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Abstract

We look at the problem of learning causal structure for a fixed downstream causal
effect optimization task. In contrast to previous work which often focuses on
running interventional experiments, we consider an often overlooked source of in-
formation - the domain expert. In the Bayesian setting, this amounts to augmenting
the likelihood with a user model whose parameters account for possible biases of
the expert. Such a model can allow for active elicitation in a manner that is most
informative to the optimization task at hand.

1 Introduction

Causal models are an essential component in decision making, providing a clear line between which
types of queries we can answer under different assumptions [Pearl and Mackenzie, 2018]. In this
work we focus on causal graphs, specifically Directed Acyclic Graphs (DAGs), which are required
to reason about causal effects arising from interventions. Learning this graph from data, a problem
also referred to as causal discovery or causal structure learning, is a challenging task [Glymour et al.,
2019]. Even in the limit of infinite observational data, algorithms such as the PC algorithm [Spirtes
et al., 2000] and GES algorithm [Chickering, 2002] can provably recover only up to an equivalence
class of graphs [Verma and Pearl, 1990] called the Markov Equivalence Class (MEC) which contains
DAGs that encode the same conditional independence relations. While we could in principle generate
all DAGs in an MEC, some MECs could be extremely large, and the causal effect may also be
unidentifiable. For example, in sparse graph settings, this number is super-exponential in the size of
the nodes [He et al., 2015].

Methods that further refine the causal structure rely on perturbing the system and gathering the
resulting interventional data, or make further assumptions on the structure of the Structural Causal
Model (SCM) [Glymour et al., 2019]. The selection of which variables to intervene on and which
values to set them to is an active area of research [Agrawal et al., 2019, Gamella and Heinze-Deml,
2020, Tigas et al., 2022].

While learning the full causal graph may be useful to qualitatively analyse the system, it may be
too comprehensive, especially considering one of the main reasons we would want the causal graph
in the first place - identifying causal effects. A practitioner may only need to know a subset of the
graph to select a cost-effective intervention to regulate a specific target variable of interest, which we
denote by Xtarget. For example, in the medical setting, a doctor may wish to know which treatment
do(X∗

I = x∗
I) to give to a patient in order to maximize the probability of their LDL cholesterol

being lower than 3.0 mmol/l, P(Xtarget < 3.0 | do(X∗
I = x∗

I)) while minimizing the cost of this
treatment.
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2 Problem setting

Let M∗ be the true SCM with observable variables X = {X1, · · · , Xn−1, Xtarget} with Xtarget being
the target variable which we wish to regulate, i.e. be within a certain range. Collections of variables
and the values they can take are in bold and indexed by a set I ⊆ {1, · · · , n− 1, target}. We assume
M∗ is such that the associated causal graph G∗ is a DAG. We also assume no hidden confounders,
and that the functional dependencies between the variables have an additive noise structure with
independent noise variables ϵi:

Xi = fi(PAG∗

i ,θi) + ϵi i ∈ {1, · · · , n− 1, target} (1)

Each fi is a deterministic function which we assume is parametrized by θi, and depends on the
parents of Xi in G∗, denoted by PAG∗

i . When Xi has no parents, we set fi = 0. We denote the
corresponding binary adjacency matrix by G.

Our starting point is observational data from the true SCM M∗. We make the assumption that it
is expensive/prohibitive to gather interventional data from M∗. For example, in the personalized
medicine setting, we could have costly treatments not meant to be repeatedly performed within a
short time span. To make up for this constraint we turn to another source of information - the domain
expert. In this work we assume the expert can give information about the direct edges of the causal
graph. By this we mean that given a pair of variables Xi, Xj , the expert can provide information
about the direct edge relationship between Xi, Xj . We call this information expert feedback, and
treat it as an observed variable.

More specifically, we start with N samples of observational data {xk}Nk=1 ⊂ Rn and a budget M
for expert feedback samples {eijl }Ml=1. Here, eijl refers to the lth feedback sample between variables
Xi, Xj . As we show in Section 3, its dimensionality depends on how we choose to model the expert.

