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Abstract

Novel class discovery (NCD) aims to infer novel categories in an unlabeled dataset by
leveraging prior knowledge of a labeled set comprising disjoint but related classes. Given that
most existing literature focuses primarily on utilizing supervised knowledge from a labeled
set at the methodology level, this paper considers the question: Is supervised knowledge
always helpful at different levels of semantic relevance? To proceed, we first establish a novel
metric, so-called transfer flow, to measure the semantic similarity between labeled/unlabeled
datasets. To show the validity of the proposed metric, we build up a large-scale benchmark
with various degrees of semantic similarities between labeled/unlabeled datasets on ImageNet
by leveraging its hierarchical class structure. The results based on the proposed benchmark
show that the proposed transfer flow is in line with the hierarchical class structure; and that
NCD performance is consistent with the semantic similarities (measured by the proposed
metric). Next, by using the proposed transfer flow, we conduct various empirical experiments
with different levels of semantic similarity, yielding that supervised knowledge may hurt NCD
performance. Specifically, using supervised information from a low-similarity labeled set may
lead to a suboptimal result as compared to using pure self-supervised knowledge. These
results reveal the inadequacy of the existing NCD literature which usually assumes that
supervised knowledge is beneficial. Finally, we develop a pseudo-version of the transfer
flow as a practical reference to decide if supervised knowledge should be used in NCD. Its
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effectiveness is supported by our empirical studies, which show that the pseudo transfer flow
(with or without supervised knowledge) is consistent with the corresponding accuracy based
on various datasets. Code is released at https://github.com/J-L-O/SK-Hurt-NCD

1 Introduction

The combination of data, algorithms, and computing power has resulted in a boom in the field of artificial
intelligence, particularly supervised learning with its large number of powerful deep models. These deep
models are capable of properly identifying and clustering classes that are present in the training set (i.e.,
known/seen classes), matching or surpassing human performance. However, they lack reliable extrapolation
capacity when confronted with novel classes (i.e., unseen classes) while humans can easily recognize the novel
categories. A classic illustration is how effortlessly a person can readily discriminate (cluster) unseen but
similar vehicles (e.g., trains and cars) based on prior experience. This motivated researchers to develop a
challenge termed novel class discovery (NCD) (Han et al., 2019; Chi et al., 2022; Han et al., 2021; Zhong
et al., 2021a), with the goal of discovering novel classes in an unlabeled dataset by leveraging knowledge from
a labeled set, which contains related but disjoint classes.

Recently, the majority of works on NCD implicitly assumes that more data is better, and devotes to designing
and developing neural networks to better utilize the supervised knowledge contained in the labeled set. For
example, DTC Han et al. (2019), RS Han et al. (2021; 2020) and RSMKD Zhao & Han (2021) transfer
supervised knowledge by pretraining the model on the labeled data. OpenMix Zhong et al. (2021b)mixes
supervised knowledge from the labeled set and unsupervised knowledge from the unlabeled set to learn a joint
label distribution. UNO Fini et al. (2021) combines supervised knowledge in a unified objective function.

Despite their remarkable performance, there is a less in-depth analysis of the supervised knowledge from
the labeled set itself. Therefore, in this work, we investigate a fundamental question of NCD: Is supervised
knowledge always helpful? Clearly, this question is naturally associated with the discrepancy between labeled
and unlabeled sets. As mentioned by Chi et al. (2022), NCD is theoretically solvable when labeled and
unlabeled sets share high-level semantic features. However, no quantitative analysis of semantic similarity
was proposed. In this paper, we hypothesize that supervised knowledge would be beneficial when labeled and
unlabeled sets share a high degree of semantic similarity but may be less beneficial or even harmful when
semantic similarity is low. To examine the hypothesis, we first propose a quantitative metric, transfer flow,
to measure the semantic label similarity of the two datasets. Specifically, it quantifies the discriminative
information in the labeled set leaked in the unlabeled set, i.e., how much information we can leverage from
the labeled dataset to help improve its performance. More details are provided in Section 3.

To demonstrate the validity of transfer flow, we establish a new NCD benchmark with multiple semantic
similarity levels. Specifically, the new benchmark is constructed based on a large-scale dataset, ImageNet
(Deng et al., 2009), by leveraging its hierarchical semantic information. It includes three difficulty levels, high,
medium, and low semantic similarity, where each difficulty level includes two data settings. Based on the
benchmark, our experiments confirm that semantic similarity is positively related with NCD performance on
multiple pairs of labeled and unlabeled sets with varying semantic similarity under multiple baselines (Han
et al., 2019; 2021; Fini et al., 2021; MacQueen et al., 1967). Also, a mutual validation between the proposed
metric and the benchmark is conducted, which reveals that the transfer flow corresponds strongly with NCD
performance. Detailed information on the benchmark can be found in Section 4.

Based on the proposed metric and benchmark, we then analyze our core research question. Our experiments
are conducted on the current state-of-the-art (SOTA) approaches (Fini et al., 2021; Zhong et al., 2021a; Han
et al., 2021), comparing the NCD performance with (i.e., standard NCD) or without supervised information.
Unexpectedly but reasonably, we observe that the latter can outperform the former in cases where the
semantic similarity between the labeled and unlabeled sets is low, in contrast to the commonly held assumption
that supervised knowledge (or more data) can improve NCD performance. As a by-product, this also raises a
question of whether to use supervised or just self-supervised knowledge for a given dataset. To address this
issue, we provide two practical solutions. (i) A data selection solution. We develop a pseudo-version of the
proposed metric, namely pseudo transfer flow, as a practical metric to infer the flow of supervised knowledge
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and/or self-supervised knowledge. Thus, it serves as an instructive reference to decide what sort of data
we intend to employ. (ii) A data combining solution. We develop a new model which smoothly combines
supervised and self-supervised knowledge from the labeled set and achieves 3% and 5% improvement in both
CIFAR100 (Krizhevsky, 2009) and ImageNet compared to SOTA. More information can be found in Section
5.

We summarize our contributions as follows:

• We find that using supervised knowledge from the labeled set may lead to suboptimal performance
in low semantic NCD datasets. Based on this finding, we propose two practical methods and achieve
∼3% and ∼5% improvement in both CIFAR100 and ImageNet compared to SOTA.

• We introduce a theoretically reliable metric to measure the semantic similarity between labeled and
unlabeled sets. A mutual validation is conducted between the proposed metric and a benchmark,
which suggests that the proposed metric strongly agrees with NCD performance.

• We establish a comprehensive benchmark with varying degrees of difficulty based on ImageNet by
leveraging its hierarchical semantic similarity. Besides, we empirically confirm that semantic similarity
is indeed a significant factor influencing NCD performance.

2 Related Work

Novel class discovery (NCD) is a relatively new problem proposed in recent years, aiming to discover novel
classes (i.e., assign them to several clusters) by making use of similar but different known classes. Unlike
unsupervised learning, NCD also requires labeled known-class data to help cluster novel-class data. NCD is
first formalized in DTC (Han et al., 2019), but the study of NCD can be dated back to earlier works, such as
KCL (Hsu et al., 2018) and MCL (Hsu et al., 2019). Both of these methods are designed for general task
transfer learning and connect two models trained with labeled data and unlabeled data, respectively. In
contrast, DTC first learns a data embedding on the labeled data with metric learning, then employs a deep
embedded clustering method based on Xie et al. (2016) to cluster the novel-class data.

