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Abstract

Multi-head Latent Attention (MLA) is an in-
novative architecture proposed by DeepSeek,
designed to ensure efficient and economical
inference by significantly compressing the Key-
Value (KV) cache into a latent vector. Com-
pared to MLA, standard LLMs employing
Multi-Head Attention (MHA) and its vari-
ants such as Grouped-Query Attention (GQA)
exhibit significant cost disadvantages. En-
abling well-trained LLMs (e.g., Llama) to
rapidly adapt to MLA without pre-training
from scratch is both meaningful and challeng-
ing. This paper proposes the first data-efficient
fine-tuning method for transitioning from MHA
to MLA (MHA2MLA), which includes two
key components: for partial-RoPE, we remove
ROoPE from dimensions of queries and keys that
contribute less to the attention scores, for low-
rank approximation, we introduce joint SVD
approximations based on the pre-trained pa-
rameters of keys and values. These carefully
designed strategies enable MHA2MLA to re-
cover performance using only a small fraction
(3% to 6%o) of the data, significantly reducing
inference costs while seamlessly integrating
with compression techniques such as KV cache
quantization. For example, the KV cache size
of Llama2-7B is reduced by 92.19%, with only
a 0.5% drop in LongBench performance.!

1 Introduction

The rapid advancement of large language mod-
els (LLMs) has significantly accelerated progress
toward artificial general intelligence (AGI), with
model capabilities scaling predictably with param-
eter counts (Kaplan et al., 2020). However, these
gains come at a steep cost: escalating computa-
tional demands for training and degraded infer-
ence throughput, resulting in substantial energy
consumption and carbon emissions (Strubell et al.,
2019).

'The source code and models will be publicly accessible.

As downstream tasks grow increasingly com-
plex, long-context processing and computationally
intensive inference have become central to LLM
applications. A key bottleneck lies in the mem-
ory footprint of the Key-Value (KV) cache inher-
ent to the Multi-Head Attention (MHA) mecha-
nism (Vaswani et al., 2017), which scales linearly
with sequence length and model size. To mitigate
this, variants like Grouped-Query Attention (GQA,
2023) and Multi-Query Attention (MQA, 2019)
have been explored. However, these methods re-
duce not only the KV cache size but also the num-
ber of parameters in the attention, leading to per-
formance degradation. The DeepSeek introduces
Multi-Head Latent Attention (MLA), an attention
mechanism equipped with low-rank key-value joint
compression. Empirically, MLA achieves superior
performance compared with MHA, and meanwhile
significantly reduces the KV cache during infer-
ence, thus boosting the inference efficiency.

A critical yet unexplored question arises: Can
LLMs originally well-trained for MHA be
adapted to enabling MLA for inference? The in-
herent architectural disparities between MHA and
MLA render zero-shot transfer impractical, while
the prohibitive cost of pretraining from scratch
makes this transition both technically challenging
and underexplored in existing research. To address
this gap, we propose the first carefully designed
MHA2MLA framework that maximizes parame-
ter reuse from pre-trained MHA networks while
aligning the KV cache storage and inference pro-
cess with MLA’s paradigm (Figure 1). Our frame-
work features two pivotal technical innovations:
partial rotary position embedding (partial RoPE)
and low-rank approximation. The primary objec-
tive of MHA2MLA is to achieve data-efficient per-
formance recovery - restoring architecture-induced
capability degradation using minimal fine-tuning
data.

The inherent incompatibility between MLA’s
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Figure 1: The diagram illustrates the MHA, MLA, and our MHA2MLA. It can be seen that the “cached” part is fully
aligned with MLA after MHA2MLA. The input to the attention module is also completely aligned with MLA (the
aligned region below ). Meanwhile, the parameters in MHA2MLA maximize the use of pre-trained parameters

from MHA (the aligned region above ).

inference acceleration mechanism and RoPE ne-
cessitates architectural compromises. DeepSeek’s
solution preserves PEs in limited dimensions while
compressing others, requiring strategic removal of
ROPE dimensions (converting them to NoPE) in
MHA to achieve MLA alignment. While higher
removal ratios enhance compression efficiency,
they exacerbate performance degradation, creat-
ing an efficiency-capability trade-off. Through
systematically exploring RoPE removal strategies,
we identify that contribution-aware dimension se-
lection (retaining top-k dimensions ranked by at-
tention score impact) optimally balances these
competing objectives. Although previous studies
have investigated training partial-RoPE LLMs from
scratch(Black et al., 2021; Barbero et al., 2024), our
work pioneers data-efficient fine-tuning for full-to-
partial RoPE conversion in LLMs.

