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Abstract

We present DP-HMC, a variant of Hamiltonian Monte Carlo (HMC) that is differen-
tially private (DP). We use the penalty algorithm of Yildirim and Ermis [18] to make
the acceptance test private, and add Gaussian noise to the gradients of the target
distribution to make the HMC proposal private. Our main contribution is showing
that DP-HMC has the correct invariant distribution, and is ergodic. We also com-
pare DP-HMC with the existing penalty algorithm, as well as DP-SGLD [12, 17]
and DP-SGNHT [17].

1 Introduction

Bayesian inference is one of the widely used approaches for analysis of potentially sensitive data.
We present the first differentially private (DP) variant of one of the most common modern Bayesian
inference algorithms, Hamiltonian Monte Carlo (HMC).

While there are many existing methods for DP Bayesian inference, most require strong assumptions
on the statistical model, such as ability to sample from the exact posterior [4, 17] or specific model
structure [1, 2, 11, 19]. Of the more general algorithms, DP variational inference [10] is not able
to exactly sample the posterior, and DP stochastic gradient Markov Chain Monte Carlo (MCMC)
algorithms like DP-SGLD [12, 17] and DP-SGNHT [17] only have a weak convergence guarantee
requiring decreasing their step size to 0.

Conventional MCMC algorithms avoid these issues by including a Metropolis–Hastings (MH)
acceptance test. Currently, only two implementations of DP MH algorithms exist [9, 18]. We build
on the penalty algorithm [18] to ensure both privacy and exact convergence for HMC that is able to
make use of the gradients of the posterior to speed up convergence.

2 Background

2.1 Differential Privacy

We exclusively use the Gaussian mechanism, and thus use the approximate DP (ADP) [6] definition,
also known as (ε, δ)-DP:

Definition 2.1. A mechanismM : X → Rd is (ε, δ)-ADP for neighbourhood relation ∼ if for all
measurable S ⊂ Rd and all X,X ′ ∈ X with X ∼ X ′, P (M(X) ∈ S) ≤ eεP (M(X ′) ∈ S) + δ.

We exclusively focus on tabular data and the substitute neighbourhood relation ∼S which means that
datasets X,X ′ ∈ Rn×dx are neighbors in ∼S-relation, X ∼S X ′, if they differ in at most one row.
We use x ∈ X to denote that x is a row of X .

To make HMC DP, we use the Gaussian mechanism [6], together with post-processing immunity and
composition. To compute the privacy bounds for compositions of several Gaussian mechanisms, we
use the tight ADP bound of Sommer et al. [16, Lemma 12].



2.2 Bayesian Inference, Metropolis-Hastings and Hamiltonian Monte Carlo

The goal of Bayesian inference is inferring information on the parameters θ as a statistical model that
is assumed to generate observed data X . This is done through the posterior p(θ|X) that is given by
Bayes’ theorem:

p(θ|X) =
p(X|θ)p(θ)
p(X)

.

We focus on the case where X ∈ Rn×dx is a table, and each row x of X is an i.i.d observation from
the distribution p(x|θ). Then p(X|θ) factors: p(X|θ) =

∏
x∈X p(x | θ).

Computing p(X) is often intractable, so posterior inference is done through sampling p(θ|X) using
an Markov Chain Monte Carlo (MCMC) algorithm. The Metropolis-Hastings (MH) [8, 13] algorithm
is a particular family of MCMC algorithms that sample a given distribution π by forming a Markov
chain by starting from a given value θ0, picking a proposal θ′ from a give proposal distribution
q(θ | θ′) and accepting the proposal with probability

α(θ, θ′) = min

{
1,
π(θ′)

π(θ)

q(θ | θ′)
q(θ′ | θ)

}
.

where θ denotes the current value of the chain. If the proposal is accepted, the chain moves to
the proposal, otherwise it stays with the current value. For posterior sampling, we simply set
π(θ) = p(θ|X). The intractable p(X) term does not need to be evaluated as it cancels out in the
expression for α(θ, θ′).

To correctly sample from the target, an MH algorithm must have π as its invariant distribution,
and must be ergodic. Using the acceptance probability α(θ, θ′) guarantees the correct invariant
distribution, but ergodicity depends on the proposal and must be proven separately. A simple
sufficient condition for ergodicity is strong irreducibility: if the proposal can propose any state from
any state, the algorithm is said to be strongly irreducible, which implies ergodicity [15].

