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Abstract
In large multimodal models (LMMs), the percep-
tion of non-language modalities (e.g., visual rep-
resentations) is usually not on par with the large
language models (LLMs)’ powerful reasoning ca-
pabilities, deterring LMMs’ performance on chal-
lenging downstream tasks. This weakness has
been recently mitigated by replacing the vision
encoder with a mixture-of-experts (MoE), which
provides rich, multi-granularity, and diverse repre-
sentations required by diverse downstream tasks.
The performance of multimodal MoE largely de-
pends on its router, which reweights and mixes
the representations of different experts for each in-
put. However, we find that the end-to-end trained
router does not always produce the optimal rout-
ing weights for every test sample. To bridge the
gap, we propose a novel and efficient method “Re-
Routing in Test-Time (R2-T2)” that locally opti-
mizes the vector of routing weights in test-time
by moving it toward those vectors of the correctly
predicted samples in a neighborhood of the test
sample. We propose three R2-T2 strategies with
different optimization objectives and neighbor-
search spaces. R2-T2 consistently and signifi-
cantly improves state-of-the-art LMMs’ perfor-
mance on challenging multimodal benchmarks of
diverse tasks, without training any parameters in
the base model. Our code can be accessed here.

1 Introduction
Mixture-of-Experts (MoE) have achieved remarkable suc-
cess in scaling up the size and capacity of large language
and multimodal models (LLMs and LMMs) (Shazeer et al.,
2017) without (significantly) increasing the inference cost.
Specifically, it allows us to increase the total number of ex-
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Figure 1. R2-T2 applied to MoAI-7B compared against 7/8/13B
VLMs on 8 benchmarks. R2-T2 significantly enhances perfor-
mance of the 7B base MoE model, surpassing a recent 13B VLM.

perts, which provides finer-grained expertise and skills, yet
selecting a constant number of experts for each input (Lep-
ikhin et al., 2020). In MoE, the sparse selection of experts
is achieved through a router, which determines the weight
of each candidate expert based on the input so only experts
with nonzero weights are selected (Fedus et al., 2022). MoE
then aggregates the outputs of the selected experts according
to their weights. Hence, the router and its produced routing
weights play important roles in MoE’s inference cost and
output quality.

As the most widely studied LMM, many vision language
models (VLM) adopt an architecture composed of a vision
encoder and an LLM (Zhu et al., 2023), which are both
pre-trained and then aligned by further finetuning so the
LLM can include the vision encoder’s output in its input
as additional tokens. The alignment is usually obtained
through a lightweight projection layer or Q-former (a Trans-
former model) converting the vision encoder’s output to
LLM tokens. Despite the broad usage of this architecture,
the capability of a vision encoder is usually much more lim-
ited than the LLMs (i.e., the “modality imbalance”) (Schrodi
et al., 2024). So the visual features cannot cover all the in-
formation required by different reasoning tasks performed
by LLMs. Moreover, the alignment module may lead to
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Figure 2. An example of how R2-T2 optimizes the routing weights. Given the test sample, it finds kNN in the reference set of correctly
predicted samples with similar questions. In the example, the test sample requires reasoning about positional relationships. R2-T2
identifies relevant kNN samples, adjusting the top-1 expert from ILANG (aligning visual features with language) to IAUX (aligning visual
features with auxiliary computer vision features). This expert shift is crucial in correcting the initial wrong answer.

an information bottleneck from the visual perception to the
reasoning (Yao et al., 2024).

Recent advances in LMMs replace a single vision encoder
with a mixture of encoders (Lin et al., 2024; Lee et al., 2025;
Zong et al., 2024; Shi et al., 2024), which turns out to be an
effective and low-cost approach to mitigate modality imbal-
ance and alignment bottleneck. In multimodal MoE, each
expert is an encoder or a mixer of sensory inputs that fo-
cuses on a specific type of features, e.g., object classes, text
in images, spatial relations, dense captions, segmentation,
etc., so the LLM can select the information acquired by
any given downstream task from the concatenated or fused
features from the MoE, through a router that is trained in an
end-to-end manner to produce the weights of all the experts
adaptive to the input task.

Although multimodal MoE achieves remarkable success in
enhancing the performance of existing LMMs, the choice
of experts or the routing weights for individual instances
are not always optimal due to the limitations of the router’s
design and the diversity of potential downstream tasks com-
pared to the tasks used to train the router. The suboptimality
of routing substantially limits the performance and general-
ization of multimodal MoE on unseen tasks. As illustrated
in Figure 2, the base model initially selects a sub-optimal
expert (e.g., ILANG) for a spatial reasoning task, leading to
incorrect predictions. This has been verified on recent mul-
timodal MoE models: as shown in Table 2, compared to the
original routing weights of base models, the optimal (ora-
cle) routing weights improves the accuracy by ≥ 10% on
most evaluated LMM benchmarks. To avoid the expensive
cost of re-training a router on a much larger dataset, in this
paper, we investigate how to improve the routing weights in

test-time without training any model parameters.

Since routing weights encode the choices of experts with
essential knowledge and key skills acquired by the input
task, and motivated by the assumption that knowledge and
skills are usually transferable across different tasks, we posit
that the routing weights of successful tasks can provide crit-
ical clues for optimizing the routing weights of a new task.
Specifically, we leverage the similarity in a task embedding
space, which may reflect the knowledge or skill sharing be-
tween tasks, and modify the routing weight vector of a test
task by imitating its nearby successful tasks. While the task
embedding space, optimization objective, and the number
of update steps can vary and their design choices may re-
sult in different performance, this innovative mechanism of
optimizing routing weights or “re-routing” in test-time (R2-
T2) focuses to correct the mistakes made by the routers in
existing multimodal MoE, e.g., extracting object detection
features for a task mainly depending on the text information
in an input image, and thus turns various failed cases into
success. Rather than finetuning the whole model, R2-T2 is
training-free and aims to maximize the potential of MoE in
the reasoning tasks by LMMs.

Following the above idea, we explored several novel strate-
gies for test-time routing weight optimization. They all
modify the routing weights of a test task/sample based on
a representative set of tasks/samples on which the multi-
modal MoE achieves correct or high-quality outputs. While
the oracle routing weights are achieved by minimizing the
test sample’s loss, for a practical approach, we propose to
replace the oracle loss with a surrogate, i.e., a weighted
average of losses of nearby reference samples, and apply
multiple steps of “neighborhood gradient descent (NGD)”

2



R2-T2: Re-Routing in Test-Time for Multimodal Mixture-of-Experts

to minimize the surrogate. In addition, we investigate kernel
regression and mode finding, which do not require gradient
descent. The former moves the routing weights to a kernel-
weighted sum of nearby reference tasks’ routing weights in
a task embedding space, while the latter moves the routing
weights to the nearest mode on the distribution of reference
tasks’ routing weights. Evaluating these strategies on two
recent multimodal MoE models across eight challenging
benchmarks, we find that R2-T2 significantly outperforms
models twice its size, as shown in Figure 1. Our analysis
reveals that NGD progressively refines routing, increasing
correct predictions while mitigating the original router’s
over-reliance on a single expert. Case studies confirm that
test-time re-routing enhances domain-specific reasoning,
demonstrating R2-T2’s ability to adapt multimodal MoE
models without additional training, unlocking greater gener-
alization and robustness.

Our main contributions can be summarized below:

• We proposed a novel problem of R2-T2 that bridges a
significant performance gap on multimodal MoE.

• We developed three practical R2-T2 strategies that shed
several critical insights into expert re-routing.