MLA reduces memory footprint by projecting
keys and values into a low-rank latent representa-
tion space (stored in the KV cache). MHA2MLA
can also apply low-rank approximation to the val-
ues and keys stripped of RoPE (NoPE dimen-
sions). By performing Singular Value Decompo-
sition (SVD) on the pre-trained parameter matri-
ces W, and W}, corresponding to the NoPE sub-
spaces, we compress these components into a latent
space while maximizing the retention of knowledge
learned by the original model.

Our main contributions are:

* we introduce MHA2MLA, the first parameter-
efficient fine-tuning framework that adapts pre-
trained MHA-based LLMs to the MLA archi-

tecture using only 3%o to 6%o of training data
without training from scratch.

* we demonstrate that the MHA2MLA architecture
can be integrated with KV-cache quantization
to achieve more economical inference (up to a
96.87% reduction).

* we conduct experiments across four model sizes
(from 135M to 7B, covering both MHA and
GQA), and detailed ablation studies to provide
guidance and insights for MHA2MLA.

2 Preliminary

2.1 Multi-Head Attention (MHA)

Given an input sequence {x1,...,x;} € R*9,
standard MHA (Vaswani et al., 2017) projects

each token x; into queries qgh) = a:Z'Wq(h), keys
kz(h) = miWkEh), and values 'vz(h) = wiW£h),

where Wq(h), Wk(h), Wv(h) € R for each head
h € {1,...,n,}. The Rotary positional encod-

ing (RoPE, 2024) is applied to queries and keys

(€2 lrope = RoPE(q")

dot-product attention”:

), followed by scaled

o = Softmax <q

(3

0 RO ) o)

i,rope” V<%, rope <i>

MHA(z;) = [ogl), .. ,,Ol("h)] W, 1)
where W, € R(dn)xd and [-,.] means vec-
tor concatenate. During autoregressive inference,
MHA stores the KV cache {kﬁfp)e, v bt | of size

1

2 .
'We ignore here the 7

scaling factor for ease of notation.



O(2Inpdy,), growing linearly with sequence length
[, posing memory bottlenecks.

Variants: Grouped-Query Attention (GQA,
2023) shares keys/values across ng, groups
(ng < ny) to reduce the KV cache. For each head
h, it maps to group g = |h/ng|:

ogh) = Softmax < ()

a" . 9T ) o9

<i,rope <i?

7

GQA(z;) = [ogl), - ,o(”h)} W,. Q)

Multi-Query Attention (MQA, 2019) is a special
case of GQA withng, = 1, i.e., all heads share a sin-
gle global key/value. While reducing the KV cache
to O(2lnydp,), these methods degrade performance
due to parameter pruning.

2.2 Multi-Head Latent Attention (MLA)

MLA (DeepSeek-Al et al., 2024) introduces a hy-
brid architecture that decouples PE from latent KV
compression. For each head h, the input x; is pro-
jected into two complementary components:

Position-Aware Component A subset of dimen-
sions retains PE to preserve positional sensitivity:

(0 p®

qi,rope ’» Vi, rope

= RoPE (:EiWéZ) Wq(rh), a:ZWk(:,L)) )
where W) € Rda, Wi € Riaxdr W) ¢
R¥*4r project queries/keys into a RoPE-preserved
component of dimension d,.

Position-Agnostic Component The remaining

dimensions d. are stripped of PE (i.e., NoPE),
(h) h)
ki,nope and vi(

(h)

vector Ci,kv:

and compressed into a shared latent

qi,nope qc
ik = TWi
kl(ﬁl)ope’ ,vlgh) - Cz(,];f)v sz?’ cg,hk)v quzl)v

where W) € Riaxde, W) ¢ Rixdis 1) ¢
Rkoxde, P ¢ Rdkoxdn, Note that d, + d. =
dp. The attention output of MLA combines both
components:

(h) _ (h)
0, " = Softmax <%,rope + qi,nope <i%,nope

qi,rope
(h)
. vgi

MLA (z;) = [o(”, oM w, 3)
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Unlike MHA and its variants, MLA stores the latent
vector cg;) and kgﬁ())pe (O (Inp(dy + diy))) instead

of full-rank k, v (O(2Inydy)), where (d, +dg,) <
dp,.

Why does MLA need to separate RoPE and
NoPE? MLA introduces matrix merging tech-
niques for the NoPE portion during inference, ef-
fectively reducing memory usage. For the dot prod-
uct operation quz)pek](-ﬁl)();e, the following identity
transformation can be applied:

T T
qi,nOPekj,nope = (minquC) (cj,kkuk)
T T
— @i (WagWaeWiit) €]

where (Wy, Wy W,|,) can be pre-merged into a
single matrix, and c;x, is already stored in the
KV cache. As for the RoPE portion, the RoPE(:)
function multiplies the input vector by the rotation
matrix (e.g., RoPE(q;) = q; R;, R;’s specific form
will be introduced in Section 3.1). Therefore, the
identity transformation becomes as follows:

-
qz‘,ropeij,mpe = (x; Wy W4 R;) (x; Wi, Rj)
= I; (quchRj_iW;;l;> CB;F

Since (quchRj,iW,;;) is related to the rela-
tive position j — ¢, it cannot be merged into a fixed
matrix. Considering that the relative distances in
LLMs can be very long, such as 128K, the RoPE
portion is better suited to be computed using the
original form.