The Hamiltonian Monte Carlo (HMC) algorithm is an MH algorithm that generates proposals
deterministically by simulating Hamiltonian dynamics. The dynamics are given by the Hamiltonian
H(θ, p) = U(θ) + 1

2p
TM−1p, where p ∈ Rd is an auxiliary momentum variable, M ∈ Rd×d

is a positive-definite mass matrix, and U(θ) = − lnπ(θ). The simulation is done using leapfrog
simulation, given for a step-size η > 0 by

l = lpη/2 ◦ lθ ◦ lpη · · · ◦ lpη ◦ lθ ◦ lpη/2 ,

where
lps(θ, p) = (θ, p− s∇U(θ)), lθ(θ, p) = (θ + ηM−1p, p).

With the auxiliary variable p, HMC targets the distribution

π∗(θ, p) ∝ exp(−H(θ, p)) = exp(−U(θ)) exp

(
−1

2
pTM−1p

)
,

so the marginal distributions of θ and p are independent, the marginal of θ is π, and the marginal of p
is a d-dimensional Gaussian with mean 0 and covariance M .

Proposing a new sample is done in two steps, both of which having a separate MH acceptance test.
First, p is sampled from its marginal distribution, which is always accepted. Second, the leapfrog
simulation is run and the final value of p is negated, which gives a proposal for (θ, p). The acceptance
probability for the second step is α(θ, p, θ′, p′) = min{1, exp(H(θ, p)−H(θ′, p′))}.

3 DP-HMC

Our goal is making HMC DP, which requires adding noise to every point where the data X is used.
With HMC, X is used in the leapfrog simulation through ∇U(θ), and in the acceptance test to
compute α(θ, θ′).

The DP-penalty algorithm of Yildirim and Ermis [18] makes the MH acceptance test private by
adding Gaussian noise to the log-likelihood ratio λ(θ, θ′) = ln p(X|θ′)p(θ′)

p(X|θ)p(θ) . They correct the MH
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acceptance probability with the penalty algorithm [3], that changes the acceptance probability to

α(θ, θ′) = min

{
1, exp

(
λ(θ, θ′) + ξ + ln

q(θ | θ′)
q(θ′ | θ)

− 1

2
σ2
l (θ, θ

′)

)}
,

where ξ ∼ N (0, σ2
l (θ, θ

′)) is the Gaussian noise added to the log likelihood ratio. For the DP-penalty
algorithm, σl(θ, θ′) = 2τbl||θ − θ′||2, bl||θ − θ′||2 is the log-likelihood ratio clip bound and τ > 0
controls the amount of noise.

The privacy bounds for the algorithm are then given by [16, Lemma 12]. The convergence of the
penalty algorithm requires that the log-likelihood ratios are not actually clipped, However, in our
experiments small amounts of clipping did not affect the resulting posterior.

In non-DP HMC, the proposal is the deterministic leapfrog simulation, which can be made DP by
simply clipping the gradients of the log-likelihood and adding Gaussian noise. In Theorem 3.1, we
show that applying the penalty correction the HMC acceptance probability results in the correct
invariant distribution when using noisy and clipped gradients in the leapfrog simulation. We also
prove the ergodicity of DP-HMC, in Theorem 3.2.

In the noisy and clipped leapfrog simulation, the momentum update changes to lps(θ, p) = (θ, p−
s(g(θ) + ξ)), where g(θ) =

∑
x∈X clipb(∇ ln p(x | θ)) +∇ ln p(θ) and ξ ∼ N (0, σ2

g). The noisy
and clipped leapfrog is then

l = lpη/2 ◦ lθ ◦ lpη · · · ◦ lpη ◦ lθ ◦ lpη/2 . (1)

As l− is an involution, l− ◦ l can be decomposed as

l− ◦ l = (l− ◦ pη/2) ◦ (lθ ◦ l−) ◦ (l− ◦ lpη ) · · · ◦ (l− ◦ lpη ) ◦ (lθ ◦ l−) ◦ (l− ◦ lpη/2).

Denoting l−ps = l− ◦ lps and l−θ = lθ ◦ l−, the decomposition can be written as

l− ◦ l = l−pη/2 ◦ l
−
θ ◦ l

−
pη ◦ · · · ◦ l

−
pη ◦ l

−
θ ◦ l

−
pη/2

.

