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Abstract

The rapid development of spatial transcriptomics (ST) offers new opportunities to ex-
plore the gene expression patterns within the spatial microenvironment. Current research
integrates pathological images to infer gene expression, addressing the high costs and time-
consuming processes to generate spatial transcriptomics data. However, as spatial tran-
scriptomics resolution continues to improve, existing methods remain primarily focused
on gene expression prediction at low-resolution (55 µm) spot levels. These methods face
significant challenges, especially the information bottleneck, when they are applied to high-
resolution (8 µm) Visium HD data. To bridge this gap, this paper introduces MagNet, a
multi-level attention graph network designed for the accurate prediction of high-resolution
HD data. MagNet employs cross-attention layers to integrate features from multi-resolution
image patches hierarchically and utilizes a GAT-Transformer module to aggregate neigh-
borhood information. By integrating multilevel features, MagNet overcomes the limitations
posed by low-resolution inputs in predicting high-resolution gene expression. We system-
atically evaluated MagNet and existing ST prediction models on both a private spatial
transcriptomics dataset and a public dataset at three different resolution levels. The re-
sults demonstrate that MagNet achieves state-of-the-art performance at both spot level and
high-resolution bin levels, providing a novel methodology and benchmark for future research
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and applications in high-resolution HD-level spatial transcriptomics. Code is available at
https://github.com/Junchao-Zhu/MagNet.

Keywords: Spatial Transcriptomics, Computational Pathology, Medical Image Analysis

1. Introduction

Spatial transcriptomics (ST) provides a novel view for correlating pathological tissue struc-
tures with their spatial gene expression patterns (Burgess, 2019; Asp et al., 2019; He et al.,
2020; Zhu et al., 2024). This approach advances the development of effective treatment
strategies (Asp et al., 2020). Studies have demonstrated a strong correlation between fea-
tures of pathological images and their gene expression patterns (Badea and Stănescu, 2020).
Such findings have motivated the development of image-based methods for predicting gene
expression, offering a non-destructive and cost-effective alternative to traditional sequencing
techniques.

In recent years, the widespread application of deep learning methods in medical image
analysis (Ke et al., 2023; Zhu et al., 2023; Qu et al., 2025) has provided multiple useful tools.
These methods have facilitated the integration of pathology images with other data modal-
ities by automating image interpretation processes (Deng et al., 2025; Zhu et al., 2025).
Currently, several studies have employed methods such as convolutional neural networks
(CNNs) (He et al., 2020; Yang et al., 2023) and graph neural networks (GNNs) (Pang et al.,
2021; Zeng et al., 2022; Jia et al., 2024) to predict spatial transcriptomic expression at the
spot level with low resolution. These approaches exploit spatial dependencies (Zeng et al.,
2022; Pang et al., 2021) and image similarities (Xie et al., 2024; Yang et al., 2023) inherent
in pathological images, thus integrating information to optimize the fusion of image fea-
tures. Such advances address the challenges of scarce high-quality spatial transcriptomic
data and the high cost of acquisition.

Continuous advancements in ST sequencing technology (St̊ahl et al., 2016; Wang et al.,
2018; Eng et al., 2019) have significantly improved the resolution of existing ST data, as is
shown in Figure 1, which has progressed from the initial 55 µm spots to higher resolutions,
such as Visium HD data with bin diameters of 8 µm or even 2 µm. Such advancement
enables a more comprehensive analysis of the relationship between pathological tissues and
gene expression at the single-cell level (Benjamin et al., 2024; Oliveira et al., 2024; Janesick
et al., 2023). However, current deep-learning methods face an information bottleneck when
dealing with high-resolution HD data (Tishby and Zaslavsky, 2015). Specifically, the lim-
ited information from low-resolution input images is insufficient to effectively support the
prediction of high-dimensional gene expression. The features extracted by these models
may lack the complexity required to represent the intricate details of high-resolution, high-
dimensional gene expression data.

