
Focused-DPO: Enhancing Code Generation Through Focused Preference
Optimization on Error-Prone Points

Anonymous ACL submission

Abstract
Code generation models have shown significant001
potential for automating programming tasks.002
However, the challenge of generating accurate003
and reliable code persists due to the highly004
complex and long-reasoning nature of the task.005
Even state-of-the-art models often fail in code006
generation due to small errors, which can dras-007
tically affect the overall functionality of code.008
Our study identifies that current models tend009
to produce errors concentrated at specific error-010
prone points, which significantly impacts the011
accuracy of the generated code. To address012
this issue, we introduce Focused-DPO, a frame-013
work that enhances code generation by direct-014
ing preference optimization towards these criti-015
cal error-prone areas. This approach builds on016
Direct Preference Optimization, emphasizing017
accuracy in parts prone to errors. Additionally,018
we develop a method called Error-Point Iden-019
tification, which constructs a dataset that tar-020
gets these problematic points without requiring021
costly human annotations. Our experiments on022
benchmarks such as HumanEval(+), MBPP(+),023
and LiveCodeBench demonstrate that Focused-024
DPO significantly improves the precision and025
reliability of code generation, reducing com-026
mon errors and enhancing overall code quality.027
By focusing on error-prone points, Focused-028
DPO advances the accuracy and functionality029
of model-generated code.030

1 Introduction031

Code generation has emerged as a pivotal task in032

artificial intelligence, enabling models to automate033

essential software development tasks. Code Mod-034

els (GPT-4, 2023; Guo et al., 2024; Hui et al., 2024)035

have demonstrated remarkable capabilities in code036

generation tasks. These advancements have signifi-037

cantly improved developer’s productivity, acceler-038

ating software delivery timelines.039

Despite their success, generating correct code040

remains a substantial challenge due to the com-041

1Corresponding authors.

Figure 1: Error-prone points in generated code from
Qwen-2.5-Coder-Instruct-7B. We sample 20 outputs
for this question. Outputs have common prefixes and
suffixes, differing mainly at yellow-highlighted error
points. Continuing generation at these points leads to
drastically different accuracies (90.02% vs. 3.17%).
This disparity is not seen in non-highlighted parts.

