TAD using the full fidelity setting, we keep the same training strategy as described
in the original paper [60], except that we perform a learning rate search within the set {0.0002,
0.0005, 0.001, 0.002, 0.005}. We follow the rest of the common post-processing steps for TAL as
specified in the original paper, including the application of soft-NMS [5] with a threshold of 0.84.
We select the top-100 predictions for the final evaluation. We provide our code and script as part of
the supplementary material.

Hardware and software settings: We implemented our method using PyTorch 1.8 with CUDA
10.1. For LoFi training, we use 4 NVIDIA V100 GPUs, each with 32GB memory. Under this
setting, the memory constraint is 128GB, which constitutes a mid-range computational budget. In the
supplementary material, we further test a low-budget setting with a single V100 GPU in Table B.

4 Experiments

4.1 Experimental setup

Datasets: We use Kinetics400 [28] as the auxiliary video classification dataset for initial pre-
training of the video encoder. For model performance evaluation, we use two popular temporal action
localization benchmarks. (1) ActivityNet-v1.3 [22] contains 20K temporally annotated untrimmed
videos with 200 action categories. In the standard evaluation protocol, these videos are divided
into the training/validation/testing sets by the ratio of 2:1:1. (2) Human Action Clips and Segments
(HACS-v1.1) [68] is a recent temporal action localization dataset. It contains 140K complete action
segments from 50K videos including 200 action categories (the same ones as ActivityNet-v1.3).

Evaluation metrics: We adopt the mean Average Precision (mAP) rate at specified IoU thresholds
as the main evaluation metrics. Following the standard evaluation setting, mAP values at a set of
IoU thresholds, {0.5, 0.75, 0.95} are reported, as well as the average mAP over 10 different IoU
thresholds [0.5 : 0.05 : 0.95].

4.2 Pre-training Methodology Comparisons

Setting: In this set of experiments, we directly compare different methodologies for pre-training
the video encoder. To compare with our proposed LoFi method, we first consider the most widely
used pre-training method that optimizes the video encoder through the action classification task
on an auxiliary dataset (Kinetics400 in our case). We denote this method as Action Classification
Pre-training (ACP). To demonstrate the effect of video encoder pre-training, we also take into account
an ImageNet pre-trained video encoder, which uses no video data. We refer to this baseline as Image
Classification Pre-training (ICP). To adapt the video encoder to the target dataset, it can be further
trained through an action classification task on a clip version of the target TAL dataset, using each
positive segment as a training instance. We denote this variant as ACP+.

In this experiment, we train our model using the cyclic low-fidelity (C-LoFi) configuration with the
long cycle strategy. Other configurations will be evaluated in Section 4.3.

Table 1: Comparing TAL results of different video encoder pre-training methods. ACP: Action
Classification Pre-training, ICP: Image Classification Pre-training, ACP+: further fine-tuning ACP on
the target dataset using a classification task using positive action segments.

Metric 0.5 0.75 0.95 Average 0.5 0.75 0.95 Average

Dataset ActivityNet-v1.3 HACS-v1.1

ACP 49.64 34.16 7.68 33.59 35.68 22.79 6.51 23.00
ICP 48.45 32.40 6.89 32.16 31.74 19.64 5.67 20.18

ACP+ 49.87 34.58 7.85 33.84 36.31 22.96 6.62 23.31

LoFi (ours) 50.68 35.16 8.16 34.49 37.47 24.36 7.08 24.62

Results: The results of the different video encoder pre-training methods are reported in Table 1. We
make the following observations. (1) Without pre-training on a related auxiliary dataset, the model

6



performance could be significantly degraded (see row 1 v.s. row 2). This indicates the significance
of the video encoder and its pre-training on large, relevant video data. (2) With action classification
based pre-training on the target video data, the performance indeed improves to some degree (see
row 1 v.s. row 3). This means that addressing the data distribution shift between the auxiliary dataset
and the target dataset is essential. (3) Importantly, the biggest performance gains come from the
proposed LoFi method, which instead solves the task discrepancy issue by optimizing the video
encoder with the TAL task (see the last row). This indicates that although auxiliary video data is
similar to the target data in distribution, the task-level differences would still pose obstacles harming
the model performance. This confirms the motivation and hypothesis of this study. Once this obstacle
is properly tackled with our low-fidelity pre-training, more significant performance gains can then be
rewarded. Overall, this verifies the efficacy of the proposed method in pre-training the video encoder.