To address this issue, this paper proposes MagNet, a Multi-Level Attention Graph
Network designed for accurate prediction of high-resolution HD data. MagNet integrates
information across multiple resolutions, including the bin, spot, and region levels, through
cross-attention layers. MagNet also extracts and combines features from neighboring regions
with Graph Attention Network (GAT) and Transformer layers. Thus, our proposed frame-
work overcomes the information bottleneck posed by low-resolution inputs when predicting
high-resolution, high-dimensional gene expression by efficient extraction and integration of
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Figure 1: Spatial transcriptomics data at different resolutions. (A) Traditional low-
resolution 10X Visium v2 barcoded spots, where spots are discretely distributed
with a diameter of 55 µm. (B) Current high-resolution 10X Visium HD barcoded
squares, where bins are densely distributed with a diameter of 8 µm.

multisource and multilevel features. Furthermore, the model incorporates cross-resolution
constraints on gene expression within the same region, further enhancing its performance
in HD gene expression prediction. Our contributions can be summarized in three aspects:

• We present MagNet, a Multi-Level Attention Graph Network designed for accurate
prediction of high-resolution HD data. To our knowledge, it is the first model dedicated to
HD-level gene expression prediction.

• Our proposed framework leverages cross-attention layers and GAT-Transformer blocks
to effectively extract and integrate multi-source and multi-level features, tackling the infor-
mation bottleneck of low-resolution inputs in predicting high-resolution ST expression.

• We provide our model as an open-source tool, benchmarking and providing a system-
atic evaluation on a privately-collected kidney HD ST dataset and a public colorectal cancer
HD ST dataset.

2. Method

2.1. Unified Cross-Resolution Feature Aggregation

We cropped patches at the bin, spot, and region levels for each bin i, denoted as ib, is and
ir. Features of these patches, represented as fb, fs and fr, are extracted by a pre-trained
ResNet50 (He et al., 2016). We adopt the strategy proposed by TRIPLEX (Chung et al.,
2024) that freezes the encoder parameters for the spot and region levels while updating only
the bin-level encoder to minimize computational overhead.

To refine the representation of fb, the features of other resolutions are treated as the
key matrix (K) and the value matrix (V), with fb acting as the query matrix (Q). A cross-
attention layer is used to effectively merge the features of fs and fr into fb. Thus, the fused
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Figure 2: The network structure of the proposed MagNet. MagNet utilizes cross-
attention layers to integrate features extracted from multi-resolution patches.
Additionally, it incorporates a GAT-Transformer block to aggregate neighbor-
hood information while leveraging spatial relationships. The predictions for each
resolution level are then independently generated by a regression head.

feature f ′
b is formulated as:

f ′
b = softmax

(
fbf

T
i√
d

)
fi, i = s, r (1)

where
√
d is a scaling factor. Finally, by concatenating the features from all three levels,

the fused multi-level feature F is obtained for use in subsequent processes.

2.2. Spatial-Guided Graph Integration Block

To exploit the spatial relationship of pathological images, we propose a spatially-guided
graph integration block that integrates GAT and transformer layers. The connections be-
tween bins are first established by calculating the weight eij between any two nodes i and j
using the Euclidean distance. The top-k lowest eij values are selected to establish connec-
tions within the whole-slide image. The constructed graph is then fed into the spatial-guided
graph integration block for further processing.

Subsequently, after rounds of graph attention convolution, the processed feature F i
m for

each ib, is and ir is formulated as follows:

Fi
m =

∥∥∥∥K
k=1

σ

 ∑
j∈N (i)

αk
ijW

kf jm

 , {m|b, s, r} (2)
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where N (i) denotes the set of adjacent nodes,

∥∥∥∥ represents concatenation operation, σ is

the activation function, αk
ij is the weight of the k-th attention head, and Wk is a linear

transformation matrix determined by the connections between nodes.

A Transformer layer is used for adaptive aggregation of neighborhood information from
each round, thus enhancing the representation of features. Finally, the regression head
generates gene expression predictions for each level separately, denoted as pb, ps, and pr.

2.3. Loss Function

To exploit the mutual consistency among multilevel information, we designed a hybrid loss
function comprising prediction loss Lp and consistency loss Lc to optimize the model learning
process. The prediction loss primarily focuses on minimizing the discrepancies between the
model’s predictions and the ground truth at each resolution level. For the prediction task at
bin level, we employ Mean Squared Error (MSE) and Pearson Correlation Coefficient loss
(PCC) to evaluate the model’s performance. To avoid introducing additional noise, only
PCC loss is utilized to assess the model’s performance at the spot and region levels. Hence,
the prediction loss is formulated as:

Lp = MSE(pb, yb) +
∑

i=b,s,r

λi · PCC(pi, yi) (3)

Here, b, s, and r represent the bin, spot, and region levels, respectively. pi and yi denote the
prediction of the model and its corresponding ground truth, while λi is a hyperparameter
used to balance the PCC loss at different resolution levels.