plex and long-reasoning nature of the task. Writing 042

code necessitates long reasoning, where numerous 043

small decisions about syntax and logic must work 044

together to produce a functional program. Even 045

minor mistakes, such as an incorrect operator, can 046

cause a program to fail. Code generation, therefore, 047

can be viewed as a multi-step long reasoning pro- 048

cess. Ensuring the accuracy of every decision in 049

this multi-step process collectively determines the 050

correctness of the resulting output code. 051

When examining the outputs of current code gen- 052

eration models, we find that errors are not evenly 053

spread across the code. Large language models 054

tend to produce errors concentrated in certain error- 055

prone points, even when sampling multiple times 056

with a high temperature. We illustrate this phe- 057

nomenon in Figure 1, which shows error-prone 058

points highlighted in yellow. Despite the overall 059

code having similar prefixes and suffixes, differ- 060

ences at these highlighted error points significantly 061

impact the final code accuracy. Generating code 062

1



from correct outputs at these error-prone points can063

achieve a final accuracy of up to 90.02%, whereas064

starting from incorrect outputs reduces accuracy to065

3.17%. Parts of the code, such as function headers066

(usually at the prefix) or return statements (usu-067

ally at the suffix), often follow familiar patterns.068

However, some middle parts of the code, which in-069

volve more complex reasoning, are more prone to070

errors. Errors in these parts can disrupt and affect071

the entire program’s reliability.072

It is crucial to address these error-prone points073

for code generation. However, existing studies074

on code generation overlook this problem. While075

standard training approaches such as Supervised076

Fine-Tuning (SFT) (Wang et al., 2022) help im-077

prove overall output quality, they do not specifically078

focus on the crucial parts necessary for correct-079

ness. Methods like Direct Preference Optimization080

(DPO) (Rafailov et al., 2024) aim to align outputs081

with preferences (e.g., "chosen" vs. "rejected"), but082

often overlook fine-grained error-prone points of083

the code. As a result, these trained models might084

generate code that appears correct initially but con-085

tains critical issues at the error-prone points, ulti-086

mately affecting overall accuracy.087

To tackle these issues, we introduce Focused-088

DPO, a framework designed to enhance code gener-089

ation through focusing preference optimization on090

error-prone points. Focused-DPO builds on Direct091

Preference Optimization by emphasizing accuracy092

improvement in areas where errors are most likely093

to occur. Unlike traditional methods that treat all094

parts of the code equally, Focused-DPO specifically095

targets those error-prone points, which are essential096

for the overall correctness of the program.097

Focused-DPO is a data-driven preference op-098

timization method that relies on a specially con-099

structed dataset with identified error-prone points.100

We propose a dataset construction method named101

Error-Point Identification, which includes an au-102

tomated pipeline to construct paired code prefer-103

ence datasets. This method extracts concepts from104

real code repositories and synthesizes program-105

ming problems. By concurrently generating code106

and tests, and using a page-rank-inspired algorithm107

for ranking, we determine the relative performance108

of all generated code. Error-Point Identification109

employs common prefix and suffix matching to pre-110

cisely locate error-prone points. Additionally, our111

method automatically identifies error-prone code112

parts, eliminating the need for costly human input,113

making it scalable and efficient for a variety of 114

programming tasks. 115

We evaluate Focused-DPO using standard bench- 116

marks such as HumanEval(+) (Liu et al., 2024), 117

MBPP(+), and LiveCodeBench (Jain et al., 2024), 118

and observe significant improvements over ex- 119

isting methods. Even for models like Qwen2.5- 120

Coder, which already have undergone large-scale 121

alignment training, Focused-DPO still achieves a 122

42.86% relative improvement on extremely hard 123

competition-level problems in LiveCodeBench. 124

The results show notable increases in the gener- 125

ation quality on error-prone points, highlighting 126

Focused-DPO’s effectiveness in enhancing the ac- 127

curacy of code generation. 128

Our contributions are summarized as follows: 129

• We propose Focused-DPO , a novel frame- 130

work that enhances code generation by fo- 131

cusing preference optimization on error-prone 132

points, resulting in more accurate codes. 133

• We introduce a dataset construction method 134

that automatically identifies error-prone points 135

by generating both code and corresponding 136

tests for fine-grained self-verification. 137

• Experiments on widely-used benchmarks 138

show that Focused-DPO improves the gen- 139

eration quality of code models, even for those 140

that have already undergone extensive post- 141

training on million-level datasets. 142

2 Related Work 143

Large language models (LLMs) have made sig- 144

nificant progress in generating code from natu- 145

ral language descriptions, showing great potential 146

for automating software development tasks. Mod- 147

els(GPT-4, 2023; Li et al., 2023; Hui et al., 2024; 148

Guo et al., 2024; Jiang et al., 2024) have demon- 149

strated strong performance, thanks to extensive 150

training on diverse datasets. To further enhance 151

their capabilities, posting training methods like Su- 152

pervised Fine-Tuning (SFT) (Luo et al., 2023; Wei 153

et al., 2023b) and Direct Preference Optimization 154

(Hui et al., 2024; Zhang et al., 2024b; Dou et al., 155

2024; Gee et al., 2024; Zhang et al., 2024a) are 156

commonly applied. Preference optimization ap- 157

proaches focus on aligning model outputs with 158

desired outcomes by prioritizing more favorable 159

responses over less favorable ones. However, exist- 160

ing DPO approaches fail to address one important 161

2



issue: they do not directly target the most error-162

prone points in generated code. Errors in these163

high-impact parts can lead to significant quality164

and reliability issues in the final output. We aim165

to address this issue by focusing the preference op-166

timization learning on these error-prone points in167

the generated code.168

Some fine-grained preference optimization meth-169

ods (Rafailov et al., 2024; Lai et al., 2024; Lu170

et al., 2024; Zeng et al., 2024; Lin et al., 2024)171

have shown strong potential in domains like math-172

ematics, which rely heavily on natural language173

reasoning. Step-DPO (Lai et al., 2024) and Step-174

Controlled DPO (Lu et al., 2024) propose gener-175

ating step-wise preference datasets to enable op-176

timization learning based on the standard DPO177

loss. TDPO (Zeng et al., 2024) enhances the DPO178

loss by incorporating forward KL divergence con-179

straints at the token level, achieving fine-grained180

alignment for each token. cDPO (Lin et al., 2024)181

proposes a tricky method to find the critical token182

in the thought chain that affects overall accuracy.183

However, the identified tokens are typical in nat-184

ural language and the method does not apply to185

code, which features similar overall patterns but186

relies on specific key elements in long reasoning187

processes. However, in the context of code gen-188

eration, where a small error-prone point can lead189

to major functional errors, these exisiting meth-190

ods often struggle to construct adequate datasets191

or fail to achieve ideal improvements due to weak192

fine-grained reward signals. To address this, we193

propose Focused-DPO, a framework that improves194

code generation by focusing on optimizing these195

high-impact parts. Our dataset construction method196

employs a self-generation and validation process197

to construct datasets that explicitly identify error-198

prone points, ensuring the optimization learning199

process directly enhances the parts of the code that200

matter most for overall correctness.201

3 Focused-DPO202

Our proposed Focused-DPO framework aims to203

enhance code generation by concentrating on error-204

prone points through focused preference optimiza-205

tion. Building on Direct Preference Optimization,206

our Focused-DPO specifically targets those high-207

impact parts of the source code, rather than treat-208

ing all code parts equally. As illustrated in Figure209

2, our method involves three main steps: ❶ Syn-210

thetic Data Generation with Real-World Source211

Figure 2: Overview of the Focused-DPO framework.
Focused-DPO consists of three key stages: ❶ Gener-
ating synthetic question prompts from real-world code
repositories. ❷ Using a policy model to simultaneously
generate code and test cases, applying a page-rank al-
gorithm to identify correct and incorrect samples and
locate error-prone points using common prefixes and
suffixes. ❸ Applying Focused-DPO, which pays special
attention on error-prone points as if applying a magnify-
ing glass for focused optimization.

Code : We initiate by collecting a seed dataset 212

from open-source code repositories and generate 213

programming task prompts. ❷ Fine-Grained Ver- 214

ification to Identify Error-Prone Points : We 215

generate both code and tests simultaneously using 216

a self-generation-and-validation loop. We apply 217

a PageRank algorithm to iteratively update scores 218

and rank the outputs, identifying correct and incor- 219

rect code samples. By distinguishing between sim- 220

ilar versions of correct code and incorrect code, we 221

locate significant parts that highly affect the final 222

correctness and identify these parts as error-prone 223

points, allowing for further fine-grained optimiza- 224

tion learning. ❸ Focused Preference Optimiza- 225

tion Learning : We design a learning optimization 226

algorithm specifically for these critical error-prone 227

points. Using the constructed dataset, our novel 228

training loss helps the model develop a preference 229

for these focused parts within the code, thus opti- 230

mizing performance more effectively. 231

3.1 Synthetic Data Generation with 232

Real-World Source Code 233

The first step in our approach is the construction of 234

a synthetic dataset. We collect a diverse set of pro- 235

3



gramming snippets from open-source repositories236

to create a seed dataset. Similar to OSS-instruct237

(Wei et al., 2023a), we use the seed dataset to ex-238

tract key programming concepts, such as algorithm239

design and data structure utilization. Then based on240

these concepts we generate the final prompts. This241

construction strategy allows the model to explore a242

broad range of scenarios. The generated question243

prompts are used in the following stages.244

3.2 Fine-Grained Verification to Identify245

Error-Prone Points246

To identify error-prone points, we propose a dataset247

construction method named Error-Point Identi-248

fication. Firstly, we use the policy model to si-249

multaneously generate k output codes and test250

cases based on the question prompts using a higher-251

temperature setting. In our experiment, we set252

k = 10. Using their execution relationships, we253

then adopt the ranking method from CodeDPO254

(Zhang et al., 2024b), a page-rank algorithm to255

iteratively update scores and rank the outputs:256

Scoret(ci) = (1− d)× Scoret−1(ci)

+ d×
∑
tj

Scoret−1(tj)× Link(tj , ci)

Scoret(tj) = (1− d)× Scoret−1(tj)

+ d×
∑
ci

Scoret−1(ci)× Link(ci, tj)

(1)257

Where d is the damping factor, and Link(tj , ci)258

indicates whether a code snippet ci passes the test259

case tj . The ranking score is updated iteratively260

until the ranking of the code stabilizes.261

We consider the test case that the highest-ranked262

code correctly passes as the ground truth test263

case for this question. Subsequently, we split264

all generated codes into two categories: correct265

code that passes all ground truth test cases and266

incorrect code that does not. For each pair con-267

sisting of a correct code sample and an incor-268

rect code sample, we match their common prefix269

and suffix to decompose each code snippet into270

three parts: common_prefix, mid_chosen271

(or mid_rej), and common_suffix. We then272

define a Diff function as follows:273

Rank(mid) =Score(common_prefix,mid, common_suffix),

Diff =Rank(mid_chosen)− Rank(mid_rej)

+ λ ∗ (length(common_prefix) + length(common_suffix)).