More recent works, such as RS (Han et al., 2021; 2020) and RSMKD (Zhao & Han, 2021), use self-supervised
learning to boost feature extraction and use the learned features to obtain pairwise similarity estimates.
Additionally, Zhao & Han (2021) improve RS by using information from both local and global views, as
well as mutual knowledge distillation to promote information exchange and agreement. NCL (Zhong et al.,
2021a) extracts and aggregates the pairwise pseudo-labels for the unlabeled data via contrastive learning
and generates hard negatives by mixing the labeled and unlabeled data in a feature space. This idea
of mixing data is also used in OpenMix (Zhong et al., 2021b), which mixes known-class and novel-class
data to learn a joint label distribution. The current state-of-the-art, UNO (Fini et al., 2021), combines
pseudo-labels with ground-truth labels in a unified objective function that enables better use of synergies
between labeled and unlabeled data without requiring self-supervised pretraining. The most related one
to our work is Meta discovery (Chi et al., 2022), which demonstrated the solvability of NCD by showing
high-level semantic similarities between known and unknown classes. However, they lacked quantitative
analysis, which we addressed by introducing a metric for quantifying semantic similarity. In addition, Chi
et al. (2022) concentrate on developing a method for scenarios with limited novel class data, while our study
focuses on the standard NCD setting.

3 Quantifying Semantic Similarity

In this section, we present a novel metric for measuring the semantic similarity between labeled and unlabeled
sets.

3.1 NCD Framework

We denote (Xl, Yl) and (Xu, Yu) as random samples under the labeled/unlabeled probability measures PX,Y

and QX,Y , respectively. Xl ∈⊂ Rd and Xu ∈ Xu ⊂ Rd are the labeled/unlabeled feature vectors, Yl ∈ Cl and
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Yu ∈ Cu are the true labels of labeled/unlabeled data, where Cl and Cu are the label sets under the labeled
and unlabeled probability measures PX,Y and QX,Y , respectively. Given a labeled set Ln = (Xl,i, Yl,i)n

i=1
independently drawn from the labeled probability measure PX,Y , and an unlabeled dataset Um = (Xu,i)m

i=1
independently drawn from the unlabeled probability measure QXu

, our primary goal is to predict Yu,i given
Xu,i, where Yu,i is the label of the i-th unlabeled sample Xu,i. We now give a general definition of NCD.

Definition 1 (Novel Class Discovery) Let PXl,Yl
be a labeled probability measure on Xl × Cl, and QXu,Yu

be an unlabeled probability measure on Xu × Cu, with Cu ∩ Cl = ∅. Given a labeled dataset Ln sampled from
PXl,Yl

and an unlabeled dataset Um sampled from QXu
, novel class discovery aims to predict the label Yu of

each unlabeled instance Xu given Ln and Um.

3.2 Transfer Flow

For further investigating the effectiveness of supervised knowledge in NCD, we propose a quantitative metric,
namely transfer flow, to assess semantic similarity between labeled/unlabeled datasets. To the best of our
knowledge, the question of how to measure the semantic similarity between the labeled and unlabeled sets in
NCD remains unsolved.

To proceed, we begin with introducing Maximum Mean Discrepancy (MMD; Gretton et al. (2012)), which is
used to measure the discrepancy of two distributions. For example, MMD of two random variables Z ∼ PZ
and Z′ ∼ PZ′ is defined as:

MMDH
(
PZ,PZ′

)
:= sup

∥h∥H≤1

(
E

(
h(Z)

)
− E

(
h(Z′)

))
, (1)

where H is a class of functions h : Xu → R, which is specified as a reproducing kernel Hilbert Space (RKHS)
associated with a continuous kernel function K(·, ·). From (1), when MMD is large, the distributions between
Z and Z′ appear dissimilar.

In NCD, the unlabeled dataset is predicted by taking the information from the conditional probability PYl|Xl

(usually presented by a pretrained neural network) of a labeled dataset. For example, if the distributions of
PYl|Xl=Xu

under Yu = c and Yu = c′ are significantly different, then its overall distribution discrepancy is
large, yielding that more information can be leveraged in NCD. On this ground, we use MMD to quantify
the discrepancy of the labeled probability measure PYl|Xl

on Xu under the unlabeled probability measure Q,
namely transfer flow.

Definition 2 (Transfer Flow) The transfer flow of NCD prediction under Q based on the labeled conditional
probability PYl|Xl

is
T-Flow(Q,P) = EQ

(
MMD2

H
(
Qp(Xu)|Yu

,Qp(X′
u)|Y ′

u

))
, (2)

where (Xu, Yu), (X′
u, Y ′

u) ∼ Q are independent copies, the expectation EQ is taken with respect to Yu and Y ′
u

under Q, and p(x) is the conditional probability under PYl|Xl
on an unlabeled data Xu = x, defined as

p(x) =
(
P

(
Yl = c | Xl = x

))⊺
c∈Cl

.

To summarize, transfer flow measures the overall discrepancy of p(Xu) under different new classes of the
unlabeled measure Q, which indicates the informative flow from P to Q. Note that the metric intrinsically
quantifies the information based on data, and is independent with NCD methods. Lemma 1 shows the lower
and upper bounds of transfer flow, and provides a theoretical justification of its effectiveness in measuring
the similarity between labeled and unlabeled datasets.

Lemma 1 κ := maxc∈Cu
EQ

(√
K(p(Xu), p(Xu))|Yu = c

)
< ∞, then 0 ≤ T-Flow(Q,P) ≤ 4κ2. Moreover,

T-Flow(Q,P) = 0 if and only if Yu is independent with p(Xu), that is, for any c ∈ Cu:

Q
(
Yu = c | p(Xu)

)
= Q(Yu = c), (3)

yielding that p(Xu) is useless in NCD on Q.
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Note that κ can be explicitly computed for many common used kernels, for example, κ = 1 for a Gaussian or
Laplacian kernel.

From Lemma 1, T-Flow(Q,P) = 0 is equivalent to Yu is independent with p(Xu), which matches our intuition
of no flow. Alternatively, if Yu is dependent with p(Xu), we justifiably believe that the information of
Yl|Xl can be used to facilitate NCD, Lemma 1 tells that T-Flow(Q,P) > 0 in this case. Therefore, Lemma
1 reasonably suggests that the proposed transfer flow is an effective metric to detect if the supervised
information in P is useful to NCD on Q.

Next, we give a finite sample estimate of transfer flow. To proceed, we first rewrite transfer flow as follows.

T-Flow(Q,P) =
∑

c,c′∈Cu;c̸=c′

(
Q(Yu = c, Y ′

u = c′)MMD2
H

(
Qp(Xu)|Yu=c,Qp(X′

u)|Y ′
u=c′

))
, (4)

where the equality follows from the fact that MMD2
H

(
Qp(Xu)|Yu=c,Qp(X′

u)|Y ′
u=c

)
= 0.

