
Proceedings of Machine Learning Research – nnn:1–20, 2023 Full Paper – MIDL 2023

Estimating Uncertainty in PET Image Reconstruction via
Deep Posterior Sampling
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Abstract

Positron emission tomography (PET) is an important functional medical imaging technique
often used in the evaluation of certain brain disorders, whose reconstruction problem is
ill-posed. The vast majority of reconstruction methods in PET imaging, both iterative and
deep learning, return a single estimate without quantifying the associated uncertainty. Due
to ill-posedness and noise, a single solution can be misleading or inaccurate. Thus, providing
a measure of uncertainty in PET image reconstruction can help medical practitioners in
making critical decisions. This paper proposes a deep learning-based method for uncertainty
quantification in PET image reconstruction via posterior sampling. The method is based on
training a conditional generative adversarial network whose generator approximates sampling
from the posterior in Bayesian inversion. The generator is conditioned on reconstruction
from a low-dose PET scan obtained by a conventional reconstruction method and a high-
quality magnetic resonance image and learned to estimate a corresponding standard-dose
PET scan reconstruction. We show that the proposed model generates high-quality posterior
samples and yields physically-meaningful uncertainty estimates.

Keywords: Bayesian inference, conditional generative adversarial network, deep generative
model, inverse problem, positron emission tomography, uncertainty quantification.

1. Introduction

In inverse problems, the goal is to reconstruct an unknown signal, image or shape from
a set of observations obtained by a forward process, which is typically non-invertible. Of
particular interest are ill-posed inverse problems – reconstructing a unique solution that
matches the observations is almost impossible unless there is some prior knowledge about
the observed phenomenon. Recently, deep learning techniques demonstrated remarkable
results in solving various inverse problems (Ongie et al., 2020), and are currently impacting
the reconstruction methods. Learning-based approaches leverage large datasets in order
to i) directly compute regularized reconstructions (Kulkarni et al., 2016), or ii) train deep
generative models that regularize inverse problems by constraining their solutions to remain
on a learned manifold (Bora et al., 2017; Vlašić et al., 2022).

In general, deep learning methods reconstruct a single solution. Since there are many
plausible solutions that match the observations to within the noise level, in highly ill-posed
and noise-corrupted problems, a single solution can be misleading or inaccurate. There are
many situations where critical decisions are based on the solution of an ill-posed inverse
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Figure 1: Standard-dose PET (S-PET) reconstructions and corresponding physically-
meaningful measures of uncertainty (UQ) estimated using our proposed method
from MRI and low-dose PET (L-PET) images. We compare our method with the
suDNN framework reported by Sudarshan et al. (2021).

problem, especially in medicine (Begoli et al., 2019). In such cases, estimating uncertainty
is key and leads to a more reliable interpretation of the reconstruction.

Bayesian inversion is a method that allows drawing conclusions from the observed
measurements using a statistical framework. Its probabilistic characteristic leads to consistent
uncertainty quantification (UQ) by a posterior probability distribution. Let x and y
denote the unknown model parameters we seek and the observations, respectively, that
are realizations of random vectors X ∈ X and Y ∈ Y. In Bayesian inversion, the goal is to
recover the posterior distribution pX|Y , i.e., the conditional probability distribution of the
model parameters given the observations which is expressed using the Bayes rule as

pX|Y (x|y) =
pY |X(y|x)pX(x)∫
x pX,Y (x, y)dx

, (1)

where pX,Y is the joint distribution. In high-dimensional real-world inverse problems,
computing posterior quickly becomes unfeasible due to the intractability of calculating∫
x pX,Y (x, y)dx and unavailability of an exact knowledge of pX . One way of approximating

the posterior is by using the variational Bayesian methods (Blei et al., 2017). In particular,
deep learning-based variational methods have recently shown promising results for posterior
approximation (Adler and Öktem, 2018; Khorashadizadeh et al., 2022b; Meng and Kabashima,
2022) and estimating uncertainties in the solutions of ill-posed inverse problems (Adler and
Öktem, 2019; Abdar et al., 2021; Khorashadizadeh et al., 2022a).