3 MHA2MLA

3.1 Partial-RoPE

To enable migration from standard MHA to MLA,
we propose partial-RoPE finetuning, a strategy that
removes RoPE from a targeted proportion of di-
mensions and converts them into NoPE. Critically,
while prior work has explored training LLMs with
partial-RoPE from scratch (achieving marginally
better perplexity than full-RoPE (Black et al., 2021;
Barbero et al., 2024)), no existing method ad-
dresses how to efficiently adapt pre-trained full-
RoPE models (e.g., Llama) to partial-RoPE with-
out costly retraining. Our work bridges this gap by
systematically evaluating partial-RoPE variants to
identify the most data-efficient fine-tuning protocol
for recovering model performance post-adaptation.
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Figure 3: Visualization of Head-wise 2-norm Contribu-
tion for Llama2-7B. We randomly selected 4 heads, and
the red dashed box highlights the top-4 frequency sub-
spaces chosen when r = 4. It can be seen that different
heads tend to focus on different frequency subspaces,
which validates the rationality of our S jorm method.

MHA'’s Full-RoPE encodes positional informa-
tion into queries and keys through frequency-
specific rotations. Formally, given a query vector
qi € R and key vector k; € R we partition
them into 2D chunks:

[2k,2k+1]

g ki — {q k[zk,2k+1]

]0§k<d2h ’ [ ‘ }0§k<‘12h

where qlpk’%ﬂ] € R? denotes the k-th 2D sub-
space. Each chunk undergoes a rotation by position-
dependent angles 0, = 5~2¥/9 forming a spec-
trum of wavelengths. High-frequency components,
e.g., k = 0, rotate rapidly at 1 radian per token.
Low-frequency components, e.g., k = %’L — 1, ro-
tate slowly at ~ 3'/9 radians per token. The base
wavelength f3, typically set to 10* (Su et al., 2024)
or 5x10°.

Formally, for each 2D chunk q[%’%ﬂ] and

i

2k,2k+1 . . L
k:l[ #2511  the rotation matrix at position 7 is de-

fined as:

cos(i0y)

[2k,2k+1] B —sin(if)
R, Ok) = 1 gin(igy) } :

cos(i0y)

Thus, applying RoPE to queries and keys becomes:

qi,rope =

B {R[Zkz,Qk—i-l](gk)q[Qk,Zk-&-lq

0<k< %

[ pl2k,2k+1] [2k,2k+1]
Eirope = |:Ri (O ) k; :|O<k<d2h'

Full-RoPE to Partial-RoPE Strategies Given r
retained rotational subspaces(r < total subspaces
%h, we propose four strategies (Illustrated in Fig-
ure 2) to select which r subspaces preserve RoPE
encoding:

High-Frequency Preservation retain the r
fastest-rotating (high-frequency) subspaces:

Shigh:{k‘|0§k<7“}.

It is consistent with the p-RoPE method proposed
in Barbero et al. (2024), where they explored set-
tings in which r constituted 25%, 50%, and 75% of
the total subspaces, and observed a slight advantage
over full-RoPE in LLMs trained from scratch.
Low-Frequency Preservation retain the r
slowest-rotating (low-frequency) subspaces:

d d
Slowz{k|2h—r§k<2h}.

It was chosen as a controlled experiment for the
high-frequency strategy.

Uniform Sampling select r subspaces with
equidistant intervals:

Suniform = { \‘kth )O <k< T’}
2r

This balances high- and low-frequency components
through geometric spacing. In practice, 2r typically
divides dp,. It is similar to the partial RoPE used in
GPT-Neo (Black et al., 2021).

Head-wise 2-norm Contribution Barbero et al.
(2024) were the first to propose the 2-norm
contribution to investigate whether these fre-
quencies are utilized and how they are help-
ful. This approach is based on the observa-
tion that, according to the Cauchy-Schwarz in-
equality, the influence of the k-th frequency sub-
space on the attention logits is upper-bounded
by the 2-norm of the corresponding query and
key components, i.e., ‘<q£2k’2k+1], kg-2k’2k+1]>’ <

‘ q£2k,2k+1] H Hk£‘2k,2k+1] H

compute the mean 2-norm score for each subspace

For each head h, we
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Figure 4: Illustration of SVDgpi¢ and SVDjgint.

knopc

in an LLM over long sequences 3. Then, we pro-
pose to rank all subspaces by their 2-norm score
and select the top-r:

qx

[2k,2k+1] H )

Snom = top-r (’ kLZk,2k+1]”>'

0<k<
This head-specific selection adaptively preserves
rotation-critical subspaces. Figure 3 visualizes the
2-norm of Llama2-7B’s four heads.