Given an estimated probability P̂Yl|Xl
and an evaluation dataset (xu,i, yu,i)m

i=1 under Q, we assess xu,i on
P̂Yl|Xl

as p̂(xu,i) =
(
P̂

(
Yl = c|Xl = xu,i

))⊺
c∈Cu

, then the empirical transfer flow is computed as:

T̂-Flow(Q,P) =
∑

c,c′∈Cu;c ̸=c′

( |Iu,c||Iu,c′ |
m(m − 1) M̂MD

2
H

(
Qp̂(Xu)|Yu=c

,Qp̂(X′
u)|Y ′

u=c′

))
, (5)

where Iu,c = {1 ≤ i ≤ m : yu,i = c} is the index set of unlabeled data with yu,i = c, and M̂MD
2
H is defined as:

M̂MD
2
H(Qp̂(Xu)|Yu=c

,Qp̂(X′
u)|Y ′

u=c′) = 1
|Iu,c|(|Iu,c| − 1)

∑
i,j∈Iu,c;i̸=j

K
(
p̂(xu,i), p̂(xu,j)

)
+ 1

|Iu,c′ |(|Iu,c′ | − 1)
∑

i,j∈Iu,c′ ;i ̸=j

K
(
p̂(xu,i), p̂(xu,j)

)
− 2

|Iu,c||Iu,c′ |
∑

i∈Iu,c

∑
j∈Iu,c′

K
(
p̂(xu,i), p̂(xu,j)

)
.

Remark 1 Note that the definition of the proposed transfer flow in Definition 2 is based on the conditional
probability p(xu) from P. Yet, it can be extended to a more general representation s(xu) estimated based on
supervised or self-supervised information from a labeled dataset. See the definition of pseudo transfer flow as
follows.

Furthermore, we define pseudo transfer flow, which is computed by a pretrained representation ŝ(x) and
a pseudo-label obtained from a clustering method applied to the representations (e.g., K-means, GMM,
agglomerative, etc.). It is worth mentioning that pseudo transfer flow is more practical than transfer flow
because that transfer flow requires the estimated probabilities and the true label Yu, while pseudo transfer
flow can apply to any pretrained representation and any pseudo label obtained from a clustering method.

Definition 3 (Pseudo Transfer Flow) The pseudo transfer flow of NCD prediction under Q based on a
pretrained representation ŝ(x) is

̂Pseudo-T-Flow(Q,P) =
∑

c,c′∈Cu;c ̸=c′

|Ĩu,c||Ĩu,c′ |
m(m − 1) M̂MD

2
H

(
Qŝ(Xu)|Ỹu=c

,Qŝ(X′
u)|Ỹ ′

u=c′

)
(6)

where Ĩu,c = {1 ≤ i ≤ m : ỹu,i = c} is the index set of unlabeled data with ỹu,i = c, ỹu,i is provided based
on a clustering method on their representations ŝ(xu,i), and ŝ(xu,i) is the representation estimated from a
supervised model or a self-supervised model. M̂MD

2
H is defined as in Section 3.2.

4 Benchmark

To examine the validity of the proposed metric, we first construct a benchmark with various degrees of
semantic similarity by using the hierarchical structure in ImageNet. We design two groups of numerical
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Fruit

Pineapple Strawberry

Jackfruit

Pear

Granny smith Acorn

Flower

Orchid Sunflower

Rose

Carnation

Lotus Tulip

Unlabeled set 1 Labeled set 1.5 Labeled set 2Labeled set 1 Unlabeled set 2

High similarity Medium similarity Low similarity

Figure 1: Illustration of how we construct the benchmark with varying levels of semantic similarity. Unlabeled
set U1 and labeled set L1 are from the same superclass (fruit), whereas unlabeled set U2 and labeled set L2
belong to another superclass (flower). Labeled set L1.5 is composed of half of L1 and half of L2. If both the
labeled and unlabeled classes are derived from the same superclass, i.e., (U1, L1) and (U2, L2), we consider
them a high semantic similarity split. In contrast, (U1, L2) and (U2, L1) are low semantic similarity splits,
since the labeled and unlabeled classes are derived from distinct superclasses. In addition, we consider (U1,
L1.5) and (U2, L1.5) to have medium semantic similarity because half of L1.5 share the same superclass as U1.

experiments: the consistency between NCD difficulty and degrees of semantic similarity (implemented by the
hierarchical label structure) in Section 4.2.1, and the consistency between degrees of semantic similarity and
the proposed (pseudo) transfer flow in Section 4.2.2.

4.1 Construction Principle

Unlike existing benchmarks, which only take into account the difficulty of NCD based on the labeled set in
terms of the number of categories (e.g., Fini et al. (2021)) or the number of images in each category (e.g.,
Chi et al. (2022)), we argue that semantic similarity is also a significant factor influencing NCD performance.

Specifically, our proposed benchmark is based on the ENTITY-30 task (Santurkar et al., 2020), which
contains 240 ImageNet classes in total, with 30 superclasses and 8 subclasses for each superclass. Three
different semantic similarity levels (high, medium and low) are produced by leveraging ImageNet’s underlying
hierarchy. For example, as shown in Figure 1, despite the fact that the labeled (e.g., pineapple, strawberry)
and unlabeled (e.g., pear, jackfruit) classes are disjoint, if they derive from the same superclass (i.e., fruit),
they have a higher degree of semantic similarity. Conversely, when labeled (e.g., rose, lotus) and unlabeled
(e.g., pear, jackfruit) classes are derived from distinct superclasses (i.e., labeled classes from flower while
unlabeled classes from fruit), they are further apart semantically.

As a consequence, we define three labeled sets L1, L1.5, L2 and two unlabeled sets U1, U2. The sets L1 and
U1 are selected from the first 15 superclasses, where 6 subclasses of each superclass are assigned to L1, and
the other 2 are assigned to U1. The sets L2 and U2 are created from the second 15 superclasses in a similar
fashion. Finally, L1.5 is created by taking classes half from L1 and half from L2. As a consequence, (U1,
L1)/(U2, L2) are closely related semantically (high), whereas (U1, L2)/(U2, L1) are far apart (low), with
(U1, L1.5)/(U2, L1.5) in-between (medium). Additionally, we also provide four data settings on CIFAR100,
two high-similarity settings and two low-similarity settings, by leveraging the hierarchical class structure of
CIFAR100 similarly. Each case has 40 labeled classes and 10 unlabeled classes. A full list of the labeled and
unlabeled sets can be found in Appendix E.
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Table 1: Comparison of different combinations of labeled sets and unlabeled sets consisting of subsets of
CIFAR100. The unlabeled sets are denoted U1 and U2, while the labeled sets are called L1 and L2. U1 and
L1 share the same set of superclasses, similar for U2 and L2. Thus, the pairs (U1, L1) and (U2, L2) are close
semantically, but (U1, L2) and (U2, L1) are far apart. We report the mean and standard deviation of the
clustering accuracy across 10 runs for multiple NCD methods. The higher mean is bolded.

Methods Unlabeled set U1 Unlabeled set U2

L1 - high L2 - low L1 - low L2 - high
K-means (MacQueen et al., 1967) 61.0 ± 1.1 37.7 ± 0.6 33.9 ± 0.5 55.4 ± 0.6
DTC (Han et al., 2019) 64.9 ± 0.3 62.1 ± 0.3 53.6 ± 0.3 66.5 ± 0.4
RS (Han et al., 2020) 78.3 ± 0.5 73.7 ± 1.4 74.9 ± 0.5 77.9 ± 2.8
NCL (Zhong et al., 2021a) 85.0 ± 0.6 83.0 ± 0.3 72.5 ± 1.6 85.6 ± 0.3
UNO (Fini et al., 2021) 92.5 ± 0.2 91.3 ± 0.8 90.5 ± 0.7 91.7 ± 2.2

Table 2: Comparison of different combinations of labeled sets and unlabeled sets on our proposed benchmark.
Similar to the CIFAR-based experiments, L1 is closely related to U1 and L2 is highly related to U2. The
third labeled set L1.5 is constructed from half of L1 and half of L2, so in terms of similarity it is between L1
and L2. For all splits we report the mean and the standard deviation of the clustering accuracy across 10
runs for multiple NCD methods. The higher mean is bolded.