Positron emission tomography (PET) is a medical imaging technique with a wide range
of clinical applications in the evaluation of the pathophysiology of brain disorders, such as
dementias, epilepsy, movement disorders, and brain tumors (Lameka et al., 2016). In contrast
to magnetic resonance imaging (MRI) and computed tomography (CT), which are more
suited for studying the anatomy, PET is referred to as a functional imaging technique that
measures biological activity. In health care centers, PET is often simultaneously combined
with CT or MRI, which results in hybrid scanners. Due to the physics and instrumentation,
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PET image reconstruction is mainly low quality and low resolution, and CT and MRI
reconstructions in the hybrid scanners are often employed to enhance it.

Prior to the acquisition, a radiopharmaceutical labeled with positron-emitting radioiso-
topes such as 11C and 18F is administered. A PET image is reconstructed from a set of
observations obtained by γ-ray detectors that detect opposing pairs of photons produced
in the annihilation event (Lameka et al., 2016), making it an ill-posed inverse problem.
The radiation dose to the patient is an important aspect in PET imaging – its amount is
positively correlated with the quality of PET image reconstruction. Ideally, one would like
to reconstruct high-quality images with as small as possible amount of the radiation dose.
With the recent emergence of deep learning methods, numerous data-driven approaches
have been proposed for the enhancement of reconstructions from low-dose PET (L-PET)
imaging (Reader et al., 2021; Pain et al., 2022). However, these methods return a point
estimate without an associated measure of uncertainty. Since critical decisions are based on
PET imaging reconstructions and PET is a highly sensitive imaging technique, it is of great
importance to assess the uncertainty in the solution.

In this paper, we propose a framework for estimation of standard-dose PET (S-PET)
image reconstruction with a corresponding UQ from L-PET and high-quality MRI images
via sampling from the posterior. To obtain L-PET images from L-PET scanning, we
use the maximum likelihood expectation maximization (MLEM) reconstruction algorithm.
Our method achieves high-quality reconstructions with a physically-meaningful measure of
uncertainty. Examples of reconstructions obtained by our method are given in Figure 1.
The proposed method is based on a conditional generative adversarial network (cGAN)
(Mirza and Osindero, 2014) whose generator is trained to output posterior samples. Our
generator’s architecture comprises of residual-in-residual dense blocks (RRDBs) proposed in
(Wang et al., 2018a). The generator is conditioned on both the L-PET and MRI images and
stochasticity is achieved by injecting per-pixel noise in every dense block of the network.
Thus, the conditional input controls the global effects on the reconstruction and noise affects
only stochastic variation. Our generator is able to produce a variety of plausible S-PET
reconstructions which are consistent with the measurements given the same L-PET input.

2. Related Work

Currently, there are two main approaches using deep learning in PET image reconstruction.
The first approach is the direct one, i.e., learning an encoding from the raw sinogram data to
the desired S-PET image (Häggström et al., 2019; Hu et al., 2021). At the moment, the direct
deep learning methods for PET image reconstruction look to be impractical, demanding
huge amounts of computational memory and training data (Reader and Schramm, 2021).

The second approach is using deep learning methods for the enhancement of PET images
obtained by the conventional reconstruction methods that are often simple and rapid, e.g.,
filtered backprojection (FBP). There are numerous papers proposing a myriad of different
deep neural networks for this task, but two architectures prevail: U-Net (Ronneberger et al.,
2015) and generative adversarial network (GAN) (Goodfellow et al., 2014). Chen et al.
(2019) and Liu and Qi (2019) proposed U-Net-based methods and Garehdaghi et al. (2021)
and Chen et al. (2021) proposed residual U-Net frameworks to predict S-PET images from
ultra-L-PET (uL-PET) images in addition with corresponding MRI images. Sanaat et al.
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(2020) used a U-Net for prediction of S-PET images and corresponding sinograms from
low-dose counterparts. Wang et al. (2018b) proposed a patch-based 3D cGAN framework to
estimate S-PET images from L-PET reconstructions. Lei et al. (2019) employed CycleGAN
for a whole-body PET image estimation from L-PET scans. Ouyang et al. (2019) developed
a cGAN framework with feature matching and task-specific perceptual loss for uL-PET
image reconstruction. Jeong et al. (2021) used a cGAN framework with a U-Net-based
generator for restoration of amyloid S-PET images from L-PET data. Wang et al. (2018c)
used a U-Net-based generator in cGAN for S-PET estimation from a fusion of L-PET and
multimodal MRI images. Luo et al. (2022) developed adaptive rectification-based GAN with
spectrum constraint to synthesize S-PET images from L-PET ones. Finally, several papers
proposed different convolutional neural network (CNN)-based supervised learning models for
predicting S-PET images from L-PET ones (Xiang et al., 2017; Gong et al., 2018; Spuhler
et al., 2020; Song et al., 2020).