Since patches at different resolutions within the same region exhibit similar trends in
gene expression, we employ PCC loss to constrain the differences between bin-level predic-
tions and those at other levels. The consistency loss Lc is defined as:

Lc = λ1 · PCC(pb, ps) + λ2 · PCC(pb, pr) (4)

Thus, the overall loss of the model L is defined as:

L = γ1 · Lp + γ2 · Lc (5)

Here, γ1 and γ2 are hyperparameters used to balance the two types of losses, and they are
set to 1 and 0.25 in the subsequent experiments.

3. Data and Experiment

Dataset. We benchmarked our MagNet and other baseline models on a privately col-
lected kidney pathology dataset (VUMC) and a publicly available colorectal cancer (CRC)
dataset (Oliveira et al., 2024). We conducted four-fold cross-validation at the WSI level.
Our in-house dataset contains 12 HD ST samples with three resolutions: 2 µm, 8 µm, and
16 µm, where 1px in the WSI corresponds to 0.25 µm of real tissue. The CRC dataset con-
sists of four samples with a single-layer section, including two CRC tissues and two adjacent
normal tissues. The process has been approved by Institutional Review Board (IRB).
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Table 1: Quantitative comparisons across different datasets. The best performance
is highlighted in bold, where we can observe that MagNet outperforms the state-
of-the-art in multiple resolutions.

Resolution Model
VUMC (in-house dataset) CRC (Oliveira et al., 2024)

MSE MAE PCC MSE MAE PCC

8um/112px

ST-Net 0.193±0.004 0.388±0.009 0.226±0.040 0.292±0.076 0.402±0.084 0.527±0.155

EGN 0.048±0.011 0.134±0.020 0.157±0.024 0.409±0.164 0.508±0.139 0.511±0.152

HisToGene 0.105±0.007 0.241±0.006 0.109±0.018 0.311±0.088 0.419±0.075 0.451±0.128

BLEEP 0.063±0.006 0.163±0.009 0.199±0.052 0.348±0.041 0.440±0.0361 0.475±0.1379

His2ST 0.140±0.019 0.358±0.026 0.175±0.033 0.287±0.113 0.4041±0.109 0.537±0.165

TRIPLEX 0.151±0.152 0.286±0.180 0.107±0.059 0.291±0.110 0.397±0.069 0.498±0.167

MagNet (Ours) 0.048±0.008 0.109±0.008 0.278±0.042 0.271±0.054 0.375±0.053 0.541±0.167

16um/112px

ST-Net 0.288±0.007 0.420±0.027 0.364±0.0539 0.661±0.239 0.632±0.146 0.560±0.151

EGN 0.149±0.037 0.302±0.06 0.308±0.037 0.740±0.0241 0.677±0.013 0.552±0.014

HisToGene 0.204±0.045 0.380±0.052 0.243±0.035 0.660±0.176 0.6368±0.099 0.522±0.136

BLEEP 0.174±0.029 0.290±0.031 0.317±0.058 0.673±0.161 0.625±0.088 0.504±0.123

His2ST 0.224±0.044 0.427±0.049 0.330±0.046 0.610±0.168 0.611±0.103 0.562±0.152

TRIPLEX 0.211±0.079 0.331±0.089 0.310±0.079 0.632±0.123 0.618±0.080 0.412±0.134

MagNet (Ours) 0.127±0.024 0.228±0.034 0.378±0.057 0.564±0.184 0.581±0.114 0.574±0.154

55um/224px

ST-Net 0.442±0.036 0.549±0.019 0.609±0.059 0.767±0.203 0.652±0.086 0.649±0.080

EGN 0.355±0.030 0.471±0.010 0.601±0.0561 0.778±0.229 0.651±0.105 0.674±0.071

HisToGene 0.403±0.028 0.517±0.017 0.596±0.058 0.702±0.173 0.622±0.074 0.663±0.067

BLEEP 0.339±0.026 0.467±0.017 0.576±0.049 0.717±0.112 0.623±0.044 0.667±0.043

His2ST 0.327±0.021 0.459±0.013 0.601±0.058 0.813±0.199 0.673±0.089 0.673±0.065

TRIPLEX 0.442±0.200 0.525±0.119 0.579±0.075 0.828±0.148 0.688±0.048 0.677±0.059

MagNet (Ours) 0.324±0.044 0.458±0.030 0.611±0.082 0.688±0.149 0.612±0.069 0.670±0.059

Data Preprocessing. 6,000 bins were randomly selected for each WSI, and 112×112
pixel patches centered at 8 µm and 16 µm bins were cropped. At the spot and region levels,
patches with diameters of 224 and 512 pixels were extracted across the WSI, with their gene
expressions aggregated from bin-level data. 2,500 spot-level patches per WSI were selected
for training and testing. Patch pairing across levels was based on the distance between
the coordinates in different resolutions. We follow the method proposed in ST-Net (He
et al., 2020) and select the top 250 genes with the highest average expression levels of more
than 20,000 original genes for prediction. Gene expression values were normalized using
the approach introduced in TRIPLEX (Chung et al., 2024), which involves proportional
normalization followed by a log transformation.