Methods Unlabeled set U1 Unlabeled set U2

L1 - high L1.5 - medium L2 - low L1 - low L1.5 - medium L2 - high
K-means 41.1 ± 0.4 30.2 ± 0.4 23.3 ± 0.2 21.2 ± 0.2 29.8 ± 0.4 45.0 ± 0.4
DTC 43.3 ± 1.2 35.6 ± 1.3 32.2 ± 0.8 21.3 ± 1.2 15.3 ± 1.5 29.0 ± 0.8
RS 55.3 ± 0.4 50.3 ± 0.9 53.6 ± 0.6 48.1 ± 0.4 50.9 ± 0.6 55.8 ± 0.7
NCL 75.1 ± 0.8 74.3 ± 0.4 71.6 ± 0.4 61.3 ± 0.1 70.5 ± 0.8 75.1 ± 1.2
UNO 83.9 ± 0.6 81.0 ± 0.6 77.2 ± 0.8 77.5 ± 0.7 82.0 ± 1.7 88.4 ± 1.1

4.2 Experiments

4.2.1 Validating the Benchmark

Experimental Settings To suggest the effectiveness of the benchmark, we conduct experiments on 5
baselines, including K-means (MacQueen et al., 1967), DTC (Han et al., 2019), RS (Han et al., 2021), NCL
(Zhong et al., 2021a) and UNO (Fini et al., 2021). We follow the baselines regarding hyperparameters and
implementation details.

Experimental Results In Table 1 (CIFAR100), the gap between the high-similarity and the low-similarity
settings is larger than 20% for K-means and reaches up to 12% for more advanced methods. Similarly, in
Table 2 (ImageNet), the high-similarity settings generally obtain the best performance, followed by the
medium and low settings. Under the unlabeled set U1, L1 achieves the highest accuracy, with around 2 -
17% improvement compared to L2, and around 2 - 11% improvement compared to L1.5. For the unlabeled
set U2, L2 is the most similar set and obtains 8 - 14% improvement compared to L1, and around 5 - 14%
improvement compared to L1.5.

Conclusion Consistency between Semantic Similarity and Accuracy. The above numerical results suggest
a positive correlation between semantic similarity and NCD performance, which suggests that semantic
similarity is a significant factor influencing NCD performance.
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Table 3: Experiments on transfer flow. To obtain the standard deviation we recompute the transfer flow 10
times using bootstrap sampling. The results show that transfer flow is consistent with semantic similarity.
The maximum transfer flow for the same unlabeled set is highlighted in bolded.

Dataset Unlabeled Set Labeled Set Transfer flow

CIFAR100
U1

L1 - high 0.62 ± 0.01
L2 - low 0.28 ± 0.01

U2
L1 - low 0.33 ± 0.01
L2 - high 0.77 ± 0.02

ImageNet

U1

L1 - high 0.71 ± 0.01
L1.5 - medium 0.54 ± 0.01
L2 - low 0.36 ± 0.01

U2

L1 - low 0.33 ± 0.00
L1.5 - medium 0.50 ± 0.01
L2 - low 0.72 ± 0.01

Table 4: Experiments on pseudo transfer flow under three clustering methods, i.e., K-means, GMM and
agglomerative, each setting is repeated for 10 times. The maximum pseudo transfer flow is highlighted in
bold for each baseline.

Method Unlabeled set U1 Unlabeled set U2

L1 - high L1.5 - medium L2 - low L1 - low L1.5 - medium L2 - high
K-means 1.23 ± 0.03 1.02 ± 0.03 0.99 ± 0.02 0.96 ± 0.01 0.99 ± 0.03 1.24 ± 0.02
GMM 0.79 ± 0.01 0.69 ± 0.02 0.56 ± 0.02 0.58 ± 0.02 0.68 ± 0.04 0.91 ± 0.02
Agglomerative 1.17 ± 0.00 0.96 ± 0.00 0.87 ± 0.00 0.83 ± 0.00 0.89 ± 0.00 1.15 ± 0.00

4.2.2 Validating (Pseudo) Transfer Flow

Experimental Settings We evaluate transfer flow and pseudo transfer flow on both CIFAR100 and our
proposed ImageNet-based benchmark under different semantic similarity cases. We employ ResNet18 (He
et al., 2016) as the backbone for both datasets following Han et al. (2019; 2021); Fini et al. (2021). Known-class
data and unknown-class data are selected based on semantic similarity, as mentioned in Section 4. We first
apply fully supervised learning to the labeled data for each dataset to obtain the pretrained model. Then,
we feed the unlabeled data to the pretrained model to obtain its representation. Lastly, we calculate the
transfer flow/pseudo transfer flow based on the pretrained model and the unlabeled samples’ representation.
Specifically, for pseudo transfer flow, we apply clustering methods to generate the pseudo labels. For the first
step, batch size is set to 512 for both datasets. We use an SGD optimizer with momentum 0.9, and weight
decay 1e-4. The learning rate is governed by a cosine annealing learning rate schedule with a base learning
rate of 0.1, a linear warmup of 10 epochs, and a minimum learning rate of 0.001. We pretrain the backbone
for 200/100 epochs for CIFAR-100/ImageNet.

Experimental Results and Conclusions (i) Consistency between (pseudo) transfer flow and semantic
similarity. Table 3 demonstrates the transfer flow under different data settings. In CIFAR100, settings with
high semantic similarity tend to have higher transfer flow than those with low semantic similarity. Similarly,
in ImageNet, settings with high semantic similarity have the highest transfer flow, followed by those with
medium semantic similarity, while those with low semantic similarity have the lowest transfer flow. Table 4
shows the pseudo transfer flow under various baselines and datasets. This result supports the conclusion
above that, for a given baseline, settings with higher semantic similarity tend to have higher pseudo transfer
flow.
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Figure 2: The experiments investigate the correlation between accuracy and transfer flow/pseudo transfer
flow. We show three baselines, including UNO, NCL and K-means. On the left, we measure the transfer flow
and the clustering accuracy. On the right, we replace transfer flow with pseudo transfer flow calculated from
GMM clustering. As expected, there is a positive correlation between accuracy and transfer flow as well as
pseudo transfer flow, which shows that transfer flow and pseudo transfer flow can demonstrate the difficulty
of NCD tasks.

(ii) Consistency between (pseudo) transfer flow and accuracy. Figure 2 illustrates the relationship between
semantic similarity, transfer flow/pseudo transfer flow, and NCD performance on ImageNet, where the same
color corresponds to the same baseline. As expected, there is a consistent positive correlation between transfer
flow/pseudo transfer flow and NCD accuracy, supporting the validity of transfer flow/pseudo transfer flow as
a metric for quantifying semantic similarity and the difficulty of a particular NCD problem.

5 Supervised Knowledge May Hurt Performance

NCD is based on the idea that supervised knowledge from labeled data can be used to improve the clustering
of unlabeled data. Yet, our empirical studies raise a possibility that supervised information from a labeled
set may result in suboptimal outcomes compared to using exclusively self-supervised knowledge.

5.1 Empirical Experiments

We first conduct experiments in the following settings:

(a) Xu + Xl, using the images of unlabeled set and the labeled set but without labels.

(b) Xu + (Xl, Yl), using the unlabeled set and the whole labeled set, (i.e., standard NCD).

(c) Xu, using the unlabeled set.