While the aforementioned frameworks tend to restore S-PET images from L-PET recon-
structions as well, in contrast to our framework, neither of them use the residual-in-residual
CNN architecture, but typically the U-Net architecture for both supervised and unsupervised
learning models. Moreover, they return a single solution of the problem without a measure
of uncertainty, while our framework allows for the UQ. The most related work to our paper
is a work from Sudarshan et al. (2021). The authors propose a residual U-Net for estimating
S-PET images from L-PET and MRI images and return a corresponding measure of uncer-
tainty. However, the realizations of the idea are different. While Sudarshan et al. (2021)
model uncertainty in the neural network output through the per-voxel heteroscedasticity of
the residuals between the predicted and the high-quality ground-truth images, we estimate
it via sampling of the posterior distribution by employing the learned generator.

Our generator follows the architecture proposed in ESRGAN (Wang et al., 2018a) and
Real-ESRGAN (Wang et al., 2021), which are currently state-of-the-art cGANs for image
super-resolution. To achieve stochasticity, we combine the generator with the noise-injection
procedure proposed in StyleGAN (Karras et al., 2019, 2020), which is a GAN model for
style-based image synthesis. The discriminator in our cGAN is a pretrained ResNet34 (He
et al., 2016), which is fine-tuned during training. To the best of our knowledge, such a
cGAN model was not yet employed in the PET image reconstruction. A cGAN architecture
closest to ours was proposed by Man et al. (2022). The authors use slightly different RRDBs
accompanied with FiLM blocks and a different noise-injection procedure. Finally, the authors
use posterior sampling for JPEG image decoding with high perceptual quality.

3. Method

In Bayesian inversion, the unknown model parameters that we want to recover and the
observations are assumed to be realizations of random variables. We assume that an unknown
S-PET image X ∈ X is a random vector with density pX . Furthermore, we assume L-PET
and T1 MRI images are an observation denoted by a random vector Y ∈ Y. Our goal is to
learn a generator Gθ(Y,Z) that provides an estimate X̂ of X given Y via posterior sampling.
Namely, Gθ(Y,Z) is a deep neural network with parameters θ that we use to approximate
the posterior pX|Y , and Z ∼ N (0, I) is a random vector that enables stochasticity. Sampling
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from the posterior provide many S-PET estimates given the same L-PET images which
allows us to quantify uncertainty.

To achieve this goal, we use a cGAN whose generator is conditioned on the two-channel
input Y and generates high-quality outputs consistent with the observations. Our training
procedure consists of minimizing a loss function that consists of several terms. First, we use
an adversarial loss term (Goodfellow et al., 2014)

Ladv(Gθ, Dφ) = EX [logDφ(X)] + EY,Z [log(1−Dφ(Gθ(Y,Z)))], (2)

where Dφ is a discriminator with parameters φ. To stabilize cGAN training, in addition to
the adversarial loss, we penalize the discriminator’s gradients on the true data distribution
(Mescheder et al., 2018), leading to the regularization term

Lgrad(Dφ) =
γ

2
EX [||Dφ(X)||2]. (3)

Since the L-PET image is obtained from a sinogram that represents raw measurements
obtained by the detectors, we introduce a loss term that makes the output of the generator
consistent with the observations. Let us denote the Radon operator with R and the L-PET
image with YL, then the consistency loss can be given by

Lc(Gθ) = EY,Z [||R(YL)−R(Gθ(Y,Z))||22]. (4)

However, there are many plausible solutions that correspond to the measurements within
the noise level, i.e., a variety of S-PET images correspond to the same L-PET image. In
opposition to most of the related work, our stochastic method based on the sampling from
the posterior is capable of providing a variety of plausible S-PET samples given the same
L-PET image.