4.3 LoFi Configuration Comparisons

Setting: We investigate different LoFi configurations. We use the setting as: rt = 4 for T-LoFi,
rs = 2 for S-LoFi (note that this is applied in both spatial dimensions, thus being comparable to
T-LoFi), rs =

√
2, rt = 2 for ST-LoFi, and cs = 16, cl = 1 for C-LoFi’s short and long cycle

strategies, respectively. We include the standard pre-training strategy (i.e., ACP) to provide a baseline
and facilitate comparisons.

Table 2: Comparing different low-fidelity configurations. Dataset: ActivityNet-v1.3 and HACS-
v1.1. ACP: Action Classification Pre-training. TR: Temporal Resolution; SR: Spatial Resolution.

ActivityNet-v1.3 HACS-v1.1
Configuration TR SR 0.5 0.75 0.95 Avg 0.5 0.75 0.95 Avg

ACP - 224×224 49.64 34.16 7.68 33.59 35.68 22.79 6.51 23.00

S-LoFi 100 112×112 50.47 34.71 7.57 34.12 37.16 24.23 6.84 24.25
T-LoFi 25 224×224 50.28 35.21 8.09 34.32 37.30 24.18 7.07 24.36
ST-LoFi 50 158×158 50.36 34.79 7.59 34.12 37.13 24.27 7.08 24.36

Short C-LoFi Batch-level Cycle 50.57 35.12 8.14 34.38 37.63 24.45 6.95 24.60
Long C-LoFi Epoch-level Cycle 50.68 35.16 8.16 34.49 37.78 24.40 7.29 24.64

Results: The results for ActivityNet-v1.3 and HACS-v1.1 are shown in Table 2. We provide
the following observations. (1) Each of our proposed LoFi configurations can improve the video
encoder, thus suggesting that spatial and temporal dimensions are both good selections for low-fidelity
manipulation. (2) Integrating our LoFi configurations into a more advanced cyclic training strategy
produces some further, although moderate, improvement. In particular, the long cycle leads to the
best overall performance for both datasets.

Table 3: Comparing TAL results with state-of-the-art methods on ActivityNet-v1.3 validation
set. “*” indicates RGB-only Kinetics400 pre-trained TSM video encoder without fine-tuning. O.F.:
Optical Flow. R18/50: ResNet-18/50.

Method O.F. Arch. #Par 0.5 0.75 0.95 Average

SCC [21] 7 C3D 79M 40.00 17.90 4.70 21.70
CDC [47] 7 C3D 79M 45.30 26.00 0.20 23.80
R-C3D [58] 7 C3D 79M 26.80 - - -
BSN [35] 3 R50 23M 46.45 29.96 8.02 30.03
P-GCN [63] 3 I3D 25M 48.26 33.16 3.27 31.11
BMN [34] 3 R50 23M 50.07 34.78 8.29 33.85
BC-GNN [3] 3 R50 23M 50.56 34.75 9.37 34.26
G-TAD [60] 3 R50 23M 50.36 34.60 9.02 34.09

G-TAD baseline* 7 R18 12M 49.64 34.16 7.68 33.59
G-TAD+ LoFi 7 R18 12M 50.68 35.16 8.16 34.49

7



Table 4: Comparing TAL results with state-of-the-art methods on HACS-v1.1 validation set. “*”
indicates RGB-only Kinetics400 pre-trained TSM video encoder without fine-tuning. O.F.: Optical
Flow. R18/50: ResNet-18/50. 2S.: 2-stream.

Method O.F. Arch #Par 0.5 0.75 0.95 Average

SSN [69] 3 2S 12M 28.82 18.80 5.32 18.97

G-TAD baseline* 7 R18 12M 35.68 22.79 6.51 23.00
G-TAD + LoFi 7 R18 12M 37.78 24.40 7.29 24.64

4.4 Comparison with State-of-the-Art

Setting: Following video encoder pre-training evaluation, we further conduct a system-level perfor-
mance comparison with previous state-of-the-art methods. Whilst ResNet50-based (R50) methods
are a common backbone choice for the video encoder, we still use a more lightweight ResNet18 (R18)
for our method due to its higher efficiency in computation and memory. Furthermore, compared to
the popular architecture design that uses two streams (one for RGB and one for optical flow), our
method only uses RGB frames, avoiding the excessive costs incurred from computing optical flow
and running a second forward pass.