Compared Methods and Evaluation Metrics. MagNet was benchmarked against
current ST counterparts, including multi-resolution-based network (Chung et al., 2024),
spatial-aware methods HisToGene (Pang et al., 2021) and His2ST (Zeng et al., 2022),
similarity-based strategy BLEEP (Xie et al., 2024), and EGN (Yang et al., 2023), and
the classic approach ST-Net (He et al., 2020). We used the officially released code pub-
lished along with the papers for all of the methods. The Pearson correlation coefficient
(PCC), mean squared error (MSE), and mean absolute error (MAE) are used to evaluate
the performance of the models comprehensively.
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Figure 3: Qualitative comparison for pivotal SGPP1 gene expression prediction.
SGPP1 expression prediction distribution of randomly selected 16µm bins within
a region in WSI.

Experiment Setting and Implementation. Experiments were conducted on NVIDIA
RTX A6000 GPU cards. The SGD optimizer was utilized, with momentum set to 0.9 and a
weight decay of 10−4. An initial learning rate of 10−4 was applied, which followed a cosine
decay schedule, decreasing it progressively to 1% of its initial value during training. All
models are trained to converge. We employed a batch size of 256 for training and fine-tuned
the hyperparameters λ1, λ2, λb, λs, and λr in our hybrid loss function to values of 0.1, 0.1,
0.8, 0.25, and 0.25, respectively. For graph construction, the top-k value was fixed at 8. We
select 8 µm and 16 µm bins as the target HD resolution to predict, due to the extremely
low gene expression amount in 2 µm bins. During spot-level experiments, we freeze the
encoder parameters of the bin and region levels and update the spot level instead.

4. Results

4.1. Cross-Validation Evaluation

We conducted four-fold cross-validation on the WSI level to validate and benchmark Mag-
Net and SOTAs on the two HD datasets. Table 1 summarizes quantitative comparisons of
various baselines across different datasets and resolutions. Our proposed MagNet consis-
tently outperforms existing methods in almost all metrics, with its superiority particularly
evident at HD high-resolution levels. Taking the 8 µm prediction task in our VUMC dataset
as an example, MagNet achieved MSE, MAE, and PCC values of 0.048±0.008, 0.109±0.008,
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and 0.278±0.042, respectively, significantly surpassing the results of other methods, such as
BLEEP, which reported values of 0.063±0.006, 0.163±0.009, and 0.199±0.052.

These findings demonstrate the capability of MagNet to effectively address the infor-
mation bottleneck inherent in high-resolution gene prediction tasks. By efficiently inte-
grating and leveraging multi-source and multi-level information, MagNet overcomes the
performance limitations caused by constrained data and substantially enhances prediction
accuracy for high-resolution HD data. Furthermore, the relatively low standard deviation
observed among all metrics during cross-validation highlights the method’s robustness and
stability, underscoring its reliability for practical clinical applications.

Table 2: Ablation study for functional blocks in MagNet. The benefits from each
designed block are orthonormal, while MagNet achieves optimal results when in-
tegrating all modules.

Functional Blocks
VUMC (in-house dataset) /16µm CRC (Oliveira et al., 2024)/16 µm

MSE MAE PCC MSE MAE PCC

w.o. GAT & Multi-resolution 0.148±0.042 0.281±0.069 0.299±0.028 0.799±0.259 0.709±0.146 0.548±0.146

w.o. GAT block 0.135±0.030 0.266±0.048 0.306±0.043 0.632±0.170 0.624±0.096 0.550±0.147

w.o. Multi-resolution 0.133±0.030 0.260±0.051 0.323±0.044 0.634±0.175 0.628±0.111 0.563±0.152

w.o. Consistency Loss 0.130±0.023 0.235±0.040 0.369±0.054 0.624±0.187 0.619±0.117 0.559±0.146

w. All blocks 0.127±0.024 0.228±0.034 0.378±0.057 0.564±0.184 0.581±0.114 0.574±0.154

4.2. Pivotal Gene Expression Prediction

We evaluated the clinical applicability of various baselines by analyzing the predictive per-
formance of key biomarker SGPP1 and tubule-related gene DPEP1 in our kidney dataset at
16µm level. SGPP1 and DPEP1 with their associated pathways play a critical role in kid-
ney health and disease, with direct implications for conditions such as acute kidney injury
and fibrotic kidney diseases (Drexler et al., 2021; Keller et al., 2024; Lovric et al., 2017).