Training GANs is often concerned with mode collapse – a failure resulting in a GAN
producing a small set of similar outputs over and over again. As we only have one S-PET per
given L-PET image in the dataset, we noticed that training the GAN with the aforementioned
losses results in mode collapse. Even though we expect a variety of outputs given the same
L-PET image, the generator almost completely ignores the random vector Z and returns a
single output. To avoid this failure, we incorporate a simple regularization on the generator
similar to a term proposed in (Mao et al., 2019) and (Yang et al., 2019):

Ld(Gθ) = EY,Z1,Z2 [‖Gθ(Y,Z1)−Gθ(Y, Z2)‖1]. (5)

By regularizing generator to maximize this term, we directly penalize the mode-collapse
behaviour and force it to generate diverse outputs. Finally, we add a first-moment penalty
term, proposed by Ohayon et al. (2021):

Lfm(Gθ) = EX,Y [‖X − EZ [Gθ(Y,Z)|Y ]‖22], (6)

which specifies that the expectation of many Gθ(Y, Z) for different Z given the same Y
should be close to the ground truth X. As reported in (Ohayon et al., 2021) and (Man
et al., 2022), Equation (6) does not limit the perceptual quality of the generated samples
and further strengthens the overall optimization.
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Our full objective function is given by

min
θ

max
φ
Ladv(Gθ, Dφ)− λgradLgrad(Dφ) + λcLc(Gθ) + λd

1

Ld(Gθ) + τ
+ λfmLfm(Gθ), (7)

where τ is a small constant for numerical stability. We solve Equation (7) in a two-step
training process – while the generator is fixed, we update the discriminator and vice versa.

To sample from the posterior, we inject noise Z in a StyleGAN-like fashion (Karras et al.,
2019, 2020). To provide the generator’s outputs with stochastic details, we feed a dedicated
noise image to each RRDB. The single-channel noise images are comprised of uncorrelated
Gaussian noise. The rationale behind this is that we do not want to use network capacity
to implement stochastic variation as traditional generators do. This way the network does
not need to invent spatially-varying stochastic details from earlier activations, but since a
dedicated set of per-pixel noise is available for every RRDB, it becomes a local problem.
That way the global effects are controlled by the input tensor Y , and the noise affects only
stochastic variation. Please refer to Appendix A for more details on the architecture.

4. Experiments

4.1. Datasets

We conducted experiments on the widely used and publicly available BrainWeb dataset
(Cocosco et al., 1997). It consists of MRI slices of 20 simulated brain volumes. Ground-truth
synthetic PET activity was simulated using the BrainWeb library (da Costa-Luis, 2020). The
S-PET reconstructions were simulated with a projector that approximates the geometry and
resolution of the Siemens Biograph mMR without incorporating noise and errors caused by
the wrong detection. We simulated L-PET and very-low-dose PET (vL-PET) reconstructions
using a model of a truncated PET system whose details are given in Appendix B. We used
18 randomly picked brain volumes for training and 2 for testing. For every brain, we had 3
different simulations of PET activity. Each MRI volume in the dataset is of 256× 256× 258
dimensions. We have taken only slices with notable PET activity, i.e., the slices that
approximately correspond to the whole brains, leaving us with 256× 256× 132 volume grid.
Thus, the two BrainWeb training datasets consisted of 7,128 L-PET or vL-PET and S-PET
slices, and for testing we used the remaining 792 slices.