We will analyze the effectiveness of the four
strategies and conduct an ablation study on the
essential hyperparameter  in Section 4.3. For all
strategies, non-selected subspaces (k ¢ S) become
NoPE dimensions, enabling seamless integration
with MLA’s latent compression.

3.2 Low-rank Approximation

After transitioning from full RoPE to partial
RoPE, we obtain the first component of the
KV cache in MLA, represented as: Kk; rope =

[R?k’%ﬂ] (Hk)kl[%’%ﬂq e’ Our next objective
€

is to derive the second component, ¢; i, € R,
which serves as a low-rank representation of k; nope
and v;.

Given the keys k; = x;W}, and values v; =
x;W, in MHA, we first extract the subspace of
W, corresponding to k; nope, i.€., the dimensions
not included in S, yielding: k;nope = ;Wi nope-
We propose two Singular Value Decomposition

3The 2-norm calculation detail is placed in Appendix A.

(SVD)-based strategies (Illustrated in Figure 4) to
preserve pre-trained knowledge while achieving
rank reduction:

Decoupled SVD (SVDy,)i¢) Separately decom-
pose Wi nope and W, into truncated SVDs, allo-
cating dy,, /2 dimensions to each:

Winope = Up 2V, W, =U,Z,V,',

L)
where Uy, U,, Vi, V, € R, 3%, €
diy o dpn .. .
R5"%75". The down-projection matrices Wy,

and up-projection matrices W, become:

Wy, = Uk:zllg/Q, Wy = 2;16/2‘/};7
Wy =U,SY2 W, =312V

The low-rank representation c;j, can be con-
structed using ¢; k, = [2;Wak, ;W |.

Joint SVD (SVDjgint) To preserve interactions
between K,ope and V', we jointly factorize the con-
catenated matrix:

[Wk,nopm qu] - Ukvzkvv;c—qrn

where Uy, Vip € R¥o 3, € R%v>dkv The
latent projection is then:
1/2
Wako = Ukvqu/) ;

1/2 1/2
W= Vig sy —do), Wy =212V [, dy .
This jointly optimizes the latent space for both keys
and values, i.e., ¢; p, = ;W yg,, retaining cross-
parameter dependencies critical for autoregressive
generation. Section 4.3 shows SVDjiy outperform-
ing SVDy,;, validating that joint factorization bet-
ter preserves pre-trained knowledge.

4 Experiment

We evaluate our method on LLMs of varying scales
(SmolLM-135M, SmolLM-360M, SmolLM-1B7,
Llama2-7B) pre-trained with MHA or GQA. We
chose the SmolLM-series* because its pretraining
data and framework are both open-source, which
can minimize the gap in fine-tuning data and pro-
cesses. We chose Llama2-7B> because it is one
of the widely used open-source LLMs (although
its pretraining data is not open-source, there is a
potential gap in fine-tuning data).
4https://hugging‘r’ace.co/collections/

HuggingFaceTB/smollm-6695016cad7167254ce15966
Shttps://huggingface.co/meta-1lama/Llama-2-7b
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Model Tokens KV Mem. Avg. MMLU ARC PIQA HS OBQA WG
135MsmoiLm 600B 44.50 29.80 4243 68.06 41.09 33.60 52.01
-GQA diy =128 44.25 29.82 42.05 6834 41.03 3320 51.07
diy =32 2.25B -68.75%  43.06 1.19 29.50 4048 66.59 3799 33.80 49.96
- GOQA2MILA dj, =16 (3.8%0) -81.25%  41.84 541 28.66 3995 65.02 36.04 31.60 49.80
dry=8 -87.50%  40.97 328 28.37 38.04 64.69 3358 30.80 50.36
360MsmolLm 600B 49.60 33.70 49.82 71.87 51.65 37.60 52.96
-GQOA do =128 49.63 34.01 50.02 7133 5143 3820 52.80
divy =32 2.25B -68.75% 4791 .17z 32.94 4836  70.73 48.16  36.00 51.30
- GOQA2MILA dj, =16 (3.8%0) -81.25%  46.94 569 31.55 45.73 70.51 4580 36.60 51.46
div=8 -87.50%  45.04 459 30.54 4333 6850 4283 3500 50.04
1B7smolLm 1T 55.90 39.27 59.87 7573 6293 4280 54.85
- MHA diy =128 55.93 39.11 59.19 7595 6292 4340 55.09
dry =32 6B -68.75%  54.76 .1.17 38.11 57.13  76.12 6135 42.00 53.83
- MHA2MIA dy, =16 (6.0%o) -81.25%  54.65 .18 37.87 56.81 75.84 60.41  42.60 54.38
diy =8 -87.50%  53.61 23 37.17 55.50 74.86 5855 4120 5438
TBLiama2 2T 59.85 41.43 59.24 7840 7329 4180 64.96
- MHA diy =256 60.22 41.63 60.89 77.80 7198 4500 63.38
dy =64 6B -68.75%  59.51 o7 41.36 59.51 7737 7172 4420  62.90
- MHA2MIA dj, =32 (3.0%0) -81.25%  59.61 ¢1 40.86 59.74 77775 7075  45.60 6298
dry =16 -87.50%  58.96 126 40.39 59.29 77775 69.70 4340 @ 63.22