Particularly, for (a), even though we do not use the labels, we can still extract the knowledge of the labeled set
via self-supervised learning. By comparing (a) and (b), we can analyze the performance gain from including
supervised knowledge in the form of labels. For a better comparison, we also include part of experiments on
(c) for estimating the total performance gain caused by adding the labeled set in Appendix (Table 9). In (c),
NCD is degenerated to unsupervised learning (i.e., clustering on Xu).

Experimental Settings We conduct experiments based on recent NCD methods, including RS (Han et al.,
2021), NCL (Zhong et al., 2021a) and UNO (Fini et al., 2021) (the current state-of-the-art method in NCD).
To perform settings (a), we make adjustments to the framework of each method with as minimal modifications
as possible, enabling it to run fully self-supervised. For UNO, we replace ground truth labels ylGT

in the
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labeled set with self-supervised pseudo labels ylP L
, which are obtained by applying the Sinkhorn-Knopp

algorithm (Cuturi, 2013). For NCL and RS, we replace the ground truth labels with labels obtained using
K-means (MacQueen et al., 1967). More details on these modifications as well as the used hyperparameters
can be found in Appendix B.2. We conduct experiments on our Imagenet-based benchmark, as describe in
Section 4, where we define high, medium, and low similarity settings based on the hierarchical structure of
the dataset and we evaluate these settings by transfer flow. Additionally, we conducted experiments on the
CIFAR100 50-50, established by Fini et al. (2021), which randomly splits the CIFAR100 dataset (Krizhevsky,
2009) into 50 labeled and 50 unlabeled classes without considering semantic similarity.

Experimental Results As shown in Table 5, by comparing (a) and (b) under different baselines, we have
the following numerical results:

• For RS, (a) outperforms (b) on all datasets, with 3% improvement in CIFAR100 and ∼10 - 15%
improvement in ImageNet.

• For NCL, (b) exceeds (a) by ∼2.5% in CIFAR100, whereas in ImageNet, (a) surpasses (b) by ∼2 -
8% in all semantic similarity settings.

• For UNO, we discuss 3 settings,

– In high - similarity settings, (i.e., L1 − U1), (a) performs ∼4% worse than (b).
– In low - similarity settings, (i.e., L2 − U1 and L1 − U2), (a) outperforms (b) by ∼3% - 8%.
– In medium - similarity settings, (i.e., L1.5 −U1 and L1.5 −U2), neither (a) nor (b) has an absolute

advantage.

Conclusion Supervision information with low semantic relevance may hurt NCD performance. Based on the
analysis of numerical results, we find that using self-supervised knowledge is significantly more advantageous
than using supervised knowledge in both RS and NCL, while in UNO, supervised knowledge is beneficial
when the labeled and unlabeled sets have a high degree of semantic similarity, but harmful when the semantic
similarity is low.

Table 5: Comparison of using supervised knowledge or using exclusively self-supervised knowledge on
CIFAR100 and our proposed benchmark. We present clustering mean and standard error on three recent
methods, including RS, NCL and UNO (SOTA). Unexpectedly, Xu + Xl outperforms Xu + (Xl, Yl) in both
RS and NCL on ImageNet. For UNO, in CIFAR100-50 and low similarity case of our benchmark, Xu + Xl

can also get greater performance than Xu +(Xl, Yl). The empirical results indicate that supervised knowledge
may have a negative impact on NCD performance. The higher mean is bolded.

Setting CIFAR100-50 Unlabeled set U1 Unlabeled set U2

L1 - high L1.5 - medium L2 - low L1 - low L1.5 - medium L2 - high

RS Xu + Xl 42.8 ± 0.4 64.9 ± 0.2 64.5 ± 0.4 67.3 ± 0.9 62.9 ± 1.2 65.3 ± 0.5 67.4 ± 0.8
Xu + (Xl, Yl) 39.2 ± 1.0 55.3 ± 0.4 50.3 ± 0.9 53.6 ± 0.6 48.1 ± 0.4 50.9 ± 0.6 55.8 ± 0.7

NCL Xu + Xl 50.9 ± 0.4 77.3 ± 0.4 75.2 ± 0.5 75.9 ± 0.6 77.3 ± 0.6 77.5 ± 0.7 83.2 ± 0.8
Xu + (Xl, Yl) 53.4 ± 0.3 75.1 ± 0.8 74.3 ± 0.4 71.6 ± 0.4 61.3 ± 0.1 70.5 ± 0.8 75.1 ± 1.2

UNO Xu + Xl 64.1 ± 0.4 79.6 ± 1.1 79.7 ± 1.0 80.3 ± 0.3 85.3 ± 0.5 85.2 ± 1.0 89.2 ± 0.3
Xu + (Xl, Yl) 62.2 ± 0.2 83.9 ± 0.6 81.0 ± 0.6 77.2 ± 0.8 77.5 ± 0.7 82.0 ± 1.7 88.4 ± 1.1

5.2 Practical Applications

Table 5 indicates that supervised knowledge from the labeled set may cause harm rather than gain, it is
nature to ask whether to utilize supervised knowledge with labeled data or pure self-supervised knowledge
without labels. Therefore, we provide two instructive solutions, including a practical metric (i.e., pseudo
transfer flow) and a new method tuning the weighting between supervised and/or self-supervised knowledge.

10



Published in Transactions on Machine Learning Research (04/2023)

Table 6: Results showing the link between pseudo transfer flow (PTF) and accuracy on novel classes (ACC).
The pseudo transfer flow is computed based either on a supervised (SL) or self-supervised model (SSL),
using ResNet18 in both cases. The accuracy is obtained using the standard NCD setting (Xu + (Xl, Yl)) for
supervised learning, and self-supervised NCD setting (Xu + Xl) for self-supervised model. The higher mean
value is presented in bold, while the results within standard deviation of the average accuracy are not bolded.

High similarity Medium similarity Low similarity
Model

L1 − U1 L2 − U2 L1.5 − U1 L1.5 − U2 L2 − U1 L1 − U2

PTF SSL 0.96 ± 0.01 0.96 ± 0.02 1.14 ± 0.02 1.19 ± 0.01 1.05 ± 0.03 1.25 ± 0.03
SL 1.21 ± 0.02 1.21 ± 0.01 1.03 ± 0.02 0.98 ± 0.03 0.99 ± 0.02 0.96 ± 0.01

ACC SSL 79.6 ± 1.1 89.2 ± 0.3 79.7 ± 1.0 85.2 ± 1.0 80.3 ± 0.3 85.3 ± 0.5
SL 83.9 ± 0.6 88.4 ± 1.1 81.0 ± 0.6 82.0 ± 1.7 77.2 ± 0.8 77.5 ± 0.7

5.2.1 Data Selection: Supervised or Self-supervised Knowledge?

We conduct the experiment to investigate the relationship between pseudo transfer flow and NCD’s accuracy
under various semantic similarity settings.

Experimental Settings We first perform supervised learning and self-supervised learning to achieve
two pretrained models under varying data sets based on UNO (the best performing method in Section 5),
respectively. Then, pseudo transfer flow is computed based on the two pretrained models.

Experimental Results In Table 6, PTF denotes pseudo transfer flow and ACC represents accuracy. We
find that pseudo transfer flow is consistent with the accuracy under various datasets. For example, in L1
- U1, the pseudo transfer flow computed on the supervised model is larger than the one computed in the
self-supervised model, which is consistent with the accuracy, where the supervised method outperforms the
self-supervised one. Reversely, for L2 - U1, L1 - U2 and L1.5 - U1, the pseudo transfer flow computed on the
self-supervised model is larger than the one computed in the supervised model, which is again consistent with
their relative performance. L2 - U2 and L1.5 - U1 are omitted as their performance falls within the standard
deviation of the average accuracy.