Results: The results of our method are compared with existing alternatives in Table 3 for
ActivityNet-v1.3 and Table 4 for HACS-v1.1. It is evident that our method can achieve the best
performance among all the competitors, despite the single stream input modality and a much lighter
video encoder backbone. This clearly demonstrates that tackling the pre-training of the video encoder
is of particular importance for TAL, and that existing efforts towards improving the TAL head model
have neglected it as a key model component. On ActivityNet-v1.3, it is encouraging to see that with a
stronger pre-trained video encoder using our method and a shallower architecture, optical flow can
be favourably eliminated without performance sacrifice (actually even enjoying better performance).
This result is substantial, since the study of means to get rid of optical flow for more efficient action
analysis is itself an important research problem [10].

4.5 Using Different Video Encoders

Setting: Our LoFi method can be used in combination with different video encoders, as long as
the backbone is end-to-end trainable. We compare the performance gains of our default encoder,
i.e.ResNet18-based TSM, with a 3D-based alternative, i.e.an 18-layer R(2+1)D encoder [52], on
ActivityNet-v1.3. Note that the default spatial resolution for R(2+1)D, as defined by the authors, is
112× 112 pixels. We thus use T-LoFi and maintain the default spatial resolution for both networks.

Table 5: Ablation on different video encoders. The performance improvement from using our LoFi
pre-training does not depend on the video encoder’s backbone. Dataset: ActivityNet-v1.3. TAL head:
G-TAD. R18: ResNet18.

TSM-R18 backbone R(2+1)D-R18 backbone
Method 0.5 0.75 0.95 Avg 0.5 0.75 0.95 Avg

G-TAD + ACP 49.64 34.16 7.68 33.59 49.65 34.11 8.66 33.55
G-TAD + T-LoFi 50.28 35.21 8.09 34.32 49.84 34.73 8.64 34.21

Gain +0.64 +1.05 +0.41 +0.73 +0.19 +0.62 -0.02 +0.66

Results: The results are summarized in Table 5. We observe that with either TSM-R18 or R(2+1)D
as video encoder, our method can similarly and consistently improve the performance of the state-
of-the-art G-TAD method. This verifies that our LoFi method is generally effective and useful in
training TAL models.

8



4.6 Scaling up to ResNet-34 and ResNet-50

Setting: To evaluate the generalizability of our LoFi, we further evaluate two deeper video encoders:
ResNet34/50-based TSM. We use the long cyclic low-fidelity configuration. Limited by the GPU
memory size, we reduce the batch size accordingly whilst keeping all other hyper-parameters and the
training protocol unchanged. This experiment is conducted on ActivityNet-v1.3 in comparison with
the standard action classification pre-training (ACP) method as baseline.

Table 6: Ablation on different depths of TSM video encoders. The performance improvement
from using our LoFi pre-training does not depend on the video encoder’s backbone. Dataset:
ActivityNet-v1.3. TAL head: G-TAD. R18: ResNet18; R34: ResNet34; R50: ResNet50.

Encoder Method 0.5 0.75 0.95 Avg. (Gain)

TSM-R18 ACP 49.64 34.16 7.68 33.59
TSM-R18 Long C-LoFi 50.68 35.16 8.16 34.49 (+0.90)

TSM-R34 ACP 50.16 34.35 8.31 33.90
TSM-R34 Long C-LoFi 50.79 35.39 8.38 34.74 (+0.84)

TSM-R50 ACP 50.32 35.07 8.02 34.26
TSM-R50 Long C-LoFi 50.91 35.86 8.79 34.96 (+0.70)

Results: Table 6 shows that whilst the gains with deeper encoders are slightly reduced, LoFi can
still consistently improve the results. This suggests good generalizability properties across varying-
capacity networks.

4.7 Comparison to Self-Supervised Learning

Setting: We compare our method to two representative video self-supervised learning methods:
Arrow of Time [56] and SpeedNet [4]. For both competitors, TSM-R18 is used as video encoder, and
pre-trained on the Kinetics400 dataset. We use ActivityNet-v1.3 dataset for this experiment.

Table 7: Comparison to self-supervised learning
methods. We use TSM-R18 as video encoder. Dataset:
ActivityNet.