As alluded to before, we do not focus on learning the whole causal graph. Instead, we focus on
finding an intervention do(X∗

I = x∗
I) which satisfies both of the following criteria:

• We maximize the probability of the target variable Xtarget being in some region T

• We minimize the cost of intervention.

Note that this intervention is not performed to narrow down the causal structure. It is the downstream
intervention meant to be performed in order to regulate the target variable. We do not necessarily
need to know the whole graph for this. The resulting optimization problem is given below, and is
related to Causal Global Optimization (CGO) as defined in Aglietti et al. [2020].

X∗
I , x

∗
I = argmaxXI∈P(X\Xtarget),xI∈D(XI\t)

P(Xtarget ∈ T |do(XI = xI))

Cost(do(XI = xI))
(2)

Here, P(X) refers to the power set of X and D(XI) refers to the domain of values taken by the
variables XI . Since this objective involves a do operator, we need a causal model to compute it.

3 Methodology

Since we do not know the true causal model, we consider taking a probabilistic approach and put a
model over the SCM. The generative model we consider is shown in Figure 1.
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Figure 1: Augmented model including an expert likelihood term P(eijl |Gij) which contains informa-
tion about the graph structure.

Here, Θ = {θi}ni=1 represents all parameters of the SCM functions {fi}ni=1. We consider feedback
from the expert to be an observed variable and hence the resulting model incorporates an extra
likelihood term which we call the expert model. Unlike incorporating expert knowledge directly into
the graph prior itself, having an expert model allows us to propagate uncertainty about the graph
structure in a principled manner that allows us to query the expert in an interactive manner.

Expert model

Consider an expert who knows information about the edge structure of the causal graph. To make use
of this information, we need to know what to ask the expert, and how to represent the answers given
by the expert. The simplest example is to assume that we only care about pairwise edge structure,
and ask the expert whether a certain edge Xi → Xj exists or not. A suitable representation for the
expert feedback in this case would be a binary value, being 1 if the exists and 0 otherwise.

As mentioned previously, we consider expert feedback to be an observed variable, and thus in the
probabilistic setting this means we must assign a likelihood to these values. We call this likelihood
the expert model.

We assume the expert feedback is i.i.d. The resulting expert model P(eijl |Gij) is a likelihood for
edge information of G, specifically between variables Xi and Xj . The hyperparameter µ models the
reliability of the expert, which we assume is fixed and uniform over all possible pairs of the variables.
The dimensionality of this hyperparameter depends on the likelihood used. We consider three expert
models:

• Bernoulli model: The expert gives feedback eijl ∈ {0, 1}, with 1 representing that they
believe the edge Xi → Xj exists and 0 representing that this edge does not exist.

– P(eijl |Gij) ∼ Bernoulli(µGij + (1− µ)(1−Gij))

• Beta model: The expert gives feedback eijl ∈ [0, 1], representing the probability that they
believe the edge Xi → Xj exists. This allows for the expert to give a feedback value of 0.5
if they do not know the answer.

– P(eijl |Gij) ∼ Beta(α(µ,Gij), β(µ,Gij))

• Dirichlet model: The expert gives feedback eijl ∈ ∆2, representing the probabilities
for the three possible edge states between the pair of variables Xi, Xj , namely, {Xi →
Xj , Xi Xj (no edge), Xj → Xi}. The expert can give feedback such as (1/3, 1/3, 1/3)
if they do not have any information on the direct causal relations between Xi and Xj , or
(1/2, 0, 1/2) to convey that they know there is a direct causal relationship but they do not
know which direction it is in. Unlike the previous two models, here we have eijl ≡ ejil .