(2)274

Our constructed Diff function includes two275

components: ❶ the difference in rank between276

the correct and incorrect code, and ❷ the sum277

of the lengths of the common prefix and suffix, 278

which ensures that the error-prone points are more 279

concentrated. We maximize Diff to choose the 280

mid_chosen and mid_rej parts that signifi- 281

cantly impact the code’s correctness, and identify 282

these as the error-prone points. By focusing on 283

error-prone points, we create training samples that 284

directly address the parts of the code that have sig- 285

nificantly impact on correctness. For each policy 286

model, we apply necessary filtering to the gener- 287

ated data, resulting in a final dataset containing 288

5,000 training samples and 1,000 validation sam- 289

ples. Table 9 presents an example of data statistics. 290

3.3 Focused Preference Optimization 291

Learning 292

The core of our method lies in modifying the Di- 293

rect Preference Optimization (DPO) framework 294

to better enhance code generation by focusing on 295

error-prone points of the code. Given a pairwise 296

preference dataset D = {(xi, ychoseni , yreji )}Mi=1, 297

the standard DPO loss (Rafailov et al., 2024) is 298

expressed as: 299

ℓDPO = −E(x,ychosen,yrej)∼D
[
log σ

(
ϕ(x, ychosen)− ϕ(x, yrej)

)]
,

(3) 300

where ϕ(x, y) is an implicit reward function. The 301

reward function is defined as: 302

ϕ(x, y) = β · log πθ(y|x)
πref(y|x) + β · logZ(x)︸ ︷︷ ︸

this term can ultimately be reduced
(4) 303

where πθ(y|x) represents the probability of a gen- 304

erated response y under the policy model, and 305

πref(y|x) is the probability under a reference model, 306

typically the SFT baseline. The goal of DPO loss 307

is to maximize reward difference between the pre- 308

ferred and non-preferred samples. 309

Reward Function Modification In its original 310

form, the DPO reward ϕ(x, y) is calculated over 311

the entirety of the sample y, treating all parts of the 312

code equally. However, in the context of code gen- 313

eration, not all parts of the code contribute equally 314

to correctness. Building on our observation that the 315

middle part (mid) of code—the error-prone point 316

we identify in Section 3.2—should receive more 317

attention, we restructure the reward to reflect the 318

relative importance of different code parts. The 319

reward function is modified to weight the mid part 320

more heavily, reflecting its critical contribution to 321

the correctness of the code. For the preferred sam- 322

ple, the reward function becomes: 323

4



ϕchosen(x, y) = β ·
(
log

πθ(prefix|x)
πref(prefix|x)

+ wfocused · log
πθ(mid|x,prefix)
πref(mid|x,prefix)

+ log
πθ(suffix|x,prefix,mid)
πref(suffix|x,prefix,mid)

) (5)324

Where wfocused is a weight that amplifies the im-325

portance of the mid part.326

For the non-preferred sample, we adopt a simi-327

lar structure but introduce an adjustment to further328

downweight the contribution of the suffix. This329

adjustment is based on our observation that regard-330

less of whether the mid part contains errors, the331

content of the suffix is often the same or similar.332

Our results in Section 5.1 show that the correlation333

between the suffix and the overall accuracy of334

the final code is low, making it less significant in335

the reward calculation. The reward becomes:336

ϕrej(x, y) = γ ·
(
log

πθ(prefix|x)
πref(prefix|x)

+ wfocused · log
πθ(mid|x,prefix)
πref(mid|x,prefix)

) (6)337

Final Loss Function Substituting the modi-338

fied rewards for the preferred (ychosen) and non-339

preferred (yrej) examples into the original DPO340

loss and simplifying by canceling common terms,341

we can obtain that:342

∆reward = ϕchosen(x, y
chosen)− ϕrej(x, y

rej)

=
m∑

j=k+1

β · wfocused · log
πθ(t

(mid_chosen)
j |x, t(prefix)

0:k , t(mid_chosen)
k+1:j−1 )

πSFT(t
(mid_chosen)
j |x, t(prefix)

0:k , t(mid_chosen)
k+1:j−1 )

-
∑n

j=k+1 β · wfocused · log
πθ(t

(mid_rej)
j |x,t(prefix)

0:k ,t
(mid_rej)
k+1:j−1)

πSFT(t
(mid_rej)
j |x,t(prefix)

0:k ,t
(mid_rej)
k+1:j−1)︸ ︷︷ ︸

∆mid

+

L1∑
j=m+1

β · log
πθ(t

(suffix)
j |x, t(prefix)

0:k , t(mid_chosen)
k+1:m , t(suffix)

m+1:j−1)

πSFT(t
(suffix)
j |x, t(prefix)

0:k , t(mid_chosen)
k+1:m , t(suffix)