Table 1: Commonsense reasoning ability of four LLMs with MHA2MLA or GQA2MLA. The six benchmarks
include MMLU (2021), ARC easy and challenge (ARC, 2018), PIQA (2020), HellaSwag (HS, 2019), OpenBookQA

(OBQA, 2018), Winogrande (WG, 2021).

We denote the architectural migration using
MHA2MLA and GQA2MLA, respectively.® Both
MHA2MLA and GQA2MLA adopt data-efficient
full-parameter fine-tuning, with the head-wise 2-
norm selection (S»_norm) for Partial-RoPE and joint
SVD factorization (SVDjoint) for low-rank approx-
imation as default configurations. Our experiments
address three critical questions:

1. How does MHA2MLA minimize accuracy
degradation induced by architectural shifts?

2. What does MHA2MLA achieve in the KV cache
reduction ratio?

3. Can MHA2MLA integrate with KV cache quan-
tization for compound gains?

4.1 General Tasks

Main Results As shown in Table 1, our method
achieves efficient architectural migration across
four model scales (135M to 7B) under varying
KV cache compression ratios (via latent dimen-
sion dg,,). First, when comparing the performance
of our fine-tuning approach with the original LLM,
we observe only minor changes in performance
across the four base models: a -0.25% decrease
on the 135M, +0.03% on the 360M, +0.03% on
the 1B7, and +0.37% on the 7B. This suggests that
the fine-tuning data does not significantly degrade
or improve the performance of the original model,

8The details of the fine-tuning process (including data and
hyperparameters) are provided in Appendix B.

providing an appropriate experimental setting for
the MHA2MLA framework.

Next, as dy, decreases (e.g., from 32 to 16 to
8), the KV cache reduction increases (i.e., from
-68.75% to -81.25% to -87.5%), but the perfor-
mance loss becomes more challenging to recover
through fine-tuning. Figure 5 shows the fine-tuning
loss curves of 135M (representing GQA) and 7B
(representing MHA) under different compression
ratios. As the compression ratio increases, the loss
difference from the baseline becomes larger. Addi-
tionally, we observe that the fluctuation trends of
the loss curves are almost identical, indicating that
our architecture migration does not significantly
harm the model’s internal knowledge.

We also find that larger models experience less
performance degradation when transitioning to the
MLA architecture. For example, with compression
down to 18.75%, the performance drops by 2.41%
for 135M, 1.97% for 360M, 1.28% for 1B7, and
0.61% for 7B, revealing the potential scaling law
of MHA2MLA. Finally, from the 135M model to
the 7B model, the number of tokens required for
fine-tuning is only about 0.3% to 0.6% of the pre-
training tokens, demonstrating the data efficiency
of our method.

Overall, whether using GQA2MLA or
MHA2MLA, the architecture transition is achieved
with minimal cost, resulting in efficient and
economical inference.
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Figure 5: The fine-tuning loss curves under different KV
cache storage ratios (with colors ranging from light to
dark representing 12.5%, 18.75%, 31.25%, and 100%).

4.2 Long Context Tasks

Settings To evaluate the generative capabilities
of the model, we adopt LongBench (Bai et al.,
2024) as the benchmark for generation perfor-
mance. All models are tested using a greedy de-
coding strategy. The context window size is deter-
mined based on the sequence length used during
model fine-tuning. We use HQQ (Badri and Shaji,
2023) and Quanto’ to set caches with different lev-
els of precision to evaluate the performance of the
original model as the baseline. Since our method
is compatible with KV cache quantization, we also
conduct additional experiments to assess the com-
bined effect of both approaches.