• Our R2-T2 considerably advances the performance
of multimodal MoE on several recent benchmarks of
challenging tasks for LMMs.

2 Related Work
Large Multimodel Models has emerged as a powerful
paradigm for integrating language and non-language
modalities, such as images (Radford et al., 2021), audio (Ao
et al., 2021), and video (Zellers et al., 2021), to perform
complex reasoning tasks. Recent advancements have been
driven by the fusion of pretrained LLMs with multimodal
encoders (Peng et al., 2023; Tsimpoukelli et al., 2021;
Alayrac et al., 2022), enabling the models to process and
generate cross-modal content effectively. Works such as
Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023a)
demonstrated the potential of aligning vision and language
modalities through carefully designed bridging modules.
However, these models often fall short in richness or align-
ment with the reasoning capabilities of LLMs (Bubeck et al.,
2023; Bommasani et al., 2021). To address this, techniques
have been proposed, such as contrastive pretraining (Rad-
ford et al., 2021; Yuan et al., 2021) and feature fusion
mechanisms (Lu et al., 2019). Yet, efficiently capturing
diverse modal interactions across different tasks remains a
bottleneck (Baltrušaitis et al., 2018), highlighting the need
for more adaptive mechanisms in multimodal reasoning.

Mixture-of-Experts has become a prominent architec-
tural choice to enhance the scalability and efficiency

of large-scale neural networks (Shazeer et al., 2017).
By dynamically selecting a subset of specialized expert
modules for each input (Li et al., 2023b), MoE reduces
computational overhead while maintaining high expressive
power (Shazeer et al., 2017; Zoph et al., 2022). In the
context of LLMs, MoE has been shown to improve both
training efficiency and generalization across tasks (Artetxe
& Schwenk, 2019). Works such as Switch Transform-
ers (Fedus et al., 2022) and GShard (Lepikhin et al., 2020)
have demonstrated the effectiveness of MoE in scaling up
model capacity without prohibitive increases in training
costs. In multimodal settings, MoE has been explored
to address the modality alignment problem (Goyal et al.,
2021), where different experts handle distinct modalities or
specific tasks. However, the optimal utilization of experts
heavily relies on the effectiveness of routing mechanisms,
which remains an active area of research.

Routers and Routing Strategies are the cornerstone of
any MoE-based architecture, responsible for determining
which experts are activated for each input (Li & Zhou, 2024;
2025). Traditional routers, such as softmax gating func-
tions (Shazeer et al., 2017), compute a weighted combina-
tion of experts based on input embeddings. Despite their
simplicity, these routing strategies often face challenges
in achieving optimal expert assignment (Lepikhin et al.,
2020; Zoph et al., 2022), particularly in unseen or highly
diverse test scenarios. Recent works have proposed ad-
vanced routing strategies, including routing via reinforce-
ment learning (Rosenbaum et al., 2017), early-exit (Li et al.,
2023c), and task-specific allocation (Shi et al., 2024). How-
ever, these approaches typically focus on training-time opti-
mization, leaving test-time adaptability largely unexplored.
R2-T2 introduces an efficient method to refine routing
weights dynamically during inference, ensuring better align-
ment with task-specific requirements and improving overall
model robustness across diverse multimodal benchmarks.

Test-Time Optimization has been explored by adapting
models dynamically during inference to improve general-
ization (Li et al., 2025). For example, (Wang et al., 2022)
propose test-time adaptation, which fine-tunes model pa-
rameters on test data distributions using entropy minimiza-
tion or self-supervised learning. Similarly, (Sun et al.,
2020) introduce test-time training, where models are up-
dated via auxiliary tasks (e.g., rotation prediction) during
inference. However, these methods require modifying the
base model’s parameters, leading to significant computa-
tional overhead and potential instability when deployed on
resource-constrained systems. Unlike prior test-time opti-
mization methods that update model weights, R2-T2 solely
optimizes the routing weights of a frozen MoE model with-
out retraining any model parameters.
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Figure 3. Illustration of R2-T2’ test-time re-routing mechanism with three strategies. (a) Neighborhood Gradient Descent: Optimizes r
using gradients derived from neighbors’ loss functions (∇rl1, ∇rl2, and ∇rl3 for the 3 nearest neighbors), weighted by their similarity to
the test sample. (b) Kernel Regression: Estimates r as a weighted average of neighbors’ routing weights (r̂), and further optimizes it
through binary search between r̂ and initial weights r to find the optimal coefficient α. (c) Mode Finding: Iteratively updates r through
weighted interpolation between currecnt weights and the local average r̄ in routing weight space, shifting towards the densest region.

3 Test-Time Re-Routing
MoE trains a router to reweight experts for each input. How-
ever, such an end-to-end trained router may not always pro-
duce optimal weights for challenging or out-of-distribution
samples at test-time, whereas sub-optimal weights can dras-
tically degrade the performance of MoE on diverse down-
stream tasks. The importance of routing weights has been
broadly demonstrated on eight benchmarks in our experi-
ments: The large performance gap between the base model
(using the router’s routing weights) and the oracle (using
the optimal routing weights) in Table 2 implies the potential
merits of optimizing the routing weights in the test-time.

To address this problem, Test-Time Re-Routing (R2-T2)
introduces a dynamic test-time re-routing mechanism that
adapts the routing weights for each test sample based on
similar samples in a reference set—a set of samples on
which the MoE’s outputs are correct or preferred. Specifi-
cally, given a reference set of n samples {(xi, yi)}ni=1 and
their corresponding routing weights {ri}ni=1, on which the
model makes correct prediction (i.e., f(xi, ri) = yi), for
a new test sample x, the goal of R2-T2 is to find a better
routing weight vector r for x that leads to a more accurate
and higher-quality output f(x, r).

In the following, we will introduce three core strategies,
illustrated in Figure 3, to optimize r based on the neighbors
of x in the reference set, i.e.,N (x), according to a similarity
metric. These strategies are developed with different
optimization objectives (e.g., loss surrogate, regression,
mode finetuning, etc.) and neighbor-search spaces (e.g.,
routing weights, task embedding, etc.).

3.1 Gradient Descent

The gradient descent method uses the gradient of an ob-
jective function L(r) to update r for multiple steps until
convergence or when certain stopping criteria have been
fulfilled. In every step, we apply

r ← r − λ∇rL(r), (1)

where λ is a learning rate determined by a scheduler. We
discuss the two choices of L(r) in the following.

Oracle (upper bound) assumes that we know the ground
truth label y for x, which is a cheating setting that can
provide an upper bound of the gradient descent method. In
this setting,

L(r) = ℓ[f(x, r), y], (2)

where ℓ[·, ·] is the loss function (e.g., cross-entropy or L2
loss) measuring the discrepancy between the model output
f(x, r) and the ground truth y. Although this is not appli-
cable in real scenarios, it serves as a performance ceiling
to reveal the degradation caused by sub-optimal routing
weights and evaluate the effectiveness of other methods.

Neighborhood Gradient Descent (NGD) is a practical
approach that uses the loss functions of the nearest neighbors
of x in the reference set to estimate the gradient of r, i.e.,

L(r) =

∑
i∈N (x) K(xi, x)× ℓ[f(xi, r), yi]∑

i∈N (x) K(xi, x)
(3)

By incorporating loss information from the neighborhood
of x, NGD enables a label-free, test-time adaptation mecha-
nism. This effectively aligns r with the successful routing
patterns in the reference set. This ensures that r exploits the
routing for relevant reference examples without requiring
access to the oracle loss.
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3.2 Kernel Regression

Kernel regression predicts r by the weighted average of the
neighbors’ routing weights {ri}i∈N (x), i.e.,

r̂ ≜

∑
i∈N (x) K(xi, x) · ri∑

i∈N (x) K(xi, x)
, (4)

where K(·, ·) is a kernel function, e.g., Gaussian kernel,
Matern kernel, etc. In the experiments, we found that di-
rectly setting r ← r̂ already brings non-trivial improvement.