m+1:j−1)︸ ︷︷ ︸
∆suffix

=∆mid +∆suffix

(7)343

So the final loss function for Focused-DPO is344

expressed as:345

LFocused-DPO(πθ;πSFT) =

− E(x,ychosen,yrej)∼D [log σ (∆mid +∆suffix)] ,

(8)346

The terms ∆mid and ∆suffix capture the347

weighted differences in the probabilities of criti-348

cal parts between the preferred and non-preferred349

samples, with greater emphasis focused on the mid350

parts, which is the error-prone point.351

Through this modification, Focused-DPO shifts352

the focus of optimization toward the error-prone353

point in the code. By increasing the weight of 354

these parts in the reward calculation, our framework 355

ensures that the model prioritizes improvements 356

where they matter most, leading to higher-quality 357

and more reliable code generation. 358

4 Experiment Setup 359

We aim to answer the following research questions: 360

RQ1: Are there error-prone points in gener- 361

ated code that significantly affect the correct- 362

ness of the output? This question addresses the 363

core motivation behind Focused-DPO. To investi- 364

gate this, we construct the validation dataset fol- 365

lowing Section 3.2. This setup provides empirical 366

evidence supporting the theoretical underpinnings 367

of our Focused-DPO. 368

RQ2: Can Focused-DPO improve the genera- 369

tion quality of code models, even those that have 370

already been heavily post-trained with align- 371

ment techniques such as standard DPO? To 372

explore this, we evaluate Focused-DPO on several 373

widely-used code generation benchmarks, includ- 374

ing HumanEval (Chen et al., 2021), HumanEval+ 375

(Liu et al., 2024), MBPP (Austin et al., 2021), 376

MBPP+, and LiveCodeBench (Jain et al., 2024). 377

RQ3: How do different components of the 378

Focused-DPO loss formulation affect model per- 379

formance? Ablation studies include evaluating 380

our dataset construction method, as well as key 381

components in our loss formulation. 382

4.1 Baselines 383

We evaluate several widely used large language 384

models (LLMs) in the code generation domain. 385

For base models, we apply Focused-DPO to 386

DeepSeekCoder-base-6.7B) (Guo et al., 2024) and 387

Qwen2.5-Coder-7B (Hui et al., 2024). For instruct 388

models , we evaluate on Magicoder-S-DS-6.7B 389

(Wei et al., 2023b) and DeepSeekCoder-instruct- 390

6.7B, which are post-trained from DeepSeekCoder- 391

base-6.7B with large-scale SFT. We further evalu- 392

ate Qwen-2.5-Coder-Instruct-7B, which is post- 393

trained from Qwen2.5-Coder-7B on million-level 394

datasets with SFT and DPO. 395

We compare against several widely used train- 396

ing techniques, including: SFT, standard DPO, 397

Step-DPO (Lai et al., 2024), TDPO (Zeng et al., 398

2024). SFT trains models only with positive sam- 399

ples, while the other methods utilize a pairwise 400

dataset of preferred and rejected samples. 401

5



4.2 Training and Inference Settings402

For each backbone LLM, we sample 10 code candi-403

dates and corresponding test cases for each problem404

prompt using temperature=1.5. An example405

of data statistics is in Table 9. Our analysis shows406

this configuration results in a stable ranking score407

and ensures diversity. We focus on Python-based408

datasets given its widespread use. For training, we409

train for 10 epochs on 8 NVIDIA V100 GPUs and410

select the best-performing checkpoint based on the411

lowest validation loss. We set wfocused = 2 in our412

experiments. We use a learning rate of 5 × 10−6413

with a linear scheduler and warm-up. We employ414

greedy search during inference.415

5 Results and Analyses416

5.1 Exploration of Error-Prone Points in417

Code (RQ1)418

We conduct experiments to validate our motivation:419

❶ Correlation analysis confirms that error-prone420

points in the code significantly impact correct-421

ness, whereas other code parts have minimal effect.422

❷ Generation experiments show that continuing423

at these points with different content leads to424

significant differences in overall correctness.425

❸ Observations reveal that existing code models426

perform suboptimally at these points.427

Correlation Between Different Code Parts and428

Final Correctness Utilizing the dataset construc-429

tion pipeline described in Section 3.2, we evaluate430

the validation dataset based on Qwen2.5-Coder-431

Instruct-7B. We analyze the relationship between432

prefix, suffix, two types of mid parts, and433

the final code correctness, as presented in Table 1.434

Segment Correct Incorrect Phi Coefficient

Common Prefix 0.7907 0.7325 0.0683
Common Suffix 0.8479 0.7864 0.0796

Common Prefix + Chosen Mid 0.6367 0.0911 0.5651
Common Prefix + Reject Mid 0.0116 0.5575 -0.6085

Table 1: Relationships between the prefix, suffix,
and the two types of mid parts with the final code cor-
rectness. The table includes the frequency of each part
in correct and incorrect code, as well as their correlation
coefficients with overall code correctness.

Results in Table 1 show that common_prefix435

+ chosen_mid appears much more frequently436

in correct solutions, while common_prefix +437

rej_mid is prevalent in incorrect solutions. This438

confirms the critical influence of the mid part, with439

strong positive and negative correlations respec- 440

tively, affirming the existence of error-prone points 441

in generated code. In contrast, we find that the 442

prefix and suffix parts have little relation to the 443

correctness of the final answer. It is important to 444

note that in incorrect code, despite the errors in the 445

mid section, the following suffix is not a signifi- 446

cant cause of the errors. This observation justifies 447

our decision to exclude the suffix in the reward 448

modification in Section 3.3. These findings provide 449

empirical evidence supporting our hypothesis that 450

focusing on these error-prone points is essential 451

to enhance model performance, which is the core 452

motivation behind our Focused-DPO framework. 453

Accuracy of Continuation at Error-Prone Points 454

We further generate 20 code solutions based on 455

different contents at error-prone points, to explore 456

the correctness of the final code generated under 457

different conditions in Table 2. 458

Based on Input pass@1 pass@3 pass@5 pass@10

Common Prefix + Chosen Mid 0.9002 0.9532 0.9688 0.9871
Common Prefix + Reject Mid 0.0317 0.0633 0.0810 0.1159

Table 2: Pass rates based on different content at error-
prone points.

The pass rates shown in Table 2 highlight a strik- 459

ing contrast: using chosen_mid at error-prone 460

points results in significantly higher pass rates, 461

reaching around 90% at pass@1, compared to just 462

over 3% for the rej_mid version. This demon- 463

strates the critical importance of accurate content 464

in the error-prone points for determining the cor- 465

rectness of the final generated code. 466

Based on the above results, we have noticed 467

that the generated content at the error-prone 468

points significantly affects the final outcomes. 469

This leads to a question: how do current code gen- 470

eration models behave at these error-prone points? 471

Figure 3: Generation probability difference
(p(chosen_mid)− p(rej_mid)) with input.