Main Results As evidenced in Table 2,
MHA2MLA achieves competitive or superior
efficiency-accuracy profiles compared to post-
training quantization methods on LongBench.
While 4-bit quantization incurs modest degradation
(-0.2% to -0.4%) at comparable compression ratios,
aggressive 2-bit quantization suffers severe perfor-
mance collapse (-6.2% to -9%) despite 87.5% KV
cache reduction. In contrast, MHA2MLA alone
attains 87.5% compression (at dy,, =16) with only
3% accuracy loss, and further synergizes with 4-bit
quantization to reach 92.19%/96.87% compression
(dky =64/16+Intdyqq) while limiting degradation
to -0.5%/-3.2%, outperforming all 2-bit baselines.
This highlights that MHA2MLA’s latent space
design remains orthogonal to numerical precision
reduction, enabling compound efficiency gains

7https://huggingface.co/blog/
quanto-introduction

Model Precision KV Mem. Avg@LB
7Bl1amaz BF16 100.0% 27.4
hH4HQQ 27.5
Int4Quanto 7500% 54
hHZHQQ 21.2
Int2Quanto 8750% g
BF16 -68.75% 27.1
dp, =64 Int4HQQ 26.9
Int4Quanto D219% 268
BF16 -81.25% 26.3
dppy =32 hH4HQQ 26.1
Int4Quanto 9331% 261
BF16 -87.50% 24.4
di, =16 Int4HQQ 24.2
Int4quanto V08T 34
Table 2: Evaluation results of Llama2-7B and

MHA2MLA on LongBench. Bold indicates compres-
sion ratios greater than or equal to Int2 quantization
while also achieving performance higher than Int2 quan-
tization.

without destructive interference.

4.3 Ablation Study

Four Partial-RoPE strategies:  Spigh, Siows
Suniforms S2-norm  1able 3 presents the results
of four strategies for converting full-RoPE to
partial-RoPE. First, when comparing the four
strategies with full-RoPE, we observed that the
low-frequency retention strategy, Siow, incurred
the greatest performance loss (a reduction of -
6.49% @135M and -1.21% @1B7), whereas the
high-frequency retention strategy, Shigh, €Xperi-
enced significantly less degradation (a reduction of
-0.85% @135M and -0.76% @ 1B7), underscoring
the importance of high-frequency subspaces. Both
Suniform and Sa.norm yielded better performance, the
Suniform preserves subspaces across the frequency
spectrum, while the S5 norm retains subspaces based
on their contribution to the attention scores. We
choose Sa.norm as the default configuration because
the removed subspaces (i.e., NoPE) are more suit-
able for the (SVD-based) low-rank approximation.

Two SVD-based low-rank approximations:
SVDgiit, SVDjoine The last two rows of each
group in Table 3 compare the effects of the two
SVD methods. We observe that, on both LLMs, the
SVDjoine method consistently outperforms SVDgpj,
yielding an average performance improvement of
0.92% on the 135M model and 0.74% on the 1B7


https://huggingface.co/blog/quanto-introduction
https://huggingface.co/blog/quanto-introduction

Model Tokens Avg@CS
135MsmoiLm 600B 44.50

- full-rope 44.25

- Shigh 43.40 g5
- Olow 2.25B 37.76 -6.49
- Suniform 43.76 -0.49
- SZ-norm 43.77 -0.48
- Shigh + SVDjoim 41.04 52
- Ouniform + SVDjoim 41.77 248
- SZ-norm + SVDjoim 2.25B 41.84 241
- 82-n0rm + SVDsplil 40.92 2333
1B7smolLm 1T 55.90

- full-rope 55.93

- Shigh 55.17 -0.76
- Slow 6B 54.72 -1.21
= Ouniform 55.31 -0.62
- SZ-norm 55.10 -0.83
- Shigh + SVDjoinl 54.41 2152
- Ouniform + SVDjoim 6B 54.30 -1.63
- SZ-norm + SVDjoinl 54.65 -1.28
- SZ—norm + SVDsplit 5391 2.02

Table 3: Reasoning ability of ablation studies.

model. It indicates that SVDjein emerges as the
clear default choice.

5 Related Work

Efficient Attention Architectures The standard
Multi-Head Attention (MHA, 2017) mechanism’s
quadratic complexity in context length has spurred
numerous efficiency innovations. While MHA
remains foundational, variants like Multi-Query
Attention (MQA) and Grouped-Query Attention
(GQA, 2023) reduce memory overhead by shar-
ing keys/values across heads—albeit at the cost of
parameter pruning and performance degradation.
Parallel efforts, such as Linear Transformers (Guo
et al., 2019; Katharopoulos et al., 2020; Choroman-
ski et al., 2021), RWKYV (Peng et al., 2023), and
Mamba (Gu and Dao, 2023), replace softmax atten-
tion with linear recurrences or state-space models,
but struggle to match the expressiveness of stan-
dard attention in autoregressive generation.