However, r̂ does not take the router-produced initial r into
account and may not fully capture the nuanced dependencies
required for optimal performance. To further optimize r, we
conduct a binary search on the straight line between r and r̂:

r ← αr + (1− α)r̂. (5)

The search goal is to find the optimal α minimizing the
objective L(r), i.e.,

α∗ ∈ argmin
α

L(αr + (1− α)r̂). (6)

This refinement step balances the kernel regression estimate
with the router’s original routing weights. It includes r̂ as
a special case (when α = 0) and can further enhance the
accuracy and robustness of the model’s predictions.

3.3 Mode Finding (Meanshift)

Mode finding aims to move r towards the highest density
region of the distribution p(r) for the reference routing
weights {ri}ni=1. It applies the following update for multiple
steps until convergence.

r ← αr + (1− α)r̄, (7)

where α controls the step size and r̄ the weighted average
routing weights defined below (different from r̂).

r̄ ≜

∑
i∈N (r) K(ri, r) · ri∑

i∈N (r) K(ri, r)
. (8)

Unlike kernel regression, mode finding identifies the densest
region in the routing weight space (so the kernel K(·, ·) and
neighborhoodN (·) are applied to r instead of x), represent-
ing the most consistent configurations among nearby refer-
ence samples. This makes it effective for capturing the dom-
inating patterns in the local distribution of routing weights.

3.4 Neighborhood and Embedding Space

Neighborhood The choices of neighborhood definition and
the embedding space in which to apply the kernels are im-
portant to the final performance. For the former, we can use

either kNN or ϵ-ball, i.e.,

N (x) ≜ arg min
A⊆2n,|A|≤k

∑
i∈A

d(xi, x), (9)

N (x) ≜ {i ∈ [n] : d(xi, x) ≤ ϵ}, (10)

Embedding Instead of directly applying an existing kernel
function K(·, ·) and a distance metric d(·, ·) to the raw in-
puts xi and x, we can replace x and xi with their embedding
E(x) and E(xi), where E(·) is a pre-trained embedding
model applied to the task description of each sample.

Table 1. Summary of reference and evaluation benchmarks. If the
reference dataset contains more than 5,000 samples, we randomly
select 5,000 to ensure balanced evaluation.

Task Type Reference Size Evaluation Size

General
Visual
Understanding

VQA-V2 5,000 MMBench 2,374
Visual7W 5,000 MME-P 2,114
COCO-QA 5,000 CVBench2D/3D 2,638
CLEVR 5,000 GQA 1,590

Knowledge-
Based
Reasoning

A-OKVQA 5,000 SQA-IMG 2,017
TQA 5,000 AI2D 3,087
MathVista 5,000

Optical Character
Recognition

ST-VQA 5,000 TextVQA 5,734
DocVQA 5,000

4 Experiments

4.1 Experimental Setting

Models We evaluate two multimodal MoE models:
MoAI (Lee et al., 2025) and MoVA (Zong et al., 2024), each
leveraging specialized experts for vision-language tasks.
MoAI has six experts: (1) Visual Experts process auxiliary
CV features (IAUX), align visuals with language (ILANG), and
capture spatial relationships (ISELF); (2) Language Experts
integrate external knowledge (LAUX), link language to visu-
als (LIMG), and maintain coherence (LSELF). Further details
about MoAI experts are provided in Appendix A. MoVA in-
cludes seven experts, incorporating SAM (Zou et al., 2024)
to enhance the vision encoder with specialized knowledge.

Reference datasets and evaluation benchmarks Our eval-
uation covers three task categories: general visual under-
standing, knowledge-based reasoning, and optical character
recognition. Table 1 summarizes the reference datasets and
evaluation benchmarks, including their dataset sizes. See
Appendix B for details.

Evaluations We adopt standard evaluation protocols for
each benchmark. For MME-P, performance is assessed
using two metrics:(1) Accuracy, measuring the correct-
ness of a single question per image, and (2) Accuracy+,
requiring both questions per image to be answered cor-
rectly.The final score is the sum of these two metrics,
with a maximum of 2,000 (Fu et al., 2024). For other
benchmarks, accuracy is the primary metric (Yin et al.,
2023). We compute the mean score across benchmarks
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Table 2. Comparison of three R2-T2 methods (kNN with k = 5) on MoVA and MoAI (base models). Oracle has access to the ground
truths and provides an upper bound. NGD significantly improves base models and performs the best.

Method MMBench MME-P SQA-IMG AI2D TextVQA GQA CVBench2D CVBench3D

MoVA (base model) 74.3 1579.2 74.4 74.9 76.4 64.8 61.6 62.3

Mode Finding 75.2 1587.1 74.9 75.8 77.3 65.7 62.5 63.2
Kernel Regression 77.9 1610.6 76.4 78.5 79.9 68.3 65.2 65.9
NGD 81.2 1645.3 79.1 81.8 83.2 71.5 68.3 68.9

Oracle (upper bound) 87.6 1735.4 87.3 88.4 89.5 76.2 72.5 73.2

MoAI (base model) 79.3 1714.0 83.5 78.6 67.8 70.2 71.2 59.3

Mode Finding 80.8 1725.2 84.1 79.8 66.5 71.4 70.0 60.1
Kernel Regression 83.7 1756.7 86.2 82.6 71.2 74.5 74.6 64.5
NGD 85.2 1785.5 88.3 85.0 73.5 77.0 77.9 69.2

Oracle (upper bound) 92.1 1860.2 93.8 91.2 79.6 83.2 84.0 76.8

as 1
#benchmark (Stotal + Smmp-e) , where Stotal is the sum of all

benchmark scores except MME-P, and Smmp-e is the normal-
ized MME-P score.

Baselines R2-T2 introduces test-time re-routing, a problem
not addressed in prior work. To assess its effectiveness, we
compare it against multiple R2-T2 variants and base models.
Additionally, we benchmark R2-T2 against state-of-the-art
VLMs across scales, as shown in Table 3.

We use fixed hyperparameters across all benchmarks with-
out per-task tuning, determined via experiments on small-
scale benchmarks independent of our evaluation datasets.
See Appendix C for details.

4.2 Main Results

Comparison of different R2-T2 methods Tables 2 sum-
marizes the performance of R2-T2 methods on the MoVA
and MoAI models across eight benchmarks. Among all
evaluated methods, kNN Neighborhood Gradient Descent
(NGD) emerges as the most effective, delivering significant
improvements over the pretrained base models. For MoAI-
7B, R2-T2 enhances performance significantly, achieving
+6.9% on MMBench, a +66.1-point increase on MME-P,
and a +6.8% gain on TextVQA. Similarly, on MoVA-7B,
it yields notable improvements of +5.9% on MMBench,
+71.5 points on MME-P, and +5.7% on TextVQA. These
consistent gains across diverse benchmarks highlight the
ability of R2-T2 to optimize routing weights effectively,
enabling better utilization of expert modules for improved
model performance. Notably, kNN NGD achieves results
close to the Oracle upper bound, which relies on ground
truth labels during test-time and is thus infeasible in practice.
Our method, without accessing labels, captures 70–80% of
the potential improvement, demonstrating its effectiveness.