Conclusion The proposed pseudo transfer flow can be used as a practical reference to infer what sort of
data we want to use in NCD, image-only information, Xu + Xl or image-label pairs, Xu + (Xl, Yl) of the
labeled set.

5.2.2 Data Combining: Weighting Supervised Knowledge

Rather than adopting a binary approach of either fully utilizing or disregarding supervised knowledge, it is
essential to determine the optimal amount of supervised knowledge to incorporate.

Method and Experimental Settings Specifically, we first utilize self-supervised learning for pretraining
rather than using supervised pretraning as UNO. Then, similar to UNO, we improve image representations
by a contrastive learning framework (i.e., SwAV (Caron et al., 2020)). Different from UNO, we generate
pseudo labels ylP L

for labeled data utilizing Sinkhorn-Knopp algorithm (Cuturi, 2013) and combine them
with its corresponding ground truth labels ylGT

. Then, the overall classification target of the labeled data is
yl = αylGT

+ (1 − α)ylP L
, where α ∈ [0, 1] represents the weight of the supervised component. Specifically,

when α = 1, our proposed method has the same target as UNO (Fini et al., 2021), but the pretraining is
different.

Experimental Results

• From Figure 3, by comparing supervised (dotted lines) and self-supervised pretraining (dashed lines),
we can see that in the high similarity setting, supervised pretraining is slightly better than self-
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Figure 3: Experiments on combining supervised and self-supervise objectives, where α shows the weight of
the supervised component. The experiments are carried out on our ImageNet-based benchmark with high,
medium and low similarity settings, respectively. Dotted lines show the accuracy of the SOTA (UNO, using
supervised pretraining) and dashed lines show the accuracy of SOTA when replacing the pretraining with
self-supervised learning. In the low-similarity setting, a mix of supervised and self-supervised objectives
outperforms either alone. Self-supervised pretraining outperforms supervised pretraining in low and medium
similarity settings and is comparable in high similarity settings.

supervised pretraining. Insterestingly, in the medium similarity setting, self-supervised pretraining
outperform supervised pretraining, and the advantage of self-supervised pretraining becomes more
significant in the low similarity setting, with an improvement of approximately 2%.

• As observed in the low similarity setting, NCD accuracy demonstrates an increasing trend followed
by a decreasing trend as the utilization of supervised knowledge (α) rises, with an approximate
enhancement of 2 − 3% when α is set to 0.25 in comparison to the fully supervised (α = 1) and
exclusively self-supervised (α = 0) training, and ∼ 5% improvement compared to SOTA. Specifically,
pure self-supervised training (α = 0) surpasses fully supervised training (α = 1) with ∼ 1%
improvement. In contrast, in the high-similarity setting, NCD accuracy demonstrates an upward
trend with the increase in the level of supervised knowledge. However, in the medium similarity
setting, the improvement is not substantial with an increase in supervised knowledge.

Conclusion

• Supervised knowledge may lead to inferior performance during both pretraining and training.

• The effectiveness of incorporating supervised knowledge in the training process is closely related to
the degree of similarity between the labeled and unlabeled datasets. Therefore, in order to mitigate the
occurrence of negative transfer, the use of supervised knowledge in NCD should be considered with
regard to the appropriate amount rather than being employed in a naive manner.

6 Conclusion

We thoroughly investigate the effectiveness of supervised knowledge in the NCD task. We first introduce
transfer flow/pseudo transfer flow, a metric for measuring the semantic similarity between two data sets.
Then, we propose a comprehensive benchmark with varying levels of semantic similarity based on ImageNet
for validating the proposed metric and verify that semantic similarity has a significant impact on NCD
performance. By leveraging the metric and benchmark, we observe that supervised knowledge may lead to
inferior performance in circumstances with low semantic similarity. Furthermore, we propose two practical
applications: (i) pseudo transfer flow as a reference on what sort of data we aim to use. (ii) weighting
supervised knowledge, which obtains ∼5% improvement under low similarity settings for ImageNet.
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A Details of Section 3

A.1 Technical Proofs

To proceed, we summarize all notations used in the paper in Table 7.

Table 7: Notation used in the paper.

Notation Description
Xl, Xu labeled data / unlabeled data
yl, yu label of labeled data / unlabeled data
Xl, Xu domain of labeled data / unlabeled data
Cl, Cu label set of labeled data / unlabeled data
P,Q probability measure of labeled data / unlabeled data
Ln = (Xl,i, Yl,i)i=1,··· ,n labeled dataset
Um = (Xu,i)i=1,··· ,m unlabeled dataset
H reproducing kernel Hilbert space (RKHS)
K(·, ·) kernel function
(X′, Y ′) independent copy of (X, Y )
P̂ estimated probability measure of labeled data
EQ expectation with respect to the probability measure Q
xu,i, yu,i the i-th unlabeled data
Iu,c index set of unlabeled samples labeled as yu,i = c

Proof of Lemma 1. We first show the upper bound of the transfer flow. According to Lemma 3 in Gretton
et al. (2012), we have

T-Flow(Q,P) = EQ
(
MMD2(Qp(Xu)|Yu

,Qp(X′
u)|Y ′

u
)
)

= EQ

(∥∥µQp(Xu)|Yu
− µQp(X′

u)|Y ′
u

∥∥2
H

)
≤ max

c,c′∈Cu

∥∥µQp(Xu)|Yu=c
− µQp(X′

u)|Y ′
u=c′

∥∥2
H ≤ 4 max

c∈Cu

∥µQp(Xu)|Yu=c
∥2

H

= 4 max
c∈Cu

⟨EQ
(
K(p(Xu), ·)|Yu = c

)
,EQ

(
K(p(X′

u), ·)|Y ′
u = c

)
⟩H

= 4 max
c∈Cu

EQ
(
⟨K(p(Xu), ·), K(p(X′

u), ·)⟩H|Yu = c, Y ′
u = c

)
≤ 4 max

c∈Cu

EQ

(∥∥K(p(Xu), ·)
∥∥

H

∥∥K(p(X′
u), ·)

∥∥
H|Yu = c, Y ′

u = c
)

= 4 max
c∈Cu

EQ
(√

K(p(Xu), p(Xu))|Yu = c
)
EQ

(√
K(p(X′

u), p(X′
u))|Y ′

u = c
)

≤ 4κ2,

where µQp(Xu)|Yu
:= EQ

(
K(p(Xu), ·)|Yu

)
is the kernel mean embedding of the measure Qp(Xu)|Yu

(Gretton
et al., 2012), the second inequality follows from the triangle inequality in the Hilbert space, the fourth equality
follows from the fact that EQ is a linear operator, the second last inequality follows from the Cauchy-Schwarz
inequality, and the last equality follows the reproducing property of K(·, ·).

Next, we show the if and only if condition for T-Flow(Q,P) = 0. Assume that Q(Yu = c) > 0 for all c ∈ Cu.
According to Theorem 5 in Gretton et al. (2012), we have

T-Flow(Q,P) = 0 ⇐⇒ Q
(
p(x)|Yu = c

)
= q0(x), for c ∈ Cu, x ∈ Xu.