Multi-Head Latent Attention (MLA) (DeepSeek-
Al et al., 2024) distinguishes itself by compressing
KV caches into low-rank latent vectors without
pruning attention parameters. Our work bridges
MLA with mainstream architectures (MHA/GQA),
enabling seamless migration via data-efficient fine-
tuning. Notably, while many linear attention vari-
ants abandon softmax query-key interactions (e.g.,
through kernel approximations), architectures pre-
serving a query-key dot product structure—even
in factorized forms—remain compatible with our
MHA2MLA framework.

Economical Key-Value Cache The memory
footprint of KV caches has become a critical bottle-
neck for long-context inference. Recent advances
fall into three categories:

Innovative  Architecture  methods  like
MLA (DeepSeek-Al et al., 2024), MiniCache (Liu
et al., 2024a), and MLKYV (Zuhri et al., 2024) share
or compress KV representations across layers or
heads. While effective, cross-layer sharing risks
conflating distinct attention patterns, potentially
harming task-specific performance. Only MLA has
been successfully validated in Deepseek’s LLMs.

Quantization techniques such as GPTQ (Frantar
et al., 2022), FlexGen (Sheng et al., 2023), and
KIVI (Liu et al., 2024b) store KV caches in low-
bit formats (e.g., 2-bit), achieving memory savings
with precision loss.

Dynamic Pruning approaches like A2SF (Jo
and Shin, 2024) and SnapKV (Li et al., 2024)
prune “less important” tokens from the KV cache.
However, token pruning risks discarding critical
long-range dependencies, while head pruning (e.g.,
SliceGPT (Ashkboos et al., 2024), Sheared (Xia
et al., 2024), and Simple Pruning (Sun et al., 2024))
irreversibly reduces model capacity.

Our MHA2MLA method achieves the migration
of standard Transformer-based LLMs to the more
economical MLA architecture and has demon-
strated its ability to integrate with KV quantization
techniques to realize a ~97% cache saving. It is
also theoretically compatible with other methods
like pruning.

6 Conclusion

This work addresses the critical challenge of adapt-
ing pre-trained MHA-based LLMs (or variants)
to the KV-cache-efficient MLA architecture. By
introducing MHA2MLA with contribution-aware
partial-RoPE removal and SVD-driven low-rank
projection, we achieve near-lossless compression
of KV cache (up to 96.87% size reduction for
Llama2-7B) while requiring only 3%¢ to 6%cof
training data. The framework demonstrates strong
compatibility with existing compression techniques
and maintains commonsense reasoning and long-
context processing capabilities, offering a practi-
cal pathway for deploying resource-efficient LLMs
without sacrificing performance. Our results un-
derscore the feasibility of architectural migration
for LLMs through targeted parameter reuse and
data-efficient fine-tuning.



Limitations

Verification on More LLMs Considering that
MHA2MLA can significantly reduce inference
costs, it is worthwhile to validate it on larger and
more diverse open-source LLMs. However, con-
strained by our computation resources, models
like Llama3 require fine-tuning on a 128K con-
text length to mitigate performance degradation
from continued training, so we did not perform
such experiments. Furthermore, since Deepseek
has not yet open-sourced the tensor-parallel infer-
ence framework for MLA, it is currently challeng-
ing to explore models larger than 7B. This will be
addressed in our future work.

Parameter-Efficient MHA2MLA Fine-tuning
This paper primarily focuses on the data efficiency
of MHA2MLA. Since the architectural transforma-
tion does not involve the Feed-Forward (FFN) mod-
ule, future work could explore parameter-efficient
MHA2MLA fine-tuning, for example by freezing
the FFN module and/or freezing the parameters in
the queries and keys that correspond to the retained
RoPE. This could further reduce the cost of the
MHA2MLA transition.
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A The Calculation of 2-norm Score

To compute the 2-norm scores for each attention
head, we selected 1,024 samples from the train-
ing dataset. The proportions of the subsets and
sequence length used during the 2-norm compu-
tation are consistent with those used during fine-
tuning. First, we calculate the query vectors and
key vectors for each head. Then, for each rotational
subspace of the vectors, we compute the 2-norm
scores. Finally, the 2-norm scores of the query and
key vectors are aggregated within each subspace.
If the model employs Grouped-Query Attention
(GQA), the 2-norm scores are averaged within each
GQA group, and the scores are shared between the
groups.