Generation Preferences at Error-Prone Points 472

in Code Models We further analyze the Qwen- 473

2.5-Coder-Instruct-7B, which has been post-trained 474

on million-level datasets using SFT and DPO. We 475

6



examine the generation preferences of this heavily476

post-trained model at error-prone points. Specif-477

ically, we calculate the probability difference be-478

tween generating chosen_mid and rej_mid479

when given the common_prefix as input. The480

distribution of the difference is shown in Figure 3.481

The model exhibits little to no clear preference,482

indicating that existing code generation models483

lack effective generation capability at these error-484

prone points. Through this exploration, we confirm485

that focused preference optimization of error-prone486

points is crucial for improving the accuracy of code487

models, addressing RQ1.488

5.2 Main Results (RQ2)489

Results on benchmarks Tables 3 and 4 summa-490

rize the performance of Focused-DPO compared491

to various baselines, including standard DPO, Step-492

DPO, TDPO, and SFT. Note that the formulas for493

standard DPO and Step-DPO are identical, making494

them equivalent. The relative improvements (Rel)495

are reported for a clearer comparison.496

Model HumanEval HumanEval+ MBPP MBPP+
Instruct Model

Qwen2.5-coder-instruct-7B 0.915 0.841 0.828 0.714
+ Our Focused-DPO 0.927 0.878 0.847 0.762
Relative Improvement 1.29% 4.41% 2.24% 6.71%

DPO / Step-DPO 0.921 0.854 0.841 0.743
Token-DPO 0.927 0.872 0.833 0.751
SFT 0.927 0.872 0.833 0.717

DeepSeekCoder-instruct-6.7B 0.774 0.701 0.751 0.659
+ Our Focused-DPO 0.823 0.732 0.765 0.669
Relative Improvement 6.35% 4.38% 1.80% 1.56%

DPO / Step-DPO 0.787 0.713 0.751 0.661
Token-DPO 0.799 0.726 0.751 0.661
SFT 0.787 0.726 0.759 0.667

MagiCoder-S-DS-6.7B 0.732 0.683 0.767 0.667
+ Our Focused-DPO 0.823 0.744 0.794 0.698
Relative Improvement 12.50% 8.93% 3.45% 4.76%

DPO / Step-DPO 0.762 0.701 0.772 0.675
Token-DPO 0.811 0.732 0.780 0.680
SFT 0.738 0.701 0.762 0.653
Base Model

Qwen2.5-coder-base 0.835 0.787 0.794 0.683
+ Our Focused-DPO 0.884 0.829 0.817 0.704
Relative Improvement 5.89% 5.37% 2.95% 3.03%

DPO / Step-DPO 0.848 0.799 0.802 0.688
Token-DPO 0.866 0.799 0.815 0.690
SFT 0.848 0.805 0.802 0.688

DeepSeekCoder-base-6.7B 0.476 0.396 0.702 0.566
+ Our Focused-DPO 0.518 0.427 0.717 0.574
Relative Improvement 8.89% 7.79% 2.13% 1.43%

DPO / Step-DPO 0.488 0.396 0.709 0.569
Token-DPO 0.500 0.421 0.717 0.574
SFT 0.488 0.396 0.704 0.566

Table 3: Pass Rate on HumanEval(+), MBPP(+)

As shown in Table 3, Focused-DPO consistently497

outperforms the baseline models across all bench-498

marks. On the HumanEval(+) and MBPP(+) bench-499

marks, Focused-DPO improves relative accuracy500

by 4.79% on average over the baseline. We also501

evaluate on LiveCodeBench, a challenging bench-502

Model Easy Medium Hard Average
Instruct Model

Qwen2.5-coder-instruct-7B 0.692 0.220 0.034 0.312
+ Our Focused-DPO 0.735 0.242 0.048 0.339
Relative Improvement 6.22% 10.04% 42.86% 8.44%

DPO / Step-DPO 0.685 0.233 0.019 0.310
Token-DPO 0.706 0.239 0.037 0.325
SFT 0.670 0.208 0.015 0.295

DeepSeekCoder-instruct-6.7B 0.453 0.091 0.009 0.181
+ Our Focused-DPO 0.477 0.106 0.019 0.197
Relative Improvement 5.30% 15.89% 108.33% 8.87%

DPO / Step-DPO 0.462 0.094 0.007 0.184
Token-DPO 0.470 0.100 0.019 0.192
SFT 0.462 0.094 0.004 0.183

MagiCoder-S-DS-6.7B 0.481 0.107 0.001 0.193
+ Our Focused-DPO 0.513 0.118 0.019 0.213
Relative Improvement 6.56% 10.12% 1751.85% 10.10%

DPO / Step-DPO 0.491 0.109 0.004 0.198
Token-DPO 0.505 0.118 0.015 0.209
SFT 0.498 0.112 0.004 0.201
Base Model

Qwen2.5-coder-base-7B 0.567 0.150 0.017 0.241
+ Our Focused-DPO 0.595 0.175 0.030 0.264
Relative Improvement 5.00% 16.47% 77.78% 9.23%

DPO / Step-DPO 0.577 0.151 0.015 0.244
Token-DPO 0.584 0.163 0.022 0.253
SFT 0.584 0.157 0.022 0.251

DeepSeekCoder-base-6.7B 0.399 0.074 0.004 0.155
+ Our Focused-DPO 0.423 0.085 0.011 0.169
Relative Improvement 6.00% 14.31% 177.78% 9.24%

DPO / Step-DPO 0.412 0.079 0.004 0.161
Token-DPO 0.419 0.079 0.004 0.164
SFT 0.419 0.082 0.007 0.166

Table 4: Pass Rate on LiveCodeBench

mark that features iteratively updated, competition- 503

level programming problems sourced from plat- 504

forms such as LeetCode. The benchmark is di- 505

vided into three levels of difficulty: Easy, Medium, 506

and Hard. Focused-DPO achieves consistent im- 507

provements across all difficulty levels of Live- 508

CodeBench. Notably, on the hardest category 509

(Hard), Focused-DPO can achieve huge relative 510

performance. Focused-DPO entirely outperforms 511

other advanced preference optimization baselines 512

such as Step-DPO and TDPO. These findings high- 513

light the effectiveness of Focused-DPO in challeng- 514

ing code generation scenarios, where optimization 515

on error-prone points of code plays a crucial role 516

in determining final correctness. 517

Enhancing Heavily Post-trained Models 518

Focused-DPO can significantly enhance the perfor- 519

mance of code models that have already undergone 520

extensive post-training. As demonstrated in Table 521

5, models like Qwen2.5-Coder-instruct, which 522

have been meticulously optimized using millions 523

of data points from SFT and DPO processes, 524

still exhibit substantial improvements with our 525

Focused-DPO framework. To further illustrate 526

Focused-DPO’s benefits on heavily post-trained 527

7



models, we conducted an extensive initial DPO528

training phase. Following the methodology from529

CodeDPO, we used the model DeepSeekCoder-530

base-6.7 and a large-scale dataset with 93k531

samples for DPO training, continued until full532

convergence. We then apply Focused-DPO for533

further experiments. This allows us to explore534

the extent to which Focused-DPO could drive535

additional improvements, even in models already536

trained by intensive post-training processes.537

Model HumanEval HumanEval+ MBPP MBPP+

DeepSeekCoder-base-6.7B 0.4760 0.3960 0.7020 0.5660

+ SFT Stage 0.7317 0.6829 0.7672 0.6667
(with MagiCoder-OSS-instruct)

+ First DPO Stage 0.8354 0.7622 0.8070 0.7093
(with CodeDPO-OSS-instruct)

+ Focused-DPO 0.8719 0.7926 0.8227 0.7275

Table 5: Performance of DeepSeekCoder-6.7B at dif-
ferent training stages. The stages include base model,
SFT with MagiCoder, first DPO with CodeDPO, and
our Focused-DPO. Focused-DPO achieves additional
improvements even after high-quality post-training.