Note that

1 =
∑
c∈Cu

Q(Yu = c|p(x)) =
∑
c∈Cu

Q(p(x)|Yu = c)Q(Yu = c)
Q(p(x)) =

∑
c∈Cu

q0(x)Q(Yu = c)
Q(p(x)) = q0(x)

Q(p(x)) ,
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yielding that Q
(
p(x)|Yu = c

)
= Q(p(x)), for c ∈ Cu, x ∈ Xu. This is equivalent to,

Q
(
Yu = c|p(x)

)
=

Q
(
p(x)|Yu = c

)
Q(Yu = c)

Q(p(x)) = Q(Yu = c).

This completes the proof. □

A.2 Additional Experiments on the Robustness of Transfer Flow

To investigate the consistency of transfer flow across different kernels and bandwidths, we compare the
transfer flow values of the Gaussian and Laplacian kernels with varying bandwidths (h). In this study, we
consider Gaussian and Laplacian kernels, each with 5 different bandwidths h. We compute the bandwidth as:

h =
∑n

i=1
∑n

j=1 ∥xi − xj∥2
n(n − 1) ,

where n is the number of samples and xi and xj represent the i-th and j-th samples, respectively. The
physical meaning of bandwidth is the average distance between all possible pairs of data points in the whole
dataset.

Our analysis reveals that the transfer flow values differ across the different kernels and bandwidths (as shown
in Table 8). However, we consistently observe that the high similarity settings result in higher transfer leakage
compared to the low similarity settings.

Table 8: Comparison of transfer flow values for Gaussian and Laplacian kernel functions and vary bandwidths
(h) on CIFAR100. The high similarity settings consistently result in greater transfer flow compared to the
low similarity settings. The highest value for each unlabeled set and kernel function is bolded.

Kernel Similarity 1
22 h 1

2 h h 2h 22h Sum

Gaussian High 0.13 ± 0.00 0.15 ± 0.00 0.15 ± 0.00 0.11 ± 0.00 0.08 ± 0.00 0.62 ± 0.01
Low 0.06 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.28 ± 0.01

Laplacian High 0.06 ± 0.00 0.11 ± 0.00 0.12 ± 0.00 0.09 ± 0.00 0.06 ± 0.00 0.43 ± 0.00
Low 0.03 ± 0.00 0.05 ± 0.00 0.06 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.21 ± 0.00

B Details of Section 5
B.1 Additional Experiments
Table 9: Comparison of different data settings on CIFAR100 and our proposed benchmark. We present clus-
tering mean and standard error for each setting. (c) uses only the unlabeled set, whereas (a) uses both the
unlabeled set and the labeled set’s images without labels. (b) represents the standard NCD setting, i.e.,
using the unlabeled set and the whole labeled set. However, in CIFAR100-50 and low similarity case of our
benchmark, (a) can get greater performance than (b). The higher mean is bolded.

Setting CIFAR100-50 Unlabeled set U1 Unlabeled set U2

L1 - high L1.5 - medium L2 - low L1 - low L1.5 - medium L2 - high
(c) Xu 54.9 ± 0.4 70.5 ± 1.2 70.5 ± 1.2 70.5 ± 1.2 71.9 ± 0.3 71.9 ± 0.3 71.9 ± 0.3
(a) Xu + Xl 64.1 ± 0.4 79.6 ± 1.1 79.7 ± 1.0 80.3 ± 0.3 85.3 ± 0.5 85.2 ± 1.0 89.2 ± 0.3
(b) Xu + (Xl, Yl) 62.2 ± 0.2 83.9 ± 0.6 81.0 ± 0.6 77.2 ± 0.8 77.5 ± 0.7 82.0 ± 1.7 88.4 ± 1.1

We also conduct full experiment on UNO with settings (a) - (c) to further examine the benefit of the
self-supervised from the labeled set. In Table 9, by comparing (a) and (c), we find that NCD performance
is consistently improved by incorporating more images (without labels) from a labeled set, with around
10% improvement in accuracy on CIFAR100. For our benchmark, setting (a) obtains an improvement
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about 6% - 10% over (c) and the increase is more obvious in the low similarity settings. This numerical
results demonstrates that self-supervised knowledge from the labeled set is beneficial for NCD performance
under varying semantic similarity.

B.2 Experimental Setup and Hyperparameters

In general, we follow the baselines regarding hyperparameters and implementation details unless stated
otherwise. We repeat all experiments on CIFAR100 10 times and the ones on our proposed ImageNet-based
benchmark 5 times, and report mean and standard deviation. All experiments are conducted using PyTorch
and run on NVIDIA V100 GPUs.

Adapting Baselines to the Self-supervised Setting Since experiment settings (1) and (2) do not make
use of any labels, we need to adapt UNO (Fini et al., 2021) to work without labeled data. The standard
UNO method conducts NCD in a two-step approach. In the first step, it applies a supervised pretraining on
the labeled data only. The pretrained model is then used as an initialization for the second step, in which the
model is trained jointly on both labeled and unlabeled data using one labeled head and multiple unlabeled
heads. To achieve this, the logits of known and novel classes are concatenated and the model is trained using
a single cross-entropy loss. Here, the targets for the unlabeled samples are taken from pseudo-labels, which
are generated from the logits of the unlabeled head using the Sinkhorn-Knopp algorithm (Cuturi, 2013)

To adapt UNO to the fully unsupervised setting in (1), we need to remove all parts that utilize the labeled
data. Therefore, in the first step, we replace the supervised pretraining by a self-supervised one, which is
trained only on the unlabeled data. For the second step, we simply remove the labeled head, thus the method
is degenerated to a clustering approach based solely on the pseudo-labels generated by the Sinkhorn-Knopp
algorithm. For setting (2), we apply the self-supervised pretraining based on both unlabeled and labeled
images to obtain the pretrained model in the first step. In the second step, we replace the ground-truth labels
for the known classes with pseudo-labels generated by the Sinkhorn-Knopp algorithm based on the logits of
these classes. Taken together, the updated setup utilizes the labeled images, but not their labels.

For NCL and RS, the modifications are similar to the ones done on UNO. Both methods consist of three
steps, a self-supervised pretraining step, followed by another supervised pretraining and lastly the novel class
discovery step. To adapt them to setting (2), we replace the first two steps with a single self-supervised
pretraining step based on SwAV (Caron et al., 2020). For the last step, we simply replace the ground truth
labels with labels obtained using k-means (MacQueen et al., 1967), while keeping the framework itself the
same.

Hyperparameters We conduct our experiments on CIFAR100 as well as our proposed ImageNet-based
benchmark. All settings and hyperparameters are kept as close as possible as to the original baselines,
including the choice of ResNet18 as the model architecture. We use SwAV as self-supervised pretraining
for all experiments. The pretraining is done using the small batch size configuration of the method, which
uses a batch size of 256 and a queue size of 3840. The training is run for 800 epochs, with the queue being
enabled at 60 epochs for our ImageNet-based benchmark and 100 epochs for CIFAR100. To ensure a fair
comparison with the standard NCD setting, the same data augmentations were used. In the second step of
UNO, we train the methods for 500 epochs on CIFAR100 and 100 epochs for each setting on our benchmark.
The experiments are replicated 10 times on CIFAR100 and 5 times on the developed benchmark, and the
averaged performances and their corresponding standard errors are summarized in Table 5.