Additionally, we conducted experiments on a real-world dataset from the Alzheimer’s
disease neuroimaging initiative (ADNI) database. The slices from the ADNI database were
used as S-PET ground truths and vL-PET reconstructions were simulated similarly as in
the BrainWeb dataset (see Appendix B for more details.) A total of 9 subjects were selected.
For each subject, we were provided with six different brain T1 MRI and PET scans. The
MRI and PET slices were obtained separately so we registered them before training. Each
brain scan in the dataset consists of 60 transaxial slices. The dimension of each slice is
128× 128 pixels. The ADNI training dataset consisted of 2,880 vL-PET and S-PET slices,
and the test dataset consisted of 360 slices.

4.2. Experimental Results

We concatenated the L-PET and high-quality MRI images into two-channel m× n tensors
and used them as an input Y that conditions our cGAN model. Every RRDB was supplied
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Figure 2: Reconstruction examples for the BrainWeb dataset. (a) and (b) MRI and vL-PET
inputs that condition the generator; (c) S-PET ground truths; (d) and (f) our and
suDNN (Sudarshan et al., 2021) S-PET reconstructions obtained as the mean of
24 posterior samples and the mean of 24 different suDNN outputs, respectively;
(e) and (g) our and suDNN uncertainty estimates representing the variance of 24
posterior samples and the mean of 24 different suDNN variance estimates.
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Figure 3: Reconstruction examples for the ADNI dataset. Column representation is the
same as in Figure 2.

with a fresh noise image that promotes stochastic variation in the generator’s output. Please
refer to Appendix A for the training details.

Figure 2 shows results obtained by using the proposed method on the BrainWeb dataset
for vL-PET input slices. We compare our method with the suDNN framework. Both
methods enhance the vL-PET image reconstructions. Our generator outputs visually better
and more accurate reconstructions in comparison to the S-PET reconstructions obtained by
suDNN. While our measure of uncertainty is obtained by calculating the variance of the
posterior samples, in the suDNN framework, it is estimated by the model and is one of the
network’s outputs. We believe our method outputs a measure of uncertainty which is more
physically-meaningful and interpretable than the suDNN’s UQ. Additionally, notice that
for the vL-PET setting (Figure 2) our method provides maps with higher uncertainty than
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Table 1: Reconstruction results in terms of PSNR in dB and SSIM on the BrainWeb dataset.

MLEM suDNN Ours

L-PET
PSNR 29.18 31.11 37.45
SSIM 0.8205 0.9364 0.9746

vL-PET
PSNR 22.92 28.30 32.15
SSIM 0.4785 0.9170 0.9517

Table 2: Reconstruction results in terms of PSNR in dB and SSIM in on the ADNI dataset.

MLEM suDNN Ours

vL-PET
PSNR 24.40 25.91 31.97
SSIM 0.5197 0.8154 0.9216

for the L-PET setting (Figure 1). It is to be expected since the L-PET reconstructions
in Figure 1 are obtained from much more coincidences (measurements) than the vL-PET
reconstructions. In contrast, the suDNN framework does not provide such a behavior.

Figure 3 shows the comparison between our and suDNN reconstruction results and UQs
for the real-world ADNI dataset for vL-PET inputs. Our method again outperforms suDNN
in the reconstruction quality and meaningfulness of the uncertainty maps.

We calculate the uncertainty as the variance of 24 randomly picked posterior samples
for the same input Y . While the inputs and the PET reconstructions were scaled to [0, 1],
the variance was scaled so that the UQ results in the last column of Figure 2 are visually
satisfactory. We provide additional experimental results in Appendix C, where we show that
our framework yields diverse and high-quality posterior samples.

In Table 1, we provide a quantitative measure of reconstruction results for the BrainWeb
dataset in comparison to the MLEM reconstruction algorithm, which is a golden standard
in PET image reconstruction, and the suDNN framework. The results are given in terms
of the peak signal-to-noise ratio (PSNR) in decibels and the structural similarity index
measure (SSIM). The results in the table are the means of all the slices of interests in the
testing brains. For calculating the PSNR and SSIM of the reconstructions obtained by
our method, as a reference S-PET estimation we used the mean of 24 generated posterior
samples. In Table 2, we show a similar comparison of the reconstruction results for the
ADNI dataset. For both datasets, our framework yields better reconstruction results than
the suDNN framework. We provide the ablation study results in Appendix D.