B The Details of Fine-tuning

Data We fine-tune our model using the pretrain-
ing corpus from SmolLm®. The dataset consists of
fineweb-edu-dedup, cosmopedia-v2, python-edu,
open-web-math, and StackOverflow. The first
three datasets are part of the smollm-corpus’ cu-
rated by HuggingFaceTB. Fineweb-edu-dedup is
a high-quality dataset filtered by HuggingFaceTB
from education-related webpages. Similarly, Hug-
gingFaceTB filtered Python code snippets from
The Stack to construct the python-edu dataset.
Cosmopedia-v2 is a high-quality dataset gener-
ated by a model based on 34,000 topics defined
by BISAC book classifications. Additionally, open-
web-math'? and StackOverflow!! are sourced from
high-quality mathematical texts available online
and posts from StackOverflow, respectively.

Hyperparameters For the 135Mgnorm and
360Mgsmoi v models, the global batch size is set to
64. The models are trained for a total of 18,000
steps. The learning rate is set to 0.0001, with a
warmup phase spanning the first 900 steps, fol-
lowing a linear warmup strategy. The learning
rate decay begins after 16,200 steps, extending
over the final 1,800 steps of the training process.
A 1-sqrt decay strategy is applied to adjust the
learning rate, ensuring a smooth and gradual re-
duction as training progresses.The fine-tuning pro-

Shttps://huggingface.co/blog/smollm

*https://hf-mirror.com/datasets/HuggingFaceTB/
smollm-corpus

lOhttps://huggingface.co/datasets/
open-web-math/open-web-math

11https://huggingface.co/datasets/bigcode/
stackoverflow-clean
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cess for 135Mgmoim takes about 6 hours on 4
RTX3090 GPUs with a maximum sequence length
2048.When training the 1B7smoirm and 7Bp jama2
models, the global batch size is set to 256, and the
learning rate is set to le-4. The training consists
of 12,000 steps, with a warmup phase spanning the
first 1,000 steps. The learning rate begins to de-
cay after 10,000 steps. A linear warmup strategy is
applied during the warmup phase, while a 1-sqrt de-
cay strategy is used for the learning rate decay.We
utilized 16 NVIDIA L20Y GPUs to fine-tune the
LLama-7B model over a duration of 24 hours.

C Ablation Study on Partial-RoPE
Dimensions

To better determine the strategy and dimension-
ality for partial-RoPE, we conducted an ablation
study on the number of RoPE dimensions using
the 135Mgmoim model. The experimental results
are presented in Table 4. By comparing the per-
formance of four different strategies across vary-
ing dimensionalities, we observed that the low-
frequency strategy, Siow, suffered significant per-
formance degradation (-14.7%) when the dimen-
sionality was relatively low (< 4). In contrast, both
Suniform and S»_norm consistently demonstrated su-
perior performance regardless of the dimension-
ality. Additionally, increasing the dimensionality
from 4 to 8 provided negligible performance gains.
Based on these findings, we selected a dimension-
ality of 4 for partial-RoPE.

D LongBench Results

In this section, we present the evaluation results
of 1B7smoiLm on the LongBench benchmark. The
results are documented in the Table 5.
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Model Avg. MMLU ARC PIQA HS OBQA WG
135M  r=32 44.25 29.82 4205 6834 41.03 3320 51.07
r=2  42.86_13 2958 4091 66.54 3848 32.00 49.64
- Shigh =4 4340085 2990 41.15 6692 3934 32.60 50.51
r=8 4356 960 2990 40.89 67.63 4041 3220 50.36
r=2 379463 2695 3356 6028 31.51 27.80 47.51
-Siow =4 3776649 27.11 3206 59.79 30.68 28.40 48.54
r=8 4254171 2934 3958 67.36 37.86 32.00 49.09
r=2  43.16.199 29.89 41.80 6627 3878 3240 49.80
- Suniform™=4  43.76 049  29.87 4129 67.36 40.22 32.80 50.99
r=8 4374 951 2995 4081 67.19 4047 3260 51.38
r=2 4313112 2975 40.13 67.25 39.03 32.80 49.80
-Somorm =4 43.77 048  30.14  41.69 67.57 39.53 33.00 50.67
r=8 43.88037 2991 4135 6774 4040 3340 50.51

Table 4: The impact of positional encoding dimensionality on model performance.

Model Precision

KV Mem. Avg@LB

1B7smoim BF16 100.0% 18.7
Int4HQQ 18.6
Int4Quanto T300% g6
IntZHQQ 16.3
Int2Quanto 87.30% 135
BF16 -68.75% 16
dpy =32 Int4HQQ 292.19% 15.9
Int4QuantO ) 15.4
BF16 -81.25% 16.5
dgy, =16 Int4HQQ 295.31% 16.2
Int4QuantO ’ 15.6
BF16 -87.50% 15.3
dpy =8 Int4HQQ 15
Int4quanto VO8TR 140

Table 5: Evaluation results of models on LongBench
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