C Computation Cost

Overall, the methods we assessed have relatively low computational costs, primarily because of the utilization
of a lightweight ResNet18 backbone across all methods. For instance, training a single split of our benchmark
using ImageNet took approximately 8 hours for supervised pretraining and about 13 hours for the class
discovery phase, all performed on a single Nvidia V100 GPU. During the inference phase, the methods manifest
higher similarity since computation steps exclusive to the training process, such as the Sinkhorn-Knopp
algorithm for UNO, or the computation of ranking statistics for RS, are excluded.
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The complexity of (pseudo) transfer flow is O((Cu)2 ∗ m2), where Cu denotes the number of classes in the
unlabeled dataset and m denotes the number of unlabeled samples.

D Discussion

The nature of the dark knowledge transferred from the labeled set is still mystery and we provide intuitive
understandings on why supervised knowledge can have a negative impact on NCD performance.

Bias / Conflicting information: In cases where there is significant bias and conflicting information
between the supervised knowledge (Yl|Xl) in the labeled data and the predictive information (Yu|Xu) in the
unlabeled data, the utilization of supervised knowledge may lead to negative effects. Intuitively, supervised
knowledge obtained from Xl, Yl provides two pieces of information, including classification rule and improved
representation, while self-supervised information from Xl primarily enhances representation. However, in
scenarios with low semantic similarity or differing classification rules, the conflicting information present can
pose challenges for the model to reconcile effectively.

Limited generalization: From the information bottleneck Saxe et al. (2019); Tishby et al. (2000); Shamir
et al. (2010) perspective, feature space X has a larger dimension and contains richer information content.
However, the incorporation of category information Y may lead to the removal of information that is not
related to category Y , which can result in a reduction in the dimension of the feature space. Furthermore,
combined with the first point, when the bias is high, the removed feature space may overlap with the
unlabelled features. This may be one of the reasons why incorporating self-supervised has shown performance
improvement, while incorporating supervised information has led to a reduction.
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E Detailed Benchmark Splits

Table 10: ImageNet class list of labeled split L1 and unlabeled split U1 of our proposed benchmark. As they
share the same superclasses, they are highly related semantically. For each superclass, six classes are assigned
to the labeled set and two to the unlabeled set. The labeled classes marked by the red box are also included
in L1.5, which shares half of its classes with L1 and half with L2.

Superclass Labeled Subclasses Unlabeled Subclasses
garment vestment, jean, academic gown, sarong, fur coat,

apron
swimming trunks, miniskirt

tableware wine bottle, goblet, mixing bowl, coffee mug, water
bottle, water jug

plate, beer glass

insect leafhopper, long-horned beetle, lacewing, dung bee-
tle, sulphur butterfly, fly

admiral, grasshopper

vessel wreck, liner, container ship, catamaran, trimaran,
lifeboat

yawl, aircraft carrier

building toyshop, grocery store, bookshop, palace, butcher
shop, castle

beacon, mosque

headdress cowboy hat, bathing cap, pickelhaube, bearskin, bon-
net, hair slide

crash helmet, shower cap

kitchen utensil cocktail shaker, frying pan, measuring cup, tray,
spatula, cleaver

caldron, coffeepot

footwear knee pad, sandal, clog, cowboy boot, running shoe,
Loafer

Christmas stocking, maillot

neckwear stole, necklace, feather boa, bow tie, Windsor tie,
neck brace

bolo tie, bib

bony fish puffer, sturgeon, coho, eel, rock beauty, tench gar, lionfish
tool screwdriver, fountain pen, quill, shovel, screw, com-

bination lock
torch, padlock

vegetable spaghetti squash, cauliflower, zucchini, acorn squash,
artichoke, cucumber

cardoon, butternut squash

motor vehicle beach wagon, trailer truck, limousine, police van,
convertible, school bus

garbage truck, moped

sports equipment balance beam, rugby ball, ski, horizontal bar, racket,
dumbbell

tennis ball, croquet ball

carnivore otterhound, flat-coated retriever, Italian greyhound,
Shih-Tzu, basenji, black-footed ferret

Boston bull, Bedlington ter-
rier
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Table 11: ImageNet class list of labeled split L2 and unlabeled split U2 of our proposed benchmark. As they
share the same superclasses, they are highly related semantically. For each superclass, six classes are assigned
to the labeled set and two to the unlabeled set. The labeled classes marked by the red box are also included
in L1.5, which shares half of its classes with L1 and half with L2.

Superclass Labeled Subclasses Unlabeled Subclasses
fruit corn, buckeye, strawberry, pear, Granny Smith,

pineapple
acorn, jackfruit

saurian African chameleon, Komodo dragon, alligator lizard,
agama, green lizard, Gila monster

banded gecko, American
chameleon

barrier stone wall, chainlink fence, breakwater, dam, ban-
nister, picket fence

worm fence, turnstile

electronic equip-
ment

cassette player, modem, printer, monitor, computer
keyboard, pay-phone

dial telephone, microphone

serpentes green snake, boa constrictor, green mamba, ringneck
snake, thunder snake, king snake

rock python, garter snake

dish hot pot, burrito, potpie, meat loaf, cheeseburger,
mashed potato

hotdog, pizza

home appliance espresso maker, toaster, washer, space heater, vac-
uum, microwave

dishwasher, Crock Pot

measuring instru-
ment

wall clock, barometer, digital watch, hourglass, mag-
netic compass, analog clock

digital clock, parking meter

primate indri, siamang, baboon, capuchin, chimpanzee,
howler monkey

patas, Madagascar cat

crustacean rock crab, king crab, crayfish, American lobster,
Dungeness crab, spiny lobster

fiddler crab, hermit crab

musical instrument organ, acoustic guitar, French horn, electric guitar,
upright, maraca

violin, grand piano

arachnid black and gold garden spider, wolf spider, harvest-
man, tick, black widow, barn spider

tarantula, scorpion

aquatic bird dowitcher, goose, albatross, limpkin, white stork,
red-backed sandpiper

drake, crane

ungulate hippopotamus, hog, llama, hartebeest, ox, gazelle warthog, zebra
passerine house finch, magpie, goldfinch, indigo bunting, chick-

adee, brambling
bulbul, water ouzel
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Table 12: Labeled Split of CIFAR100 used in Section 4. We construct data settings based on its hierarchical
class structure. U1-L1/U2-L2 are share the same superclasses.

Superclass Labeled Subclasses (L1) Unlabeled Subclasses
(U1)

aquatic_mammals dolphin, otter, seal, whale beaver
fish flatfish, ray, shark, trout aquarium_fish
flower poppy, rose, sunflower, tulip orchids
food containers bowl, can, cup, plate bottles
fruit and vegetables mushroom, orange, pear, sweet_pepper apples
household electrical devices keyboard, lamp, telephone, television clock
household furniture chair, couch, table, wardrobe bed
insects beetle, butterfly, caterpillar, cockroach bee
large carnivores leopard, lion, tiger, wolf bear
large man-made outdoor things castle, house, road, skyscraper bridge

Superclass Labeled Subclasses (L2) Unlabeled Subclasses
(U2)

large natural outdoor scenes forest, mountain, plain, sea cloud
large omnivores and herbivores cattle, chimpanzee, elephant, kangaroo camel
medium-sized mammals porcupine, possum, raccoon, skunk fox
non-insect invertebrates lobster, snail, spider, worm crab
people boy, girl, man, woman baby
reptiles dinosaur, lizard, snake, turtle crocodile
small mammals mouse, rabbit, shrew, squirrel hamster
trees oak_tree, palm_tree, pine_tree, willow_tree maple
vehicles 1 bus, motorcycle, pickup_truck, train bicycle
vehicles 2 rocket, streetcar, tank, tractor lawn-mower
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