Comparison with state-of-the-art VLMs In Table 3, we
compare our approach with state-of-the-art VLMs of var-
ious sizes (7B, 8B, 13B, 34B) across benchmarks. When
applied to the pretrained MoVA-7B—which initially lags

behind larger models—R2-T2 achieves substantial perfor-
mance gains and outperforms 7/8/13/34 competitors across
most benchmarks through effective test-time re-routing. In
addition, applying R2-T2 to MoAI-7B results in a signifi-
cant performance boost, establishing it as highly competitive
against larger models. These results highlight the effective-
ness of R2-T2 in unlocking the potential of smaller models,
enabling them to match or even surpass the performance of
significantly larger VLMs.

Inference efficiency trade-off While R2-T2 introduces
additional operations beyond the base model’s inference
pipeline, it achieves near-oracle performance with moderate
computational overhead (Table 4). To ensure hardware-
independent comparison, we measure computational costs
in FLOPs. The base model requires 9.9T FLOPs per case.
Mode finding adds only 1.8T FLOPs, leading to a 1.5% accu-
racy gain. Kernel regression and R2-T2 require 6–7× more
FLOPs due to loss computations over five neighbors, yet R2-
T2 (kNN, NGD) achieves the highest accuracy improvement
(+5.9%) while maintaining competitive efficiency.

4.3 Ablation Study

We analyze how each component contributes to the per-
formance and robustness of kNN NGD, with all studies
conducted on MoAI. Results are averaged across 8 test
benchmarks detailed in Section 4.1, with individual results
and further analysis provided in Appendix D.7.

Neighborhood selection compare two strategies: ϵ-ball (ra-
dius ϵ = 0.2 to 0.8) and kNN (k = 3 to 20), as shown in
Table 5. The results demonstrate that kNN with k = 5
consistently achieves better performance across most tasks,
outperforming both smaller neighborhoods that may lack
sufficient context and larger ones that could introduce noise.
While ϵ-ball shows stable performance across different ra-
dius, it suffers from inherent limitations: a fixed radius
threshold may yield too few neighbors in sparse regions or
excessive neighbors in dense regions, leading to inconsistent
performance. The kNN approach provides more reliable
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Table 3. Comparison of R2-T2 (kNN, NGD) with state-of-the-art vision-language models on eight benchmarks.
VLM MMBench MME-P SQA-IMG AI2D TextVQA GQA CVBench2D CVBench3D

7B Models
InstructBLIP-7B (Dai et al., 2023) 36.0 - 60.5 - 50.1 56.7 - -
Qwen-VL-7B (Bai et al., 2023) 38.2 - 67.1 62.3 63.8 59.4 - -
Qwen-VL-Chat-7B (Bai et al., 2023) 60.6 1488.0 68.2 57.7 61.5 - - -
mPLUG-Owl-7B (Ye et al., 2023) 46.6 967.0 - - - 58.9 - -
mPLUG-Owl2-7B (Ye et al., 2024) 64.5 1450.0 68.7 - 58.2 62.9 - -
ShareGPT4V-7B (Chen et al., 2025) 68.8 1567.4 68.4 67.3 65.8 63.4 60.2 57.5
8B Models
Mini-Gemini-HD-8B (Li et al., 2024) 72.7 1606.0 75.1 73.5 70.2 64.5 62.2 63.0
LLaVA-NeXT-8B (Liu et al., 2024) 72.1 1603.7 72.8 71.6 64.6 65.2 62.2 65.3
Cambrian1-8B (Tong et al., 2024) 75.9 1647.1 74.4 73.0 68.7 64.6 72.3 65.0
13B Models
BLIP2-13B (Li et al., 2023a) 28.8 1294.0 61.0 - 42.5 - - -
InstructBLIP-13B (Dai et al., 2023) 39.1 1213.0 63.1 - 50.7 - - -
Mini-Gemini-HD-13B (Li et al., 2024) 68.6 1597.0 71.9 70.1 70.2 63.7 53.6 67.3
LLaVA-NeXT-13B (Liu et al., 2024) 70.0 1575.0 73.5 70.0 67.1 65.4 62.7 65.7
Cambrian1-13B (Tong et al., 2024) 75.7 1610.4 79.3 73.6 72.8 64.3 72.5 71.8
34B Models
Mini-Gemini-HD-34B (Li et al., 2024) 80.6 1659.0 77.7 80.5 74.1 65.8 71.5 79.2
LLaVA-NeXT-34B (Liu et al., 2024) 79.3 1633.2 81.8 74.9 69.5 67.1 73.0 74.8
Cambrian1-34B (Tong et al., 2024) 81.4 1689.3 85.6 79.7 76.7 65.8 74.0 79.7
Ours
MoVA-7B 74.3 1579.2 74.4 74.9 76.4 64.8 61.6 62.3
R2-T2 (MoVA-7B) 81.2 1645.3 79.1 81.8 83.2 71.5 68.3 68.9

MoAI-7B 79.3 1714 83.5 78.6 67.8 70.2 71.2 59.3
R2-T2 (MoAI-7B) 85.2 1785.5 88.3 85.0 73.5 77.0 77.9 69.2

Table 4. FLOPs of different methods (kNN with k = 5) on MM-
Bench using MoAI-7B as the base model.

Method
Inference

steps
FLOPs (T)

per case
Accuracy

(%)

Base Model (MoAI-7B) 1 9.9 79.3
Mode Finding 10 10.7 80.8
Kernel Regression 10 61.9 83.7
R2-T2 (kNN, NGD) 10 67.5 85.2
Oracle (upper bound) 10 11.8 89.8

Table 5. Ablation study of R2-T2 (kNN, NGD) with different
choices of neighborhood on MoAI.

ϵ-ball kNN
Parameter Avg. Parameter Avg.

ϵ = 0.2 76.5 k = 3 78.6
ϵ = 0.4 77.9 k = 5 80.7
ϵ = 0.6 78.9 k = 10 79.4
ϵ = 0.8 77.7 k = 20 76.6

and generally superior results. This suggests that maintain-
ing a fixed number of neighbors not only ensures consistent
computational cost but also provides sufficient information
for effective test-time re-routing.

Kernel choice is critical for determining how similarity is
modeled in high-dimensional spaces, which directly affects
gradient updates in NGD. In Table 6, we compare four
different kernel functions. The results consistently show
that the Gaussian kernel outperforms other kernel functions
across all tasks, with up to a 4.4% accuracy improvement
over the linear kernel. Its superior performance may due

to its ability to effectively capture similarity relationships
in high-dimensional embedding spaces while being less
affected by the curse of dimensionality (Cristianini, 2000).

Embedding model directly impacts the neighborhood qual-
ity, which in turn influences the gradient updates. In Table 7,
we compare four embedding models. The results show that
NV-Embed-V2 achieves consistent improvements of 3.2%
over Sentence-Bert, indicating its ability to provide more
discriminative feature representations that better capture
semantic relationships between samples.

Gradient descent steps significantly affect both conver-
gence and performance. Experiments with 5, 10, 20, and
50 steps assess the trade-off between cost and accuracy. As
seen in Table 8, increasing the step count from 5 to 10 sig-
nificantly improves performance (76.6 → 80.7), indicating
that more iterations enhance optimization. Beyond 10 steps,
performance saturates (80.5 at 20 steps, 80.7 at 50), sug-
gesting diminishing returns. Thus, 10 steps offer the best
balance between performance and efficiency.