– P(eijl |Gij) ∼ Dirichlet(α1(µ,Gij), α2(µ,Gij), α3(µ,Gij))

To incorporate expert feedback in a principled manner, a full generative model over the unknown
graph and SCM parameters is needed. We would also prefer the model to be amenable to efficient
approximate inference, without compromising the ability to easily incorporate expert feedback to the
model. The DiBS model [Lorch et al., 2021] satisfies these criteria. DiBS makes use of latent variables
U,V ∈ Rh×n which generate the adjacency matrix via P(Gij |U,V ) ∼ Bernoulli(σα(u

T
i vj)) if
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i ̸= j and Gij = 0 otherwise. Here σα(x) = 1/(1+ e−αx). An important innovation in their work is
that the prior over U,V is constructed such that the model tends to generate DAG adjacency matrices
via the characterization introduced by Zheng et al. [2018]. Inference is done using Stein Variational
Gradient Descent [SVGD, Liu and Wang, 2016], where a fixed number of samples called particles
are iteratively updated such that the final result represents samples from the posterior distribution of
interest.

In order to assess whether expert feedback has value or not, we run a toy experiment with an oracle
Bernoulli expert model, whose feedback is always correct, i.e. µ = 1. Ground truth SCMs are linear
Gaussian models with a fixed additive noise ϵi for all variables. We see that including expert feedback
improves the AUROC metric between the true graph and the learnt one.
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Figure 2: AUROC metric between the true graph and the learnt graph on 15 nodes. Each colour
represents a different feedback ratio, which is the ratio of feedback samples to the number of all
possible edges beside self-cycles. Each box plot represents 50 seeds, without outliers. The expert
likelihood is multiplied by an extra term, similar to tempering the posterior.

Bayesian Experimental Design (BED)

In order to make use of the expert’s time in the most efficient manner, we propose using sequential
Bayesian Experimental Design (BED) [Lindley, 1956] to select queries. This involves specifying the
following information:

• Designs ξ - This is what we control. In this setting, the design is chosen from the set of all
possible pairs of variables which we query the expert about.

• Observable outcomes y - This is what we observe after running the experiment with some
design. In this setting, it is an element from the set of values the expert model can take.

• The quantity of interest - In this setting this is the intervention defined in Equation 2. To
estimate this we require a model over the graph adjacency matrix G and the SCM function
parameters Θ. This model is then marginalized in the P(Xtarget ∈ T |do(XI = xI)) term
in Equation 2.

The BED framework in the adaptive setting selects the optimal design at each time step t by solving
the following optimization problem

ξ∗ = argmaxξ

∫
U(y, ξ, ht−1)P(y | ξ, ht−1) dy, (3)

where ht = {(yi, ξi)}ti=1 with h0 = ∅ and U(y, ξ, ht−1) is a chosen utility of the outcome y
generated from the design ξ. A common choice for U is the Information Gain (IG), defined as

IG(y, ξ, ht−1) = H[P(G,Θ|ht−1)]−H[P(G,Θ|y, ξ, ht−1)] (4)

The resulting BED objective,
EIGt(ξ, ht−1) = EP(y|ξ,ht−1)

[
H[P(G,Θ|ht−1)]−H[P(G,Θ|y, ξ, ht−1)]

]
(5)
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is called the Expected Information Gain (EIG). The reason we need a model over the SCM above is
similar to why we need a surrogate model in Bayesian Optimaization (BO). Cast in the framework of
BED, the quantity of interest in BO is the global minimizer x∗ = argminx f(x) and a model over f
is introduced to define the relevant utility functions.

4 Related Work

Incorporating expert knowledge

In Cano et al. [2011], the authors propose to learn the structure of Bayesian Networks by querying an
expert about the existence of edges. Queries are chosen such that the posterior entropy of the parent
sets are reduced. This assumes a causal ordering to be given in advance, and importance sampling is
used to approximate the distributions over the parent sets. A more sophisticated version of this is
presented by Masegosa and Moral [2013], which does not need a causal ordering. Our work differs
from this as we give causal semantics to the graph, making use of it to estimate causal effects, and we
do not aim to learn the whole graph. Our Bayesian treatment makes it possible to incorporate more
flexible feedback by changing the expert model.