Figure 3 illustrates the predictive performance of different models for the SGPP1 gene.
Compared with other baseline models, our proposed MagNet achieved the best MSE of
0.051. Additionally, we analyzed DPEP1 and SGPP1 predictions on WSIs from two samples
in our VUMC dataset. Results show that MagNet achieved MSEs of 0.0544 / 0.0493 for
SGPP1 / DPEP1 at the WSI level, significantly outperforming other methods like EGN
(0.1605 / 0.1855) and BLEEP (0.1530 / 0.1126), further validating its superiority in HD-level
gene expression prediction. By deeply integrating and leveraging multi-level information,
MagNet captures the spatial distribution of key gene expressions in pathological tissues
with higher resolution.

Table 3: Ablation study on high-resolution-level-only baseline.

Functional Blocks
VUMC (in-house dataset)/8µm CRC (Oliveira et al., 2024)/8µm

MSE MAE PCC MSE MAE PCC

w.o. GAT blocks Multi-resolution 0.052±0.023 0.146±0.059 0.180±0.039 0.281±0.084 0.395±0.079 0.512±0.156

w.o. Multi-resolution 0.048±0.013 0.137±0.030 0.159±0.025 0.276±0.075 0.387±0.076 0.540±0.162

w. All blocks 0.048±0.008 0.109±0.008 0.278±0.042 0.271±0.054 0.375±0.053 0.541±0.167
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4.3. Ablation Study

We conducted a detailed ablation study to evaluate the effectiveness of each functional
block, as is summarized in Table 2, Table 3 and Table 4. Experimental results in Table 2
and Table 3 demonstrate that the incorporation of GAT-Transformer blocks and multi-
resolution information compensates for the limited details in the original bin-level data,
yielding a PCC improvement of 0.079 on our dataset and 0.026 on the CRC dataset at
16µm bins. At 8µm bins, PCC increases by 0.098 and 0.029 on the VUMC and CRC
datasets, respectively. Additionally, the consistency loss enhances the synergy of multi-
resolution information, thereby facilitating more effective learning of high-resolution features
and further improving the model’s performance.

We also investigate the pathology-specific foundation model UNI (Chen et al., 2024) as
the encoder for MagNet, with results summarized in Table 4. Compared with ResNet50,
replacing it with UNI led to a slight decline in performance. An explanation is that the
larger model size of UNI constrained the subgraph dimensions during training. To opti-
mize computational efficiency, we process bin-level subgraphs iteratively, where the batch
size determines the graph size. Under the same experimental conditions (one NVIDIA
RTX A6000 GPU with 48GB memory), UNI’s larger parameter count resulted in a reduced
batch size to 64, compared with 256 for ResNet50. This reduction in subgraph size lim-
ited the model’s ability to capture sufficient contextual information from neighboring bins,
ultimately leading to the observed performance degradation.

Table 4: Ablation study on backbone selection for MagNet.

Resolution Backbone
VUMC (in-house dataset) CRC (Oliveira et al., 2024)

MSE MAE PCC MSE MAE PCC

8µm/112px
ResNet50 0.048±0.008 0.109±0.008 0.278±0.042 0.271±0.054 0.375±0.053 0.541±0.167

UNI 0.047±0.006 0.112±0.003 0.266±0.049 0.331±0.088 0.422±0.079 0.505±0.142

16µm/112px
ResNet50 0.127±0.024 0.228±0.034 0.378±0.057 0.564±0.184 0.581±0.114 0.574±0.154

UNI 0.131±0.022 0.239±0.037 0.364±0.054 0.638±0.181 0.617±0.116 0.556±0.112

55µm/224px
ResNet50 0.324±0.044 0.458±0.030 0.611±0.082 0.688±0.149 0.612±0.069 0.670±0.059