Method 0.5 0.75 0.95 Average

ACP 49.64 34.16 7.68 33.59

Arrow [56] 44.14 28.87 5.90 28.82
Speed [4] 44.50 29.52 6.14 29.39

ACP+Arrow 49.79 34.48 7.70 33.72
ACP+Speed 49.84 34.11 7.50 33.75

LoFi 50.68 35.16 8.16 34.49

Results: From Table 7, we see that both
SSL methods without action classification
based supervision are clearly inferior for the
TAL task (see row 2 and 3). When com-
bined with the standard action classification
pre-training (ACP), only slight performance
gains can be achieved despite doubling the
computational cost in video encoding (see
row 4 and 5). This suggests marginal com-
plementary benefit. Overall, this result in-
dicates that the proposed LoFi optimization
is superior over recent SSL alternatives in
pre-training TAL’s video encoder.

5 Conclusion

In this work we have presented a simple and effective low-fidelity (LoFi) video encoder optimization
method for achieving more effective TAL models. This is motivated by an observation that in existing
TAL methods, the video encoder is merely pre-trained by action classification supervision on short
video clips, lacking desired optimization w.r.t. the temporal localization supervision on the target
dataset. Indeed, joint optimization itself is not novel. However, this is non-trivial to conduct for
training a TAL model, due to large per-video size that would easily overwhelm the GPU memory,
rendering it infeasible in practice. To overcome this obstacle, we propose to reduce the mini-batch
construction configurations in the temporal and/or spatial dimensions of training videos so that
end-to-end optimization becomes operable under the same memory condition. Extensive experiments
demonstrate that our method can clearly improve the performance of existing off-the-shelf TAL
models, yielding new state-of-the-art performance even with only RGB modality as input and a more
lightweight backbone based single-stream video encoder on two representative TAL benchmarks.

9



6 Ethical considerations and broader impact

Any inherent bias present in the training data is likely to be captured by the learning algorithm given
its data-driven nature. Deploying of the model into real-world scenarios should thus take that aspect
into account. Furthermore, the method discussed in this paper focuses on a fundamental problem and
as such its potential applications are hard to predict. However, to the best of our knowledge, there are
currently no applications of this technology that raise ethical issues. Finally, biases based on gender,
race or sexuality are unlikely, although not impossible.

7 Acknowledgements

This work was supported by the King Abdullah University of Science and Technology (KAUST)
Office of Sponsored Research through the Visual Computing Center (VCC) funding.

References
[1] Humam Alwassel, Silvio Giancola, and Bernard Ghanem. TSP: Temporally-sensitive pretraining

of video encoders for localization tasks. iccvw, 2021.
[2] Humam Alwassel, Dhruv Mahajan, Lorenzo Torresani, Bernard Ghanem, and Du Tran. Self-

supervised learning by cross-modal audio-video clustering. In NeurIPS, 2020.
[3] Yueran Bai, Yingying Wang, Yunhai Tong, Yang Yang, Qiyue Liu, and Junhui Liu. Boundary

Content Graph Neural Network for Temporal Action Proposal Generation. In ECCV, 2020.
[4] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William T Freeman, Michael Rubinstein,

Michal Irani, and Tali Dekel. SpeedNet: Learning the speediness in videos. In CVPR, 2020.
[5] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S. Davis. Soft-NMS – improving

object detection with one line of code. In ICCV, 2017.
[6] Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard Ghanem, and Juan Carlos Niebles.

SST: single-stream temporal action proposals. In CVPR, 2017.
[7] Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem. Fast temporal activity

proposals for efficient detection of human actions in untrimmed videos. In CVPR, 2016.
[8] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the

Kinetics dataset. In CVPR, 2017.
[9] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A. Ross, Jia Deng, and

Rahul Sukthankar. Rethinking the faster R-CNN architecture for temporal action localization.
In CVPR, 2018.

[10] Nieves Crasto, Philippe Weinzaepfel, Karteek Alahari, and Cordelia Schmid. MARS: Motion-
augmented RGB stream for action recognition. In CVPR, 2019.

[11] Cristian Rodriguez-Opazo, Edison Marrese-Taylor, Fatemeh Saleh, Hongdong Li and Stephen
Gould. Proposal-free temporal moment localization of a natural-language query in video using
guided attention. In WACV, 2020.

[12] Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem. DAPs:
Deep action proposals for action understanding. In ECCV, 2016.

[13] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network
fusion for video action recognition. In CVPR, 2016.