As shown in Table 5, we start from the base538

model and progressively incorporate the SFT stage539

(Wei et al., 2023b) and the first DPO stage (Zhang540

et al., 2024b). Finally, applying our Focused-DPO541

leads to the highest pass rates achieved. These re-542

sults demonstrate that Focused-DPO effectively543

boosts the performance of models that have al-544

ready been extensively post-trained and optimized545

through previous stages. We further evaluate how546

Focused-DPO enhances the quality of error-prone547

points in Appendix C.548

5.3 Ablation Study (RQ3)549

Dataset Construction Ablations Focused-DPO550

includes an automated data construction and Error-551

Prone Identification process. We perform ablation552

experiments on the dataset construction methods553

in Table 6. We design two alternative approaches:554

❶ The Step-DPO strategy (Lai et al., 2024) con-555

structs datasets by considering only the common556

prefix parts, with the rest treated as Error-Prone557

Points for training. ❷ Using a git-diff tool 1, we558

construct datasets where the differences covered559

by the diff were treated as Error-Prone Points, with560

the parts following the final diff difference treated561

as the suffix. Note that Step-DPO dataset construc-562

tion method is closely tied to the formulation of the563

Step-DPO loss function, leading to consistent out-564

comes between the two. However, we observe that565

1https://git-scm.com/docs/git-diff

Step-DPO performs suboptimally on code genera- 566

tion tasks. In contrast, the current dataset construc- 567

tion method used in Focused-DPO, which employs 568

a simple yet effective Error-Prone Identification 569

strategy, achieves the best experimental results. 570

Loss Function Ablations Our Focused-DPO has 571

made appropriate modifications to the calculation 572

of positive and negative rewards. We carry out 573

ablation experiments in Table 6, including trying 574

different values of wfocused and various treatments 575

of the suffix in the reward function. Our findings in- 576

dicate that increasing or decreasing wfocused leads 577

to a decline in model performance, suggesting that 578

the current value of wfocused is optimal. Addi- 579

tionally, we observe that including the suffix part 580

in the reward function results in degraded perfor- 581

mance. Through detailed analysis in Section 5.1, 582

the suffix in incorrect code does not exhibit strong 583

correlations with the overall accuracy. These ex- 584

periments validate the practical advantages of the 585

design choices in our loss function. 586

Dataset Construction HumanEval / HumanEval+ MBPP / MBPP+

Focused-DPO
Error Prone Identification 0.9268 / 0.8780 0.8466 / 0.7619

Step-DPO Strategy 0.9207 / 0.8537 0.8413 / 0.7434
Diff-based Strategy 0.9268 / 0.8598 0.8439 / 0.7539

Loss Function Setting HumanEval / HumanEval+ MBPP / MBPP+

Focused-DPO
wfocused = 2,
No Suffix in Reject Reward

0.9268 / 0.8780 0.8466 / 0.7619

Decrease Weight
wfocused = 1 0.9268 / 0.8720 0.8386 / 0.7487

Increase Weight
wfocused = 3 0.9268 / 0.8720 0.8439 / 0.7566
wfocused = 5 0.8963 / 0.7683 0.8201 / 0.6878

Suffix in Reject Reward 0.9268 / 0.8659 0.8413 / 0.7487

Table 6: Dataset Construction and Loss Function Abla-
tion Results based on Qwen2.5-Coder-Instruct-7B

6 Conclusion 587

We propose Focused-DPO, a framework that im- 588

proves code generation by focusing on error-prone 589

points. These critical parts significantly impact 590

overall program correctness. Focused-DPO im- 591

proves Direct Preference Optimization by priori- 592

tizing these points, using our Error-Point Identi- 593

fication method to create datasets without costly 594

human annotations. Evaluations show Focused- 595

DPO reduces errors and improves code quality, 596

even in heavily post-trained models. This research 597

highlights the benefits of focusing on fine-grained 598

preference optimization in AI-driven software de- 599

velopment. 600

8

https://git-scm.com/docs/git-diff


Limitation601

Despite the contributions of our work, there are602

several limitations that we aim to address in future603

research:604

Comparison with Advanced RL Techniques605

While our study demonstrates the effectiveness of606

Focused-DPO, we do not extensively compare it607

with other advanced reinforcement learning (RL)608

alignment techniques, such as DeepSeek-R1 (Guo609

et al., 2025). These online RL alignment tech-610

niques typically require substantial training re-611

sources, high-quality datasets, and complex re-612

ward environments, making their application highly613

resource-intensive. In contrast, offline alignment614

methods such as Focused-DPO approximate simi-615

lar optimization objectives while introducing nec-616

essary simplifications and derivations. This al-617

lows Focused-DPO to achieve comparable or even618

equivalent optimization results with significantly619

lower resource requirements. Moreover, we lever-620

age prior knowledge discovered in this work: the621

insight that only a small part of the generated622

code—specifically, the Error-Prone Points—plays623

a critical role in determining the overall correctness624

of the output. By incorporating this insight into the625

training loss design, we further enhance training626

efficiency and effectiveness. Focused-DPO’s low627

resource requirements and reliable performance628

make it applicable to a wide range of code genera-629

tion scenarios. Further exploration of how Focused-630

DPO compares to these advanced RL techniques631

in performance and efficiency remains an area for632

future investigation.633

Dataset Construction Strategy In Focused-634

DPO, we introduce a dataset construction tech-635

nique named Error-Prone Identification, which636

automatically identifies error-prone points in gen-637

erated code. The primary focus of this paper is638

on error-prone points associated with correctness639

in the final output code. However, other factors640

in source code, such as efficiency, readability, and641

security, are equally important for optimization.642

Exploring whether these factors also reveal "Error-643

Prone Points" in source code is an intriguing di-644

rection for future work. For example, techniques645

like static code analysis, code smells detection, and646

identification of common vulnerabilities could help647

identify and penalize insecure patterns during data648

construction, leading to safer and more robust code649

generation.650

Additionally, our dataset construction pipeline 651

includes specific design choices, such as the use of 652

a page-rank mechanism and the identification of 653

error-prone points based on common prefixes and 654

suffixes. Our preliminary experiments suggest that 655

these settings effectively support the performance 656

of Focused-DPO. Detailed discussions on these 657

designs are provided in Appendix A. 658

References 659

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 660
Bosma, Henryk Michalewski, David Dohan, Ellen 661
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 662
Program synthesis with large language models. arXiv 663
preprint arXiv:2108.07732. 664