4.4 Case Studies

Accuracy Transition Analysis Figure 5 illustrates the tran-
sition of predictions as NGD progresses over ten steps. Dur-
ing Step 0 to Step 4, 17.22% of incorrect predictions are
corrected, and by Step 10, a total of 28.12% of incorrect
predictions have been converted to correct ones. Meanwhile,
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Table 6. Ablation study of R2-T2 (kNN,
NGD) with kernel choices on MoAl.

Kernel Avg.

Linear (Cortes, 1995) 76.3
Polynomial (Cortes, 1995) 77.7
Matern (Williams & Rasmussen, 2006) 78.7
Gaussian (Williams & Rasmussen, 2006) 80.7

Table 7. Ablation study of R2-T2 (kNN,
NGD) with embedding models on MoAI.

Embedding Model Avg.

Sentence-Bert (Reimers, 2019) 77.5
Stella-En-1.5B-V5 (Kusupati et al., 2022) 78.5
Gte-Qwen2-7B (Li et al., 2023c) 78.7
NV-Embed-V2 (Lee et al., 2024) 80.7

Table 8. Ablation study of R2-T2 (kNN,
NGD) with NGD steps on MoAI.

#Step Avg.

5 76.6
10 80.7
20 80.5
50 80.7

Figure 4. Top-1 expert transitions to correct/incorrect preditions on CVBench2D/3D after re-routing. For the transition to the correct
predictions in (a), the main transition patterns include ILANG to LIMG, LAUX and LAUX. For the transition to the incorrect predictions in
(b), the main transition pattern include ILANG to IAUX, LIMG and LAUX.

Figure 5. Transition between correct and incorrect predictions on
CVBench2D/3D during NGD steps of R2-T2 from Step 0 to 10.
NGD keeps turning more incorrect predictions to correct.
only 2.31% correct predictions become incorrect through-
out the optimization process. As the optimization converges
in later steps, the routing weight changes become smaller,
reducing the number of prediction shifts.

Expert Shift Patterns Figure 4 illustrates top-1 expert tran-
sitions before and after re-routing, where (a) shows transi-
tions leading to correct predictions and (b) those leading
to incorrect predictions. The original router over-relies on
ILANG, limiting model adaptability. After re-routing, many
samples shift from ILANG to LIMG, IAUX, and LAUX, leading
to improved accuracy. This indicates that the pretrained
router excessively favors ILANG, preventing optimal expert
utilization. Notably, samples that were initially correct be-
fore re-routing exhibited a more balanced expert distribu-
tion, whereas those initially incorrect depended heavily on
ILANG. After re-routing, expert distributions in both cases

become more balanced, showing that R2-T2 effectively di-
versifies expert selection. Furthermore, transition patterns
differ between correctly and incorrectly predicted samples.
In correct cases (Figure 4 (a)), re-routing typically shifts
ILANG to LIMG. In incorrect cases (Figure 4 (b)), transitions
often involve ILANG to LAUX. This may indicate occasional
mismatches in the re-weighted routing. Crucially, the num-
ber of cases shifting from correct to incorrect is significantly
lower than those transitioning from incorrect to correct. The
overall improvements outweigh potential misclassifications,
validating R2-T2 as an effective optimization strategy.

Example Case: Spatial Reasoning Improvement Figure 2
demonstrates how R2-T2 rectifies a spatial reasoning failure.
The test question asks, “where is the chair located with re-
spect to the tennis racket?”. Initially, the model selects ILANG

(language-aligned visual expert), which prioritizes textual
alignment but fails to capture positional relationships. R2-
T2 addresses this by retrieving nearest neighbors from the
reference set with similar spatial queries. By dynamically
adjusting routing weights, R2-T2 elevates IAUX to the top-1
position. IAUX integrates features from open-world object
detection (Lee et al., 2025; Minderer et al., 2023), enabling
a more precise interpretation of spatial layouts.

Additional transition pattern cases and details are provided
in Appendix D.8 and E for further insights.
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5 Conclusions
We introduce R2-T2, a novel test-time re-routing method
that enhances multimodal Mixture-of-Experts (MoE) mod-
els without additional training. By dynamically adjust-
ing routing weights based on reference samples, R2-T2
corrects suboptimal expert selection, improving model
generalization. We propose and evaluate three strate-
gies—Neighborhood Gradient Descent, Kernel Regres-
sion, and Mode Finding—demonstrating their effectiveness
across multiple multimodal benchmarks. R2-T2 consistently
outperforms the base MoE model and rivals oracle-based
optimization methods, highlighting the potential of test-time
adaptation for more efficient and adaptive expert utilization.

Impact Statement
This work contributes to advancing the field of Machine
Learning by introducing novel insights and methodologies.
While our research primarily focuses on technical improve-
ments, its broader societal impact depends on downstream
applications. We do not identify any immediate ethical or
societal concerns that require explicit discussion.
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A MoAI Experts
MoAI integrates specialized computer vision models and expert modules to achieve comprehensive scene understanding:

External CV Models: Four computer vision models provide complementary capabilities: (1) panoptic segmentation (Cheng
et al., 2022) for object identification and localization, (2) open-world object detection (Minderer et al., 2024) for recognizing
diverse objects beyond predefined categories, (3) scene graph generation (Yang et al., 2022) for understanding object
relationships, and (4) optical character recognition (OCR) (Du et al., 2021) for text understanding. These models provide
auxiliary information that enhances MoAI’s visual perception.

Cross-Modal Capabilities: The expert modules are designed to facilitate effective cross-modal interactions:

• Visual Experts: IAUX connects visual features with structured CV outputs through cross-attention, ILANG aligns visual
representations with language semantics, while ISELF maintains spatial awareness through self-attention.

• Language Experts: LAUX integrates verbalized CV outputs with language understanding, LIMG grounds language in
visual context, and LSELF ensures coherent text generation.

The combination of specialized CV models and cross-modal experts enables MoAI to bridge the gap between detailed
visual perception and high-level language understanding. This architecture is particularly effective for tasks requiring both
fine-grained visual analysis and natural language reasoning.

B Evaluation Benchmarks and Reference Datasets
We conduct evaluations using a diverse set of reference datasets and task-specific benchmarks (Liang et al., 2025). For
general visual understanding, we use four reference datasets: VQA-V2 (Goyal et al., 2017), Visual7W (Zhu et al., 2016),
CLEVR (Johnson et al., 2017), and COCO-QA (Lu et al., 2016). For knowledge-based reasoning, which requires leveraging
external knowledge, we include A-OKVQA (Schwenk et al., 2022), TQA (Kembhavi et al., 2017) and MathVista (Lu
et al., 2023). For optical character recognition (OCR), we employ ST-VQA (Biten et al., 2019), DocVQA (Mathew et al.,
2021). To ensure a balanced evaluation, we randomly sample 5,000 instances from datasets exceeding this size.

Correspondingly, we evaluate on task-specific benchmarks. For general visual understanding, these include MMBench (Liu
et al., 2025), MME-P (Fu et al., 2024), CVBench2D/3D (Tong et al., 2024), and GQA (Hudson & Manning, 2019). For
knowledge-based reasoning, we evaluate on SQA-IMG (Lu et al., 2022) and AI2D (Kembhavi et al., 2016). TextVQA (Singh
et al., 2019) is evaluated for OCR.