[14] Jiyang Gao, Kan Chen, and Ramakant Nevatia. CTAP: Complementary temporal action proposal
generation. ECCV, 2018.

[15] Jialin Gao, Zhixiang Shi, Guanshuo Wang, Jiani Li, Yufeng Yuan, Shiming Ge, and Xi Zhou.
Accurate temporal action proposal generation with relation-aware pyramid network. AAAI,
34(07):10810–10817, Apr. 2020.

[16] Jialin Gao, Xin Sun, Mengmeng Xu, Xi Zhou, and Bernard Ghanem. Relation-aware video
reading comprehension for temporal language grounding. EMNLP-IJCNLP, 2021.

[17] Jiyang Gao, Zhenheng Yang, Kan Chen, Chen Sun, and Ram Nevatia. TURN TAP: Temporal
unit regression network for temporal action proposals. In ICCV, 2017.

[18] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In CVPR, page 580–587, 2014.

[19] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking ImageNet pre-training. In CVPR,
2019.

10



[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[21] Fabian Caba Heilbron, Wayner Barrios, Victor Escorcia, and Bernard Ghanem. SCC: Semantic
context cascade for efficient action detection. In CVPR, 2017.

[22] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. ActivityNet:
A large-scale video benchmark for human activity understanding. In CVPR, 2015.

[23] Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem. Fast temporal activity
proposals for efficient detection of human actions in untrimmed videos. In CVPR, 2016.

[24] Jiabo Huang, Yang Liu, Shaogang Gong, and Hailin Jin. Cross-sentence temporal and semantic
relations in video activity localisation. In ICCV, 2021.

[25] Qingbao Huang, Jielong Wei, Yi Cai, Changmeng Zheng, Junying Chen, Ho-fung Leung, and
Qing Li. Aligned dual channel graph convolutional network for visual question answering. In
ACL, 2020.

[26] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, 2015.

[27] Simon Jenni, Givi Meishvili, and Paolo Favaro. Video representation learning by recognizing
temporal transformations. In ECCV, 2020.

[28] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew
Zisserman. The Kinetics human action video dataset. arXiv preprint, 2017.

[29] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[30] H. Lee, J. Huang, M. Singh, and M. Yang. Unsupervised representation learning by sorting
sequences. In ICCV, 2017.

[31] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. TVQA: Localized, Compositional
Video Question Answering. In EMNLP-IJCNLP, 2018.

[32] Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika, and
Stefano Soatto. Rethinking the hyperparameters for fine-tuning. In ICLR, 2020.

[33] Ji Lin, Chuang Gan, and Song Han. TSM: Temporal shift module for efficient video understand-
ing. In ICCV, 2019.

[34] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen. BMN: boundary-matching network
for temporal action proposal generation. In ICCV, 2019.

[35] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and Ming Yang. BSN: Boundary
sensitive network for temporal action proposal generation. In ECCV, 2018.

[36] Daizong Liu, Xiaoye Qu, Xiao-Yang Liu, Jianfeng Dong, Pan Zhou, and Zichuan Xu. Jointly
cross-and self-modal graph attention network for query-based moment localization. In ACM
MM, 2020.

[37] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev,
and Jason Yosinski. An intriguing failing of convolutional neural networks and the coordconv
solution. In NeurIPS, 2018.

[38] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C. Berg. SSD: Single shot multibox detector. In ECCV, 2016.

[39] Yuan Liu, Lin Ma, Yifeng Zhang, Wei Liu, and Shih-Fu Chang. Multi-granularity generator for
temporal action proposal. In CVPR, 2019.

[40] Fuchen Long, Ting Yao, Zhaofan Qiu, Xinmei Tian, Jiebo Luo, and Tao Mei. Gaussian temporal
awareness networks for action localization. In CVPR, 2019.

[41] Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 2016.

[42] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew
Zisserman. End-to-end learning of visual representations from uncurated instructional videos.
In CVPR, 2020.

[43] Ishan Misra, C. Lawrence Zitnick, and Martial Hebert. Shuffle and learn: Unsupervised learning
using temporal order verification. In ECCV, 2016.

[44] Jonghwan Mun, Minsu Cho, and Bohyung Han. Local-global video-text interactions for
temporal grounding. In CVPR, 2020.

[45] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal representation with pseudo-3D
residual networks. In ICCV, 2017.

11



[46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In CVPR, 2016.