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 665
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 666
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 667
Greg Brockman, et al. 2021. Evaluating large 668
language models trained on code. arXiv preprint 669
arXiv:2107.03374. 670

Shihan Dou, Yan Liu, Haoxiang Jia, Enyu Zhou, Limao 671
Xiong, Junjie Shan, Caishuang Huang, Xiao Wang, 672
Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui 673
Zheng, Qi Zhang, Tao Gui, and Xuanjing Huang. 674
2024. Stepcoder: Improving code generation with 675
reinforcement learning from compiler feedback. In 676
Proceedings of the 62nd Annual Meeting of the As- 677
sociation for Computational Linguistics (Volume 1: 678
Long Papers), ACL 2024, Bangkok, Thailand, August 679
11-16, 2024, pages 4571–4585. 680

Leonidas Gee, Milan Gritta, Gerasimos Lampouras, 681
and Ignacio Iacobacci. 2024. Code-optimise: Self- 682
generated preference data for correctness and effi- 683
ciency. CoRR, abs/2406.12502. 684

GPT-4. 2023. https://platform. 685
openai.com/docs/models/ 686
gpt-4-and-gpt-4-turbo. OpenAI. 687

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 688
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 689
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 690
centivizing reasoning capability in llms via reinforce- 691
ment learning. arXiv preprint arXiv:2501.12948. 692

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 693
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 694
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 695
When the large language model meets programming– 696
the rise of code intelligence. arXiv preprint 697
arXiv:2401.14196. 698

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 699
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 700
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, 701
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and 702
Junyang Lin. 2024. Qwen2.5-coder technical report. 703
CoRR, abs/2409.12186. 704

9

https://doi.org/10.18653/V1/2024.ACL-LONG.251
https://doi.org/10.18653/V1/2024.ACL-LONG.251
https://doi.org/10.18653/V1/2024.ACL-LONG.251
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://doi.org/10.48550/ARXIV.2409.12186


Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia705
Yan, Tianjun Zhang, Sida Wang, Armando Solar-706
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-707
codebench: Holistic and contamination free eval-708
uation of large language models for code. arXiv709
preprint arXiv:2403.07974.710

Siyuan Jiang, Jia Li, He Zong, Huanyu Liu, Hao Zhu,711
Shukai Hu, Erlu Li, Jiazheng Ding, Yu Han, Wei712
Ning, Gen Wang, Yihong Dong, Kechi Zhang, and713
Ge Li. 2024. aixcoder-7b: A lightweight and ef-714
fective large language model for code completion.715
CoRR, abs/2410.13187.716

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-717
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise718
preference optimization for long-chain reasoning of719
llms. arXiv preprint arXiv:2406.18629.720

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas721
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc722
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.723
2023. Starcoder: may the source be with you! arXiv724
preprint arXiv:2305.06161.725

Zicheng Lin, Tian Liang, Jiahao Xu, Xing Wang,726
Ruilin Luo, Chufan Shi, Siheng Li, Yujiu Yang, and727
Zhaopeng Tu. 2024. Critical tokens matter: Token-728
level contrastive estimation enhances llm’s reasoning729
capability. CoRR, abs/2411.19943.730

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-731
ming Zhang. 2024. Is your code generated by chatgpt732
really correct? rigorous evaluation of large language733
models for code generation. Advances in Neural734
Information Processing Systems, 36.735

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,736
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-737
sheng Li. 2024. Step-controlled DPO: leveraging738
stepwise error for enhanced mathematical reasoning.739
CoRR, abs/2407.00782.740

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-741
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,742
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:743
Empowering code large language models with evol-744
instruct. arXiv preprint arXiv:2306.08568.745

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-746
pher D Manning, Stefano Ermon, and Chelsea Finn.747
2024. Direct preference optimization: Your language748
model is secretly a reward model. Advances in Neu-749
ral Information Processing Systems, 36.750

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-751
isa Liu, Noah A Smith, Daniel Khashabi, and Han-752
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-753
guage models with self-generated instructions. arXiv754
preprint arXiv:2212.10560.755

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng756
Ding, Naman Jain, Harm de Vries, Leandro von757
Werra, Arjun Guha, and Lingming Zhang. 2023a.758
Starcoder2-instruct: Fully transparent and permissive759
self-alignment for code generation. BigCode.760

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 761
Lingming Zhang. 2023b. Magicoder: Source code is 762
all you need. arXiv preprint arXiv:2312.02120. 763

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, 764
Haifeng Zhang, and Jun Wang. 2024. Token-level 765
direct preference optimization. In Forty-first Interna- 766
tional Conference on Machine Learning, ICML 2024, 767
Vienna, Austria, July 21-27, 2024. 768

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao 769
Peng. 2024a. PLUM: preference learning plus test 770
cases yields better code language models. CoRR, 771
abs/2406.06887. 772

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun 773
Zhang, Jing Su, Yongfei Liu, and Zhi Jin. 2024b. 774
Codedpo: Aligning code models with self generated 775
and verified source code. CoRR, abs/2410.05605. 776

10

https://doi.org/10.48550/ARXIV.2410.13187
https://doi.org/10.48550/ARXIV.2410.13187
https://doi.org/10.48550/ARXIV.2410.13187
https://doi.org/10.48550/ARXIV.2411.19943
https://doi.org/10.48550/ARXIV.2411.19943
https://doi.org/10.48550/ARXIV.2411.19943
https://doi.org/10.48550/ARXIV.2411.19943
https://doi.org/10.48550/ARXIV.2411.19943
https://doi.org/10.48550/ARXIV.2407.00782
https://doi.org/10.48550/ARXIV.2407.00782
https://doi.org/10.48550/ARXIV.2407.00782
https://github.com/bigcode-project/selfcodealign/blob/main/README-SC2INST.md
https://github.com/bigcode-project/selfcodealign/blob/main/README-SC2INST.md
https://github.com/bigcode-project/selfcodealign/blob/main/README-SC2INST.md
https://openreview.net/forum?id=1RZKuvqYCR
https://openreview.net/forum?id=1RZKuvqYCR
https://openreview.net/forum?id=1RZKuvqYCR
https://doi.org/10.48550/ARXIV.2406.06887
https://doi.org/10.48550/ARXIV.2406.06887
https://doi.org/10.48550/ARXIV.2406.06887
https://doi.org/10.48550/ARXIV.2410.05605
https://doi.org/10.48550/ARXIV.2410.05605
https://doi.org/10.48550/ARXIV.2410.05605