Reference Datasets

• VQA-V2 (Goyal et al., 2017): Focuses on open-ended visual question answering, requiring models to answer
questions about images. Tasks include object recognition, attribute identification, and scene understanding. Contains
1.1M questions across 200K+ COCO images, with balanced annotations to reduce language bias.

• Visual7W (Zhu et al., 2016) Specializes in 7-type visual QA (“what,” “where,” “when,” “who,” “why,” “how,” and
“which”), emphasizing grounding answers in image regions (e.g., “Where is the cat?” with bounding box annotations).
It includes 327K QA pairs, challenging models on spatial reasoning and causal explanations.

• CLEVR (Johnson et al., 2017): A synthetic benchmark for compositional visual reasoning. Tasks involve counting
objects, comparing attributes, and logical operations (e.g., “Are there more red cubes than blue spheres?”). Contains
100K rendered 3D images and 853K questions, designed to test systematic generalization.

• COCO-QA (Lu et al., 2016): Automatically generates QA pairs from COCO image captions for basic visual
understanding. Questions fall into four categories: object, number, color, and location (e.g., “What color is the car?”).
Includes 117K QA pairs, serving as a lightweight evaluation for object-centric reasoning.

• A-OKVQA (Schwenk et al., 2022): Requires commonsense and external knowledge for visual QA (e.g., “Why is the
person wearing a helmet?”). Distinguishes between direct perception (“What is this?”) and knowledge-augmented
reasoning. Contains 25K questions with crowdsourced explanations.
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• TQA (Kembhavi et al., 2017): A multimodal machine comprehension dataset designed to test reasoning over middle
school science curricula. It contains 1,076 lessons with 26,260 questions, combining text, diagrams, and images.
Questions require parsing complex scientific concepts and reasoning across multiple modalities, making it more
challenging than traditional QA datasets. The dataset is split into training, validation, and test sets, with no content
overlap, ensuring robust evaluation of models’ ability to integrate and reason over multimodal information.

• MathVista (Lu et al., 2023): A multimodal math reasoning benchmark combining visual understanding (dia-
grams/plots) and textual problem-solving. Contains 6,141 problems testing abilities like geometric reasoning, equation
parsing, and chart interpretation. Highlights the stark gap between human performance (91.6% on text-only tasks) and
state-of-the-art AI models (58.9%), particularly in visual-textual integration and multi-step reasoning.

• ST-VQA (Biten et al., 2019): Evaluates scene text understanding in visual QA. Questions require reading text in
images (e.g., “What is the store name?”). Includes 23K questions across diverse scenarios (signboards, documents,
etc.), with strict answer normalization.

• DocVQA (Mathew et al., 2021): Focuses on document image understanding. Tasks include extracting information
from tables, forms, and invoices (e.g., “What is the invoice number?”). Contains 50K questions on 12K document
images, testing OCR and layout understanding.

Evaluation Benchmarks

• MMBench (Liu et al., 2025): A comprehensive benchmark for multimodal understanding and generation. Tasks
span image captioning, visual entailment, and fine-grained attribute QA. Includes 2,374 pairs with hierarchical
evaluation dimensions (perception, reasoning, knowledge).

• MME-P (Fu et al., 2024): Evaluates multimodal event understanding through paired questions (e.g., before/after
event prediction). Contains 2,114 pairs covering temporal, causal, and counterfactual reasoning in video/text contexts.

• CVBench 2D/3D (Tong et al., 2024): A unified benchmark for 2D and 3D vision tasks. 2D tasks include depth
estimation and object detection (1,438 pairs), while 3D tasks focus on point cloud registration and mesh reconstruction
(1,200 pairs).

• GQA (Hudson & Manning, 2019): Tests compositional reasoning over real-world images. Questions use functional
programs (e.g., “Select then compare”) to ensure compositional validity. Includes 1,590 pairs with explicit scene graph
grounding for error analysis.

• SQA-IMG (Lu et al., 2022): A science QA benchmark with diagrammatic reasoning. Questions combine textbook
diagrams and textual context (e.g., “Which process is shown in the diagram?”). Contains 2,017 pairs spanning biology,
physics, and chemistry.

• AI2D (Kembhavi et al., 2016): Focuses on diagram interpretation for K-12 science. Tasks include diagram labeling,
relation extraction, and multi-step inference (e.g., “What happens after step 3?”). Contains 3,087 pairs with annotated
diagram primitives (arrows, labels).

• TextVQA (Singh et al., 2019): Requires text-aware visual QA (e.g., answering “What brand?” from text in images).
Contains 5,734 pairs with a focus on OCR-VQA integration, using real-world images with scene text.

C Hyperparameter Choices
To ensure a robust and fair evaluation, we use a fixed set of hyperparameters across all benchmarks. This approach maintains
consistency, prevents task-specific optimizations, and allows for an unbiased comparison of performance.

The selected hyperparameters are as follows: cosine annealing schedule with a learning rate ranging from 1 × 10−2 to
1× 10−5, neighborhood selection is performed using kNN with k = 5, the number of NGD steps is fixed at 10, the Gaussian
kernel is used for kernel-based methods, and NV-Embed-V2 is adopted as the embedding model. These values are applied
uniformly across all evaluated tasks.
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Hyperparameter Selection Strategy Rather than tuning hyperparameters separately for each benchmark, we determined
these values through controlled experiments on Qbench (Wu et al., 2023) that do not overlap with our evaluation benchmarks.
This ensures that hyperparameter selection is independent of the test sets, minimizing the risk of overfitting while maintaining
general applicability.

Additionally, our ablation studies (Section 4.3) confirm the effectiveness of these choices. Variations in key hyperparameters,
such as NGD steps and neighborhood size, show that our selected values strike a balance between performance and efficiency,
supporting their suitability across diverse benchmarks.

D Additional Analysis

D.1 Evaluation on Additional Benchmarks

To further validate the effectiveness of R2-T2, we evaluate on two additional challenging benchmarks: MMMU (Yue et al.,
2024) and ChartQA (Masry et al., 2022), as requested by reviewers.

Table 9. Performance of R2-T2 on additional benchmarks MMMU and ChartQA.
Method MMMU ChartQA

Base (MoAI-7B) 55.7% 67.4%
R2-T2 (MoAI-7B) 61.3% (+5.6) 71.6% (+4.2)

Table 9 demonstrates that R2-T2 consistently improves performance across diverse multimodal tasks, achieving significant
gains of +5.6% on MMMU and +4.2% on ChartQA. These results reinforce the robustness and generalizability of our
approach across different types of multimodal reasoning tasks.

D.2 Comparison with Additional Baselines

We evaluate R2-T2 against additional baseline methods to provide a more comprehensive comparison, including ensemble-
based approaches and retrieval-augmented methods.

D.2.1 ENSEMBLE AND NOISY ROUTING BASELINES

Table 10. Comparison of R2-T2 with ensemble-based baselines on MoAI-7B.
Method Average

Base (MoAI-7B) 74.5%
Multiple Sampling 74.9%
Noisy Routing Ensemble 75.4%
R2-T2 (MoAI-7B) 80.7%

As shown in Table 10, ensemble-based methods provide only marginal improvements (0.9%), whereas R2-T2 delivers
substantial improvement of +6.2%. These results validate the effectiveness of R2-T2 beyond what additional computation
alone can achieve.

D.2.2 COMPARISON WITH RAG AND IN-CONTEXT LEARNING

We compare R2-T2 with RAG and ICL approaches using Qwen-VL as the base model, since MoAI and MoVA do not
support interleaved input.