This form makes showing that DP-HMC has the correct invariant distribution convenient.
Theorem 3.1. For a continuous distribution π that is supported on Rd and has a differentiable
log-likelihood, if

αDP (θ, p, θ
′, p′) = min

{
1, exp

(
H(θ, p)−H(θ′, p′) + ξ − 1

2
σ2
l (θ, θ

′)

)}
,

where ξ ∼ N (0, σ2
l (θ, θ

′)), is used as the acceptance probability of DP-HMC and log-likelihood
ratios are not clipped, the invariant distribution is π∗(θ, p) ∝ exp(−H(θ, p)).

Proof. We sketch the proof. The invariance of the target for HMC is proven using the fact that
the leapfrog simulation is an involution, and it preserves Lebesgue measure [14]. As the DP-HMC
leapfrog is a random algorithm, it is not an involution, but it meets a related notion of reversibility for
a Markov kernel, which is the measure-theoretic formulation of a random algorithm. We show the
DP-HMC leapfrog reversibility by proving that both l−ps and l−θ are themselves reversible and use the
fact that a symmetric composition of reversible Markov kernels is itself reversible.

Using the reversibility of the DP-HMC leapfrog, we show that DP-HMC without adding noise to the
log-likelihood ratios has the correct invariant distribution. Adding noise to the log-likelihood ratios is
handled with the penalty algorithm [18].

Theorem 3.2. DP-HMC is strongly irreducible, and thus ergodic.

Proof. Each of the lp steps adds Gaussian noise to p, and lθ adds p multiplied by an invertible matrix
to θ, so after all of the steps, the noisy leapfrog can get to any (θ′, p′) when starting from any (θ, p),
so DP-HMC is strongly irreducible and thus ergodic.

In the noisy leapfrog simulation, the gradient ∇U is evaluated L+ 1 times per iteration of the outer
for-loop, for a total of k(L+ 1) times, and the log-likelihood ratio is evaluated k times in total. The
privacy cost can then be computed from the tight bound for the Gaussian mechanism [16]. We control
the noise variances for log-likelihood ratios by τl and gradients by τg .
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Theorem 3.3. DP-HMC is (ε, δ(ε))-ADP for substitute neighbourhood for

δ(ε) =
1

2

(
erfc

(
ε− µ
2
√
µ

)
− eε erfc

(
ε+ µ

2
√
µ

))
, where µ =

k

2τ2l
+
k(L+ 1)

2τ2g
.

Proof. The sensitivity of the log-likelihood ratio is 2bg||θ − θ′||2 and the sensitivity of the gradient
is 2bg. Thus, adding noise with variance σ2

l (θ, θ
′) to the log-likelihood ratio gives a sensitivity-

variance ratio µl = 1
2τ2
l

. Adding noise with variance σ2
g to the gradients has sensitivity-variance ratio

µg =
1

2τ2
l

. As the log-likelihood ratio is evaluated k times and the gradients are evaluated k(L+ 1)

times, the total µ in [16, Lemma 12] is µ = kµl + k(L+ 1)µg =
k

2τ2
l
+ k(L+1)

2τ2
g
.

Theorem 3.3 implies a tradeoff between the number of iterations, and the noise variance: running
more iterations requires increasing noise variance, which decreases the acceptance rate and with it
the quality of the obtained samples. There is also a tradeoff between log-likelihood ratio and gradient
noise: both kinds of noise decrease the acceptance rate, and reducing one requires increasing the
other, if privacy bounds are held constant.

4 Experiments
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Gaussian Experiment

Figure 1: MMD and mean error for the banana and Gaussian models.

We ran experiments on two synthetic posterior distributions: a 10-dimensional correlated Gaussian
model and a 2-dimensional banana distribution model that results in a non-convex banana shaped
posterior. We compare DP-HMC with DP-penalty [18], DP-SGLD [12, 17] and DP-SGNHT [5, 17]
by running 4 chains, started from separate points chosen randomly around the posterior and repeat
each run 10 times. The 4 chains are combined and compared with a reference sample from the
true posterior. As evaluation metrics, we used maximum mean discrepancy (MMD) [7], which is a
distance measure of distributions that is only 0 for identical distributions. We also used the distance
of the means of the resulting sample and the reference sample as more interpratable metric.

The top row of Figure 1 shows the result of running each algorithm on the banana model. DP-HMC
and DP-penalty have roughly equal performance on both MMD and mean error, while DP-SGLD and
DP-SGNHT have significantly worse performance, especially with the higher values of ε. The bottom
row shows the results with the Gaussian model. The best performer was DP-SGLD, DP-HMC and
DP-SGNHT were mostly equal, and DP-penalty performed the worst.
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