[47] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and Shih-Fu Chang. CDC:
Convolutional-de-convolutional networks for precise temporal action localization in untrimmed
videos. In CVPR, 2017.

[48] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal action localization in untrimmed
videos via multi-stage CNNs. In CVPR, 2016.

[49] Mattia Soldan, Mengmeng Xu, Sisi Qu, Jesper Tegner, and Bernard Ghanem. VLG-Net:
Video-language graph matching network for video grounding. In ICCV workshops, 2021.

[50] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A
survey on deep transfer learning. In Věra Kůrková, Yannis Manolopoulos, Barbara Ham-
mer, Lazaros Iliadis, and Ilias Maglogiannis, editors, International Conf. on Artificial Neural
Networks, 2018.

[51] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features
with 3D convolutional networks. In ICCV, 2015.

[52] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A
closer look at spatiotemporal convolutions for action recognition. In CVPR, 2018.

[53] Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-supervised video representation learning by
pace prediction. In ECCV, 2020.

[54] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool.
Temporal segment networks: Towards good practices for deep action recognition. In ECCV,
2016.

[55] Xiang Wang, Zhiwu Qing, Ziyuan Huang, Yutong Feng, Shiwei Zhang, Jianwen Jiang, Mingqian
Tang, Changxin Gao, and Nong Sang. Proposal relation network for temporal action detection.
CoRR, abs/2106.11812, 2021.

[56] D. Wei, J. Lim, A. Zisserman, and W. T. Freeman. Learning and using the arrow of time. In
CVPR, 2018.

[57] Chao-Yuan Wu, Ross Girshick, Kaiming He, Christoph Feichtenhofer, and Philipp Krahenbuhl.
A multigrid method for efficiently training video models. In CVPR, 2020.

[58] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: Region convolutional 3D network for temporal
activity detection. In ICCV, 2017.

[59] Mengmeng Xu, Juan-Manuel Pérez-Rúa, Victor Escorcia, Brais Martinez, Xiatian Zhu, Bernard
Ghanem, and Tao Xiang. Boundary-sensitive pre-training for temporal localization in videos.
In ICCV, 2021.

[60] Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and Bernard Ghanem. G-TAD: Sub-
graph localization for temporal action detection. In CVPR, 2020.

[61] Yuan Yao, Chang Liu, Dezhao Luo, Yu Zhou, and Qixiang Ye. Video playback rate perception
for self-supervised spatio-temporal representation learning. In CVPR, 2020.

[62] Ze-Huan Yuan, Jonathan C. Stroud, Tong Lu, and Jia Deng. Temporal action localization by
structured maximal sums. In CVPR, 2017.

[63] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, and
Chuang Gan. Graph convolutional networks for temporal action localization. In ICCV, 2019.

[64] Runhao Zeng, Haoming Xu, Wenbing Huang, Peihao Chen, Mingkui Tan, and Chuang Gan.
Dense regression network for video grounding. In CVPR, 2020.

[65] Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou. Span-based localizing network for
natural language video localization. In ACL, 2020.

[66] Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo Luo. Learning 2d temporal adjacent
networks for moment localization with natural language. In AAAI, 2020.

[67] Chen Zhao, Ali K Thabet, and Bernard Ghanem. Video self-stitching graph network for
temporal action localization. In ICCV, 2021.

[68] Hang Zhao, Zhicheng Yan, Lorenzo Torresani, and Antonio Torralba. HACS: Human action
clips and segments dataset for recognition and temporal localization. iccv, 2019.

[69] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and Dahua Lin. Temporal
action detection with structured segment networks. In ICCV, 2017.

[70] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui
Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE,
109(1):43–76, 2021.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please see more discussion of our

LoFi method in the supplementary material Section 2.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

Section 2 in the supplementary material for societal impact discussion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We provide our
code and script as part of the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see Section 3.3 for implementation details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Although most of the TAL works do not report the error
bars, we include them in the supplementary material, Section 1.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see Section 3.3 for hardware
and software settings.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Related Work
	Method
	Model Training Procedure
	Low-Fidelity Training Configurations
	An Instantiation of LoFi

	Experiments
	Experimental setup
	Pre-training Methodology Comparisons
	LoFi Configuration Comparisons
	Comparison with State-of-the-Art
	Using Different Video Encoders
	Scaling up to ResNet-34 and ResNet-50
	Comparison to Self-Supervised Learning

	Conclusion
	Ethical considerations and broader impact
	Acknowledgements