Our framework yields high-quality reconstruction results for synthetic and real-world
datasets that were used for training, however it is yet to be seen how it behaves on out-of-
distribution data. Additionally, since the model is trained on the brain datasets, we can
expect some difficulties when used beyond brain. Even though we believe we can extend the
framework and train it on other body parts or even the whole body, it is not clear how well
can this be translated and can the model generalize well. We leave this for future research.
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5. Conclusion

We proposed a deep learning-based framework for uncertainty quantification in PET image
reconstruction via posterior sampling. The framework estimates a standard-dose PET
reconstruction from a low-dose PET reconstruction and a high-quality MRI image. The
estimated standard-dose PET image is provided with a corresponding measure of uncertainty
which is calculated as the variance of different posterior samples. We demonstrated that the
framework yields high-quality reconstructions that are consistent with the measurements
and physically-meaningful quantification of uncertainty. The proposed framework can
have a great potential in clinics by providing a more reliable interpretation of PET image
reconstructions, and thus helping the medical practitioners in making critical decisions.
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Appendix A. Implementation Details

A.1. Architecture

Our generator’s architecture is illustrated in Figure 4. We use pixel unshuffling to rearrange
a large-scale m× n× c input image into a m/s× n/s× s2c input tensor. It significantly
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Figure 4: The generator’s architecture is based on the architectures of ESRGAN (Wang
et al., 2018a, 2021) and StyleGAN (Karras et al., 2019, 2020). The two-channel
input tensor of spatial size 256× 256 (128× 128) is first pixel-unshuffled into a
64× 64× 32 (64× 64× 8) tensor to rearrange spatial information into channels.
Residual-in-residual dense blocks (RRDBs) are used to reconstruct the S-PET
image from the unshuffled input, which is afterwards upsampled to the original
spatial size of the input. To allow for posterior sampling, a fresh set of Gaussian
noise is added at the beginning of every dense block and in the upsampling blocks.
The noise input is per-channel scaled by learned factors denoted by “B” blocks.

reduces computational complexity in the following RRDBs where each input tensor of a
dense block has 64 channels. The total number of RRDBs is 23. The upsampling blocks
first interpolate the input tensor two times and then add a dedicated noise image scaled by
learned factors. Finally, the output is a one-channel m× n S-PET image. The generator
has a total of 16.7M trainable parameters. Our cGAN’s discriminator is a ResNet34 (He
et al., 2016).

A.2. Training

We trained the model using the Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9
and β2 = 0.999 on two 11GB NVIDIA RTX2080 Ti graphics cards. The model was trained
alternately, by updating the discriminator while the generator was fixed and vice versa. We
used the non-saturating adversarial loss (Goodfellow et al., 2014) for training the cGAN.
The batch-size was set to 4.

For the L-PET BrainWeb dataset, we trained the model for 50 epochs. The learning
rate was set to 2 × 10−4. Other regularization parameters were set to: λgrad = 0.6 and
γ = 10, λc = 5 × 10−4, λd = 2 × 10−4 and τ = 1 × 10−5, and λfm = 2.

For the vL-PET BrainWeb dataset, we trained the model for 100 epochs. The learning
rate was set to 1 × 10−4. Other regularization parameters were set to: λgrad = 0.6 and
γ = 10, λc = 3 × 10−4, λd = 1 × 10−4 and τ = 1 × 10−5, and λfm = 2.
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Figure 5: a) Virtual 2D PET system, b) Random coincidence, c) Scattered coincidence.

For the vL-PET ADNI dataset, we trained the model for 150 epochs. The learning rate
was set to 1 × 10−4. Other regularization parameters were set to: λgrad = 0.6 and γ = 10,
λc = 3 × 10−4, λd = 1 × 10−4 and τ = 1 × 10−5, and λfm = 2.

To calculate the diversity loss in Equation (5) and the mean of generated samples in
Equation (6), we generate 6 different outputs using different realizations of noise for each of
the first 2 input images in the batch.