A Discussion777

A.1 Error-Prone Points Identification778

In our Focused-DPO method, we introduce a779

dataset construction technique called Error Prone780

Identification to automatically identify error-prone781

points in generated code. To assess the correct-782

ness of the code, we employ a self-generation-and-783

validation mechanism based on PageRank, which784

captures the relative quality of different code snip-785

pets (Zhang et al., 2024b). We are not like ap-786

proaches such as Magicoder (Wei et al., 2023b),787

which directly use all test cases as ground truth.788

In our experiments we use the policy model to789

generate datasets. Since the policy model’s gener-790

ation quality is not as robust as that of more pow-791

erful models like GPT-4 (used in Magicoder), the792

PageRank-based method allows us to automatically793

filter out lower-quality test cases (those with lower794

scores after iteration), thereby ensuring higher over-795

all dataset quality.796

We find that different models exhibit varying lev-797

els of accuracy across different problems. There-798

fore, for each model’s training dataset, we per-799

formed necessary filtering by removing code prob-800

lems with excessively high or low accuracy rates,801

ensuring a consistent number of code problems in802

the final dataset. Moreover, we observe that mod-803

els tend to exhibit similarities in error-prone points804

when solving the same problems. For example,805

when comparing the error-prone points identified806

by DeepSeekCoder-instruct-6.7B and Qwen2.5-807

Coder-instruct-7B models on the same set of pro-808

gramming problems, we found a 32% overlap. This809

indicates that there are commonalities in the error-810

prone points across different models.811

In our ablation studies, we compare error-prone812

points constructed using the git-diff method and the813

Step-DPO method, noting slight differences in the814

final results. Balancing effectiveness and efficiency,815

we use the method based on prefix and suffix, which816

allows us to identify error-prone points in generated817

code in a simple yet effective manner. We plan818

to further explore more identification strategies in819

future work.820

A.2 Data Scaling For Focused-DPO821

In our experiments, we use the policy model to sam-822

ple the dataset for training, with the dataset statis-823

tics provided in Table 8. We also explore how scal-824

ing the training data affects the final performance825

of Focused-DPO. Specifically, we investigate two826

additional settings: doubling the original training 827

dataset to 10k samples and halving the dataset to 828

2.5k samples, to observe how these changes impact 829

the effectiveness of the model after Focused-DPO 830

training. The experimental results are presented in 831

Table 7. The results indicate that fine-grained pref- 832

erence optimization converges efficiently within 833

our given data range, and increasing the dataset 834

size does not significantly improve the results. 835

Data Scaling HumanEval / HumanEval+ MBPP / MBPP+

Qwen2.5-coder-instruct-7B 0.915 / 0.841 0.828 / 0.714

Focused-DPO (5k) 0.926 / 0.878 0.846 / 0.761

Decrease to 2.5k 0.926 / 0.847 0.830 / 0.719
Increase to 10k 0.926 / 0.878 0.843 / 0.756

Table 7: Dataset Scaling for Focused-DPO based on
Qwen2.5-Coder-Instruct-7B

B Dataset Statistics 836

Dataset Problems Avg. Hidden Tests

HumanEval
164

9.57
HumanEval+ 748.07
MBPP

378
3.11

MBPP+ 105.40

LiveCodeBench
Easy 279 18.07

Medium 331 21.81
Hard 270 24.78

Table 8: Statistics of Evaluation Benchmark.

Statistics based on Qwen2.5-Coder-Instruct-7B

Problems

Training Set 5000
Validation Set 1000

Average Token Lengths

Common Prefix 78.17
Common Suffix 33.98
Chosen Mid 57.37

of Total Chosen Code 34%
Rejected Mid 42.63

of Total Rejected Code 28%

Table 9: Training Dataset Statistics based on Qwen2.5-
Coder-Instruct-7B

C Improvement in Error-Prone Points 837

We further evaluate how Focused-DPO enhances 838

the quality in error-prone points. Using our vali- 839

dation dataset (Table 8), we measure the model’s 840

performance on these error-prone parts. The gen- 841

eration probability difference between chosen_mid 842

and reject_mid in error-prone points is illustrated 843

11



in Figure 4 for the Qwen2.5-Coder-Instruct-7B844

model.845

Compared to pre-Focused-DPO results (Figure846

3), Focused-DPO demonstrates a strong preference847

for generating more accurate code at error-prone848

points. This improvement is particularly critical849

in complex coding tasks, where precise decisions850

in error-prone points directly impact the correct-851

ness of the generated code. For instance, on the852

LiveCodeBench-Hard dataset—which consists853

of challenging, dynamically problems—Focused-854

DPO achieves a significant improvement of 42.8%855

in correctness for the Qwen2.5-Coder-Instruct856

model. Notably, on this dataset, Focused-DPO857

achieves performance on par with GPT-4o, high-858

lighting its ability to address difficult code genera-859

tion tasks effectively.860

Figure 4: Generation Probability Difference
(p(chose_mid) - p(reject_mid)) after Focused-DPO.

D Case Studies for Error-Prone Points861

We show some case studies for error-prone points862

based on Qwen2.5-Coder-instruct in the following863

Figure 5, 6 and 7.864

12



Figure 5: Case Study: convert to valid variable name

Figure 6: Case Study: parse version

Figure 7: Case Study: max product

13


	Introduction
	Related Work
	Focused-DPO
	Synthetic Data Generation with Real-World Source Code
	Fine-Grained Verification to Identify Error-Prone Points
	Focused Preference Optimization Learning

	Experiment Setup
	Baselines
	Training and Inference Settings

	Results and Analyses
	Exploration of Error-Prone Points in Code (RQ1)
	Main Results (RQ2)
	Ablation Study (RQ3)

	Conclusion
	Discussion
	Error-Prone Points Identification
	Data Scaling For Focused-DPO

	Dataset Statistics
	Improvement in Error-Prone Points
	Case Studies for Error-Prone Points