UNI 0.339±0.038 0.469±0.024 0.582±0.044 0.735±0.231 0.638±0.084 0.643±0.111

5. Conclusion

We introduce a novel framework specifically tailored for high-resolution gene expression
tasks. Our MagNet model integrates multi-level information and leverages spatial rela-
tionships derived from pathological images, effectively overcoming the input information
bottleneck in HD gene expression prediction. Consequently, MagNet can accurately cap-
ture gene expression patterns at an 8 µm single-cell resolution. In addition, we present the
first systematic and comprehensive evaluation of HD-level spatial transcriptomics datasets.
We benchmarked MagNet against current state-of-the-art methods on two HD datasets
under three different resolution settings. Experimental results demonstrate that MagNet
consistently achieves top-tier predictive performance across multiple resolutions in both
datasets. By extending gene prediction from the spot level to the cellular scale, MagNet
establishes a new paradigm and benchmark for future research in spatial transcriptomics.
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Borg, Jonas Maaskola, Joakim Lundeberg, and James Zou. Integrating spatial gene ex-
pression and breast tumour morphology via deep learning. Nature biomedical engineering,
4(8):827–834, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Amanda Janesick, Robert Shelansky, Andrew D Gottscho, Florian Wagner, Stephen R
Williams, Morgane Rouault, Ghezal Beliakoff, Carolyn A Morrison, Michelli F Oliveira,
Jordan T Sicherman, et al. High resolution mapping of the tumor microenvironment
using integrated single-cell, spatial and in situ analysis. Nature Communications, 14(1):
8353, 2023.

Yuran Jia, Junliang Liu, Li Chen, Tianyi Zhao, and Yadong Wang. Thitogene: a deep
learning method for predicting spatial transcriptomics from histological images. Briefings
in Bioinformatics, 25(1):bbad464, 2024.

Jing Ke, Yizhou Lu, Yiqing Shen, Junchao Zhu, Yijin Zhou, Jinghan Huang, Jieteng Yao,
Xiaoyao Liang, Yi Guo, Zhonghua Wei, et al. Clusterseg: A crowd cluster pinpointed
nucleus segmentation framework with cross-modality datasets. Medical Image Analysis,
85:102758, 2023.

Nancy Keller, Julian Midgley, Ehtesham Khalid, Harry Lesmana, Georgie Mathew, Chris-
tine Mincham, Norbert Teig, Zubair Khan, Indu Khosla, Sam Mehr, et al. Factors in-
fluencing survival in sphingosine phosphate lyase insufficiency syndrome: a retrospective
cross-sectional natural history study of 76 patients. Orphanet journal of rare diseases, 19
(1):355, 2024.

Svjetlana Lovric, Sara Goncalves, Heon Yung Gee, Babak Oskouian, Honnappa Srinivas,
Won-Il Choi, Shirlee Shril, Shazia Ashraf, Weizhen Tan, Jia Rao, et al. Mutations in
sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency.
The Journal of clinical investigation, 127(3):912–928, 2017.

Michelli F Oliveira, Juan P Romero, Meii Chung, Stephen Williams, Andrew D Gottscho,
Anushka Gupta, Susan E Pilipauskas, Syrus Mohabbat, Nandhini Raman, David
Sukovich, et al. Characterization of immune cell populations in the tumor microenviron-
ment of colorectal cancer using high definition spatial profiling. bioRxiv, pages 2024–06,
2024.

Minxing Pang, Kenong Su, and Mingyao Li. Leveraging information in spatial transcrip-
tomics to predict super-resolution gene expression from histology images in tumors.
BioRxiv, pages 2021–11, 2021.

11



Zhu Deng Yao Xiong Qu Guo Lu Tang Xu Yin Wang Zhao Wang Yang Huo

Chongyu Qu, Ritchie Zhao, Ye Yu, Bin Liu, Tianyuan Yao, Junchao Zhu, Bennett A
Landman, Yucheng Tang, and Yuankai Huo. Post-training quantization for 3d med-
ical image segmentation: A practical study on real inference engines. arXiv preprint
arXiv:2501.17343, 2025.

Patrik L St̊ahl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernández Navarro,
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MagNet: Multi-Level Attention Graph Network

Appendix A. Gene Selection and Estimation

To estimate the gene expression at the spot level and the region level, we aggregated the
value of gene expression of 16 µm bins within their respective spot and region areas. This
process can be defined as:

ys =
∑
i∈S

yi, yr =
∑
i∈R

yi (6)

Here, yi denotes the gene expression value at the i-th bin, S represents the set of bins
within a specific spot, and R denotes the set of bins within a certain area, thus ensuring
the consistency of gene expression across multiple resolutions. The selected genes with the
highest average expression for each dataset and resolution are presented in Figure. 4

Figure 4: Gene selection in each dataset and resolution.
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