A.3. SuDNN Architecture and Training

We trained the suDNN model as proposed in (Sudarshan et al., 2021). For training, we
used multimodal 2.5D input data consisting of L-PET or vL-PET and T1 MRI slices.
The residual U-Net architecture was composed of the same number of layers and skip
connections as proposed in (Sudarshan et al., 2021). The values of two constants that
were not reported in (Sudarshan et al., 2021) were set to τ = 1× 10−5 – a small constant
for numerical stability, and regularization parameter λ = 1× 10−4, 3× 10−4, and 5× 10−4,
for the L-PET BrainWeb dataset, vL-PET BrainWeb dataset and vL-PET ADNI dataset,
respectively. We trained the suDNN model for 500 epochs for both L-PET and vL-PET
BrainWeb datasets and 1300 epochs for the ADNI dataset.

Appendix B. PET Scan Simulation

To simulate a realistic PET measurements, a virtual 2D PET system based on the ClearPET
system (Ziemons et al., 2005) was implemented. The entire PET system is depicted in
Figure 5. The ClearPET system consists of 20 sectors that are placed uniformly around
the circle. Each sector has two layers and each layer is a grid of 8 scintillation crystals,
i.e. detectors. The imaging system rotates with constant angular velocity ω0. During one
measurement, the system makes a full circle.

Instead of using a fully equipped PET system, we take a partially equipped system; only
12 sectors are active, 6 on each side of a circle. In such a system, the probability of detecting
an event changes with its position (Matulić et al., 2021). Thus, filtered-back projection
is not a suitable reconstruction method. Introducing the system matrix, the core of the
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Figure 6: Reconstruction examples for the BrainWeb dataset. In (a) and (b) columns there
are inputs, MRI and L-PET, that condition the generator. In (c) column there
are S-PET ground truths. In (d), (e) and (f) columns there are examples of
posterior samples for different noise realizations Z. In column (g) there are means
of 24 posterior samples and in column (h) there are corresponding uncertainty
estimates.

MLEM reconstruction algorithm, gives us the ability to perform a mapping between pixels
and detectors. As a consequence, the MLEM algorithm doesn’t suffer from the probabilistic
nature of PET systems, making it a golden standard in PET image reconstruction.

To simulate the PET measurement accurately, we incorporated three effects that occur
during the measurement: non-zero momentum of electron and positron, random and scattered
coincidences.

The first effect is a result of electron-positron annihilation. If the momentum of the
system containing both particles is zero, then an angle between two created photons is
exactly 180◦ due to the conservation of momentum. But in the real world, the momentum is
not equal to zero. Thus, the angle between two photons is in a range between 180◦ ± 0.5◦.

Random coincidences arise when two photons from different annihilation processes hit
detectors in a short time-window, creating a false event, as shown in Figure 5.

Scattered coincidences happen when at least one of the photons is scattered in its
trajectory toward the detector, as depicted in Figure 5. We have modeled scattered
coincidences in the following way – only one photon undergoes a single scattering. A
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Figure 7: Reconstruction examples for the BrainWeb dataset. In (a) and (b) columns there
are inputs, MRI and vL-PET, that condition the generator. In (c) column there
are S-PET ground truths. In (d), (e) and (f) columns there are examples of
posterior samples for different noise realizations Z. In column (g) there are means
of 24 posterior samples and in column (h) there are corresponding uncertainty
estimates.

deflection angle follows the Henyey-Greenstein phase function (Toublanc, 1996)

PHG(θ, g) =
1− g2

(1 + g2 − 2g cos(θ))
3
2

,

where g is the asymmetry factor. The asymmetry factor is set to 0.98, a value associated
with biological tissue (Binzoni et al., 2006).

The simulation of the entire brain is done slice by slice. The total number of coincidences
generated for one slice is proportional to a ratio between the activity of that slice and the
whole brain. The effect of the non-zero momentum of the electron and positron is included
in all coincidences. Also, we can tune a number of random and scattered coincidences.