Table 11 shows that RAG improves modestly (61.7% → 64.1%) and ICL to 62.9%, while R2-T2 boosts MoAI from 74.5%
to 80.7%, demonstrating that it leverages the reference set more effectively than traditional retrieval approaches.
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Table 11. Comparison of R2-T2 with RAG and In-Context Learning approaches.
Method RAG ICL

0-shot (base) 61.7% 61.7%
1-shot 63.1% (+1.4%) 62.4% (+0.7%)
2-shots 63.6% (+1.9%) 62.7% (+1.0%)
3-shots 63.9% (+2.2%) 62.8% (+1.1%)
5-shots 64.1% (+2.4%) 62.9% (+1.2%)

R2-T2 (MoAI-7B) 80.7% (from 74.5%)

D.3 Robustness Analysis

D.3.1 PERFORMANCE WITH LIMITED TASK COVERAGE

We evaluate R2-T2 on 3DSRBench (Ma et al., 2024), a dataset focused on rare spatial reasoning cases, to assess performance
when reference samples have limited coverage for certain task types.

Table 12. Performance of R2-T2 on rare spatial reasoning tasks (3DSRBench).

Method 3DSRBench Accuracy

Base (MoAI-7B) 45.2%
R2-T2 (MoAI-7B) 49.7% (+4.5%)

Despite lower reference coverage for spatial reasoning tasks, R2-T2 still delivers a 4.5% improvement, demonstrating
robustness even with limited task-specific reference samples.

D.3.2 REFERENCE SET SIZE ANALYSIS

We analyze the impact of reference set size on performance by varying the size from 1/200 to the full reference set.

Table 13. Impact of reference set size on R2-T2 performance.

Reference Set Size Average Score

Base (MoAI, 0 reference) 74.5%
R2-T2 (1/200 reference) 74.6%
R2-T2 (1/100 reference) 74.6%
R2-T2 (1/50 reference) 74.8%
R2-T2 (1/10 reference) 77.5%
R2-T2 (1/2 reference) 79.8%
R2-T2 (full reference) 80.7%

Random selection 74.7%

Table 13 shows that even with 1/10th of the original reference set size, R2-T2 provides notable improvement (+2.9%).
However, random selection yields minimal improvement (+0.2%), emphasizing the importance of well-curated reference
sets.

D.3.3 MISMATCHED REFERENCE SET ANALYSIS

We test R2-T2 with mismatched reference sets to analyze robustness when incorrect reference data is used.

Results show that R2-T2 provides significant gains with task-relevant reference sets but offers minimal improvement when
references are mismatched, highlighting the importance of appropriate reference selection.
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Table 14. Performance with mismatched reference sets (using OCR subset for knowledge-based VQA).

Method Knowledge-based VQA

Base (MoAI-7B) 83.5%
R2-T2 (Task-relevant reference) 88.3% (+4.8%)
R2-T2 (OCR subset as reference) 83.8% (+0.3%)

D.4 Computational Efficiency Analysis

D.4.1 MEMORY USAGE COMPARISON

We provide detailed GPU memory usage analysis across different embedding models.

Table 15. GPU memory usage and accuracy trade-offs for different embedding models.
Method GPU Memory Usage Average Accuracy

Base (MoAI-7B) 18GB 74.5%
R2-T2 + nv_embed_v2 27GB 80.7%
R2-T2 + all_mini_v6 20GB 77.5%
R2-T2 + Stella-En-1.5B-V5 22GB 78.5%
R2-T2 + Gte-Qwen2-7B 31GB 78.7%

Table 15 demonstrates scalable trade-offs between memory usage and accuracy. Smaller embedding models like all_mini_v6
still provide significant accuracy gains with lower memory overhead.

D.4.2 LATENCY ANALYSIS

We measure inference latency on RTX A6000 to assess the computational overhead of R2-T2.

Table 16. Average running time comparison on RTX A6000.
Method Avg. Running Time (per case)

Base (MoAI-7B) 7.8s
R2-T2 (MoAI-7B) 25.6s (+3.3×)

While R2-T2 increases latency by 3.3×, the substantial accuracy gains justify the trade-off, and optimizations such as
reference set pruning and efficient kNN search can further reduce overhead.

D.5 Task Classification Automation

To improve usability, we explore automated task type selection using a lightweight classifier.

Results show that automated task classification achieves comparable performance (80.4% vs 80.7%) while reducing
computational overhead, demonstrating the viability of this approach for practical deployment.

D.6 Data Contamination Analysis

We conducted rigorous analysis to ensure no data contamination between reference sets and evaluation benchmarks using a
two-step screening process:

1. Question Similarity Check: Computed cosine similarity between evaluation and reference questions using
NV_Embed_V2. Samples with similarity >0.95 were flagged.

2. Image Similarity Check: For flagged cases, applied CLIP to measure image similarity. Only samples where both
similarities exceeded 0.95 were classified as potential overlaps.

Through this analysis, we found no overlapping samples between reference sets and evaluation benchmarks, confirming
that performance gains stem from method effectiveness rather than data leakage.
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Table 17. Performance with automated task classification vs. manual selection.
Method Average Score

R2-T2 (Manual task selection) 80.7%
R2-T2 (Automated classification) 80.4% (-0.3%)

D.7 Ablation Study

We perform an ablation study to assess the impact of key hyperparameters on R2-T2’s performance. Table 18 evaluates
different learning rate schedules for Gradient Descent, comparing cosine annealing, step decay, and fixed schedules. Full
results for the ablation studies discussed in Section 4.3 are presented in Tables 19-22.

Comparison of different learning rate In Table 18, we investigate how different learning rate schedules affect the
performance of Gradient Descent. We compare cosine annealing schedule against two fixed (1e-3 and 1e-4) and a step
decay schedule. The cosine annealing schedule consistently outperforms all baseline approaches across all benchmarks,
achieving improvements of up to 12.7 percentage points over the fixed learning rate (1e-3) baseline. These findings suggest
that carefully designed learning rate schedules are essential for maximizing the potential of R2-T2.

Table 18. Ablation study of R2-T2 (kNN, NGD) with different learning rate schedules.

Schedule MMBench MME-P SQA-IMG AI2D TextVQA GQA CVBench2D CVBench3D

Fixed (1e-3) 71.8 1671.2 74.3 70.9 60.4 63.1 66.8 57.2
Fixed (1e-4) 75.2 1692.5 77.8 74.5 63.9 66.5 69.9 63.3
Step Decay 82.9 1745.4 84.2 81.8 70.5 73.8 73.5 67.2
Cosine 85.2 1785.5 88.3 85.0 73.5 77.0 77.9 69.2

Table 19. Ablation study of R2-T2 (kNN, NGD) with different choices of neighborhood on MoAI.
Neighbors Parameter MMBench MME-P SQA-IMG AI2D TextVQA GQA CVBench2D CVBench3D

ϵ-ball

ϵ = 0.2 82.4 1733.9 84.8 81.3 69.9 73.1 67.1 66.5
ϵ = 0.4 83.9 1758.4 86.0 83.0 71.5 74.8 68.5 67.3
ϵ = 0.6 85.4 1778.8 87.2 83.8 72.4 75.9 69.6 68.0
ϵ = 0.8 83.7 1756.5 85.9 82.5 71.2 74.5 68.3 67.4

kNN

k = 3 83.2 1740.9 86.1 83.1 71.3 75.1 75.8 67.4
k = 5 85.2 1785.5 88.3 85.0 73.5 77.0 77.9 69.2
k = 10 84.0 1761.3 86.8 83.5 72.8 75.3 76.6 68.1
k = 20 80.7 1693.6 83.6 80.7 70.5 73.2 73.9 65.7
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Table 20. Ablation study of R2-T2 (kNN, NGD) with different choices of kernels on MoAI.