Sequential experimental design for causal queries

Toth et al. [2022] propose an approach which couples together experimental design for gathering
interventional data and inferring a causal query. A causal query is in principle a function of the
SCM, which is modelled using DiBS. This is in contrast to our work where we assume gathering
interventional data is too costly, and the only intervention to be performed is the for downstream task
in which the practitioner is interested.

Our optimization objective in Equation 2 is the same as the Causal Global Optimization (CGO)
objective introduced in Causal Bayesian Optimization (CBO) [Aglietti et al., 2020] if all interventions
have uniform cost and assuming the true graph G∗ is known. The CGO objective is

X∗
I , x

∗
I = argminXI∈P(X\Xtarget),xI∈D(XI\t)

EP(Xtarget| do(XI=xI),G∗)[Xtarget] (6)

If we let 1Xtarget∈T be the indicator random variable for the event {Xtarget ∈ T } we see that

EP(Xtarget| do(XI=xI),G∗)[1Xtarget∈T ] = P(Xtarget ∈ T |do(XI = xI),G∗) (7)
Thus when −1Xtarget∈T is the observable outcome in CBO, Equation 6 above becomes our optimization
objective in Equation 2 with the assumption that the true causal graph is known. [Branchini et al.,
2022] relax this assumption and generalize CBO to the setting where the graph is also unknown.

Selection of optimal interventions to identify causal effects

Recent work has also focused on finding optimal interventions which allow for causal effects to be
identified, taking an algorithmic approach. Kandasamy et al. [2019] provide an algorithm to find
the set of interventions required to identify all causal effects in a DAG. They refer to this set of
interventions as the Minimum Intervention Cover (MIC) of the graph. Akbari et al. [2022] show that
finding the minimum cost interventions to identify a causal effect of interest is NP-hard, and provide
heuristic algorithms to overcome this complexity. This is in contrast to our work, where the focus is
on optimizing for a pre-specified causal effect rather than its identifiability.

5 Discussion and open problems

In contrast to running experiments to gather interventional data, which is a process which identifies
edge structure with no bias albeit with a high variance, our approach directly gathers information
about the edge structure, at the cost of potential biases.

Some open problems related to this work include the following.

Incorporating more than pairwise knowledge

Currently, we only consider pairwise direct causal edge information between pairs of variables.
However, there are other forms of expert knowledge such as existence of causal paths between
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variables, v-structures, non-existence of some variables in certain paths etc. which could be addressed
as well [Constantinou et al., 2022]. The inclusion of more types of causal information could help
narrow down causal structure significantly in systems with many variables where interventional data
is hard to come by.

Probabilistic models for SCMs and their inference

Our experiments suggest that given oracle expert feedback, the DiBS model with SVGD has an easier
time recovering the true graph with a single particle rather than multiple partices. This could be for
many reasons, for e.g. due to the repulsive force between the particles pushing them away without
any particle landing on the true graph. The use of multiple particles may also represent a problem
when it comes to optimizing Equation 2. For example, even if our posterior samples of the graphs are
all from the same MEC, we could have different edge directions giving different estimates of causal
effects in the BED step.

Expert model parameters

The hyperparameters of the expert model can be interpreted as a measure of how reliable the expert
is. Realistically, an expert’s knowledge over a causal graph is not uniform over all nodes and edges.
One suggestion to learn this is to use limited interventional data to check for the consistency between
the expert’s beliefs and what the interventional data suggest.

Experimental design loop

In the current formulation, the design space is discrete, and grows quadratically with the number of
variables in the system. When this number is large we may need to resort to heuristics to optimize the
EIG. Moreover, the current approach to select queries is myopic. This is suboptimal compared to
an experimental design approach that takes into account the available budget. The current approach
is also susceptible to time lags in between querying the expert, which may lead to challenges in
deploying such a system in the real world. There is recent work which has addressed the latter two
issues by using a neural network to learn a design policy [Foster et al., 2021].
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