Each brain in the BrainWeb dataset is simulated with described setup. We conducted
two experiments on the BrainWeb dataset - low-dose PET (L-PET) simulation and very
low-dose PET (vL-PET) simulation. During the low-dose PET simulation, we generated
Ntotal ≈ 25M coincidences throughout the entire brain of which pr = 15% were random, and
ps = 15% were scattered coincidences. Each L-PET slice was reconstructed by the MLEM

17



Estimating Uncertainty in PET Image Reconstruction via Deep Posterior Sampling
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Figure 8: Reconstruction examples for the ADNI dataset. In (a) and (b) columns there are
inputs that condition the generator. In (c) column there are S-PET ground truths.
In (d), (e) and (f) columns there are examples of posterior samples for different
noise realizations Z. In column (g) there are means of 24 posterior samples and
in column (h) there are corresponding uncertainty estimates.

algorithm. Similarly, during the very low-dose PET simulation, we generated Ntotal ≈ 5M
coincidences throughout the entire brain. We kept the same parameters and reconstruction
method as in low-dose PET simulation.

We were guided by the same principle for slices gathered from the ADNI dataset. To
simulate a very low-dose PET, we generated Ntotal ≈ 2M coincidences throughout the entire
brain. We kept the same contribution of random and scattered coincidences as in the
BrainWeb dataset. Also, we used the MLEM reconstitution algorithm.

Appendix C. Additional Results

We provide additional results for three different settings. We show various reconstruction
results for the same input corresponding to posterior samples obtained using our framework.
Furthermore, we provide the mean of 24 posterior samples for different noise realizations
Z while given the same input Y . In Figure 6, we show reconstruction results and the
corresponding measure of uncertainty for L-PET simulations. In Figure 7, we provide
examples of reconstructions for vL-PET inputs. Notice that in Figure 7 in comparison to

18



Estimating Uncertainty in PET Image Reconstruction via Deep Posterior Sampling

(a) MRI (b) L-PET (c) GT (d) S-PET1 (e) S-PET2 (f ) S-PET3 (g) S-PET (h) UQ

Figure 9: Ablation study reconstruction results. In (a) and (b) columns there are inputs
that condition the generator. In (c) column there are S-PET ground truths. In
(d), (e) and (f) columns there are examples of posterior samples for different noise
realizations Z. In column (g) there are means of 24 posterior samples and in
column (h) there are no visible corresponding uncertainty estimates.

Figure 6, the estimated uncertainty is higher. Again, such results are expected since L-PET
input images are of higher quality compared to vL-PET images and are obtained from
much more coincidences. Furthermore, the L-PET inputs lead to smaller errors between
estimated S-PET reconstructions and the ground truths than the vL-PET inputs, and
thus reconstructions from L-PET are far less uncertain. In Figure 8, we show some of the
additional reconstructions for the real-world ADNI dataset for vL-PET inputs. We show
three randomly picked posterior samples, the mean of 24 different posterior samples and the
measure of uncertainty.

Same as in the main part of the paper, we scaled PET reconstructions to [0, 1] and
uncertainty maps to [0, 0.006] so that the results for different datasets can be compared.

Appendix D. Ablation Study

We removed the diversity loss term Equation (5) and the first-moment penalty term Equa-
tion (6) from the full objective function Equation (7) and trained the cGAN with the same
training parameters and number of epochs. Reconstruction results are given in Figure 9. We
observe mode-collapse behaviour – there is no diversity in posterior samples as the network
almost completely ignores noise Z. As a consequence, we are unable to estimate uncertainty.

While the reconstruction quality is again better than that of the MLEM reconstruction
algorithm, it is a bit lower in terms of the PSNR and SSIM in comparison to the model
trained using the full objective function Equation (7). The results are given in Table 3.
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Table 3: Ablation study reconstruction results in terms of the PSNR in dB and the SSIM.

MLEM Ours-Ablated

L-PET
PSNR 29.18 34.61
SSIM 0.8205 0.9310

vL-PET
PSNR 22.92 29.66
SSIM 0.4785 0.9097

20


	Introduction
	Related Work
	Method
	Experiments
	Datasets
	Experimental Results

	Conclusion
	Implementation Details
	Architecture
	Training
	SuDNN Architecture and Training

	PET Scan Simulation
	Additional Results
	Ablation Study