Kernel MMBench MME-P SQA-IMG AI2D TextVQA GQA CVBench2D CVBench3D

Linear 82.1 1722.3 84.2 80.8 69.5 72.8 72.7 62.1
Polynomial 83.2 1745.5 85.1 81.9 70.4 73.9 74.5 65.2
Matern 83.9 1752.8 85.8 82.5 71.2 74.6 76.3 67.8
Gaussian 85.2 1785.5 88.3 85.0 73.5 77.0 77.9 69.2

Table 21. Ablation study of R2-T2 (kNN, NGD) with different embedding models on MoAI.
Embedding Model MMBench MME-P SQA-IMG AI2D TextVQA GQA CVBench2D CVBench3D

Sentence-Bert 82.8 1748.2 84.2 80.3 70.2 73.8 75.6 66.0
Stella-En-1.5B-V5 83.6 1752.5 85.4 82.1 70.8 74.3 76.3 67.5
Gte-Qwen2-7B-instruct 84.0 1757.0 86.0 82.7 71.3 74.8 76.1 67.0
NV-Embed-V2 85.2 1785.5 88.3 85.0 73.5 77.0 77.9 69.2

Table 22. Ablation study of R2-T2 (kNN, NGD) with different number of NGD steps.
#Step MMBench MME-P SQA-IMG AI2D TextVQA GQA CVBench2D CVBench3D

5 81.3 1705.8 84.2 80.9 69.2 73.5 72.2 66.1
7 83.8 1745.2 86.5 83.2 71.8 75.2 76.0 67.6
10 (ours) 85.2 1785.5 88.3 85.0 73.5 77.0 77.9 69.2
20 85.0 1777.8 88.5 84.6 73.7 76.8 77.7 69.0
50 85.3 1792.0 88.2 84.8 73.4 77.1 77.6 69.3
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D.8 Case study

Case Study: Transition from ILANG to LAUX Figures 7 and 8 illustrate cases where the initial routing incorrectly
prioritizes ILANG, which aligns visual features with language but lacks object-specific recognition capabilities. This
results in misidentifications: in the first case, the model misinterprets the plane number, yielding “728FW” instead of the
correct “728TFW”; in the second case, it incorrectly predicts “FRENCH” as the license plate’s state instead of the correct
“California.”

To correct these errors, R2-T2 retrieves three highly relevant reference samples using kNN based on question similarity.
Each reference set contains samples with similar question structures, providing a more suitable routing adjustment. After
incorporating insights from these references, the routing shifts towards LAUX, which enhances object-specific recognition and
scene understanding. This re-routing process enables the model to produce the correct answers “728TFW” and “California,”
demonstrating the effectiveness of R2-T2 in dynamically refining expert selection.

Case Study: Transition from ILANG to IAUX We show one case for this transition in Figure 2 and analyze in Section 4.4.
Figure 6 illustrates another case where the initial routing incorrectly prioritizes ILANG, which aligns visual features with
language but lacks object-specific recognition capabilities. As a result, the model miscounts the number of hats in the image,
selecting answer “(C) 2” instead of the correct “(D) 1.”

To correct this, R2-T2 retrieves three highly relevant reference samples using kNN based on question similarity. These
samples contain similar counting-related queries, allowing for a more effective routing adjustment. After integrating insights
from these references, the routing shifts towards IAUX, which specializes in fine-grained object recognition. This re-routing
enables the model to correctly identify and count the hats, selecting the correct answer “(D) 1.” This case demonstrates the
ability of R2-T2 to refine expert selection dynamically, improving numerical reasoning in visual question-answering tasks.

Case Study: Transition from ILANG to LIMG Figures 9 and 10 illustrate cases where the initial routing incorrectly
prioritizes ILANG, which aligns visual features with language but lacks fine-grained perceptual understanding. This
misalignment leads to incorrect predictions: in the first case, the model incorrectly identifies “DVD Player” instead of
the correct answer “Speaker” when asked which device is not illuminated; in the second case, it incorrectly answers “No”
instead of “Yes” when asked if the shirt is soft and white.

To correct these errors, R2-T2 retrieves three relevant reference samples using kNN based on question similarity. These
samples involve similar queries related to illumination and color perception, guiding a more suitable routing adjustment.
After incorporating insights from these references, the routing shifts towards LIMG, which specializes in fine-grained visual
details. This adjustment enables the model to correctly identify the non-illuminated device and recognize the shirt’s color
and texture, leading to the correct answers “Speaker” and “Yes.”

These cases demonstrate R2-T2’ ability to dynamically refine expert selection, improving visual perception in multimodal
reasoning tasks by leveraging contextual cues from reference samples.
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Figure 6. Example for transition from ILANG to IAUX using R2-T2. The model initially gives incorrect answer “(C)2" by relying on ILANG.
After kNN retrieval with similar questions about counting hats , it re-routes to IAUX and correctly answers “(D) 1" for the number of hats
in the image.

Figure 7. Example of routing transition from ILANG to LAUX using R2-T2. Initially, the model selects ILANG, misidentifying the plane
number. By retrieving kNN with similar queries, R2-T2 shifts the routing weights towards LAUX, leading to the correct answer.
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Figure 8. Example for transition from ILANG to LAUX using R2-T2. The model initially gives incorrect answer “FRENCH" by relying on
ILANG. After kNN retrieval with similar questions, it re-routes to LAUX and correctly identifies “California" as the plate’s state.

Figure 9. Example of routing transition from ILANG to LIMG using R2-T2. Initially, the model selects ILANG, leading to the incorrect
prediction “DVD Player” when asked which device is not illuminated. By retrieving kNN samples with similar illumination-related
queries, R2-T2 shifts the routing weights towards LIMG, enabling the correct answer “Speaker.”
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Figure 10. Example of routing transition from ILANG to LIMG using R2-T2. Initially, the model selects ILANG, leading to the incorrect
prediction “No” when asked if the shirt is soft and white. By retrieving kNN samples with similar color-based queries, R2-T2 shifts the
routing weights towards LIMG, allowing the model to correctly answer “Yes.”
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E Expert Transition Analysis
To better understand the impact of test-time re-routing, we analyze expert transitions across different prediction scenarios.
Figures 11-14 illustrate how top-1 expert selections shift before and after re-routing on CVBench2D/3D.

Figure 11. Top-1 expert transitions from incorrect to correct predictions on CVBench2D/3D after re-routing. For transitions to incorrect
predictions, the main patterns include transitions from ILANG to IIMG, LAUX and IAUX

Figure 12. Top-1 expert transitions from correct to incorrect predictions on CVBench2D/3D after re-routing. The visualization shows
primary transitions from ILANG to IAUX and LIMG, demonstrating how correct predictions can shift to incorrect outcomes through these
pathways.

Figure 13. Top-1 expert transitions from correct to correct predictions on CVBench2D/3D after re-routing. The main transition patterns
demonstrate consistent routing from ILANG through IAUX to LIMG and IAUX, showing stable pathways for maintaining correct predictions.
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Figure 14. Top-1 expert transitions from incorrect to incorrect predictions on CVBench2D/3D after re-routing. The visualization reveals
persistent incorrect prediction patterns, with transitions primarily flowing from ILANG through IAUX to LIMG and IAUX, with additional
ISELF routing observed.
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