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ABSTRACT

Clustering is a fundamental step in learning and analyzing graphs. Commonly
accepted criteria for evaluating graph clustering quality without ground truth are
the “normalized cut” (ncut), and the “ratio cut” (rcut). Traditional algorithms
that minimize ncut and rcut take O(mnk) to cluster a graph of n nodes and m
edges into k clusters. Faster algorithms sacrifice accuracy for speed and run in
O(m+nk2). A very recent algorithm runs in O(m+nk log k). The space com-
plexity of these algorithms ranges from O(n2) to O(n log k). We describe a new
algorithm with running time of O(m logm) that achieves accuracy similar to tra-
ditional algorithms. Our algorithm is simple to implement, and requires only
O(m) memory. It can also be applied in the multi-view setting, where multi-
ple graphs share the same set of nodes. Our algorithm can cluster a small number
of views with no increase in its running time. We describe a randomized imple-
mentation that allows a qualitative comparison between various internal clustering
criteria. Our experiments suggest a new criterion that we call “linfcut” as superior
to both the ncut and the Cheeger criteria, computing clusters that “make more
sense” to a human observer. Our algorithm performs a search for edges between
clusters. Its speed is the result of a strong “ignorance” (pruning) condition that
allows ignoring most of the edges after little computation.

1 INTRODUCTION

Graph representation of data provides information about the relationship between data items. Clus-
tering the graph nodes is a fundamental step in graph learning, that was very heavily studied. A
successful general approach is spectral clustering, which relies on eigenvectors of the graph Lapla-
cian. For general references see, e.g. Meila (2016); Bolla (2013); Nascimento & Carvalho (2011);
von Luxburg (2007).

Closely related to graph clustering is the problem of multi-view graph clustering. Here it is assumed
that there are multiple graphs sharing the same set of nodes, each describing a distinct relationship
between the data items. Multi-view graph clustering searches for a node partition that provides a
good clustering for each one of the multiple graphs. For general references see, e.g. Fang et al.
(2023); Chao et al. (2021).

1.1 THE CLASSICAL ALGORITHM FOR k CLUSTERING

Spectral clustering was popularized by the work of Shi & Malik (2000). They computed k clusters by
iteratively partitioning a single cluster into a pair of clusters. See von Luxburg (2007) for additional
details. The main theme that we follow started with Ng et al. (2001), where k eigenvectors were
used to obtain k clusters.

Let G be an undirected graph of n nodes and m edges. Let wij be the non-negative weight between
nodes i and j, so that the matrix W=(wij) is n×n. The degree of node i is di=

∑
j wij . The

degree vector is d=(d1, . . . , dn)
T , and the n×n degree matrix is D=diag(d). The graph Laplacian

is L=D−W . The Laplaian can be normalized in various ways, giving rise to different clustering
criteria. We denote the normalization matrix by P=diag(p1, . . . , pn). It is a diagonal matrix with
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the diagonal elements pi>0. The normalized Laplacian L̃ is defined by the following formula:

L̃ = P−1/2LP−1/2.

The most common choices of P are given in the following definition:

Definition 1. Normalization matrices.

Ratio Cut Normalization: Here pi=1, so that P=I , and L̃=L. See von Luxburg (2007).
Normalized Cut Normalization: Here pi=di, P=D, and L̃=D−1/2LD−1/2.

See von Luxburg (2007).

The related clustering criteria are specified in the following definition:

Definition 2. Suppose the n nodes of G are partitioned into the k disjoint partitions A1, . . . , Ak.
Let P=diag(p1, . . . , pn) be a normalization matrix.
The volume of partition t is defined by: Vt=

∑
i∈At

pi.
The cut of partition t is defined by: Ct=

∑
wi,j , where either i or j are in At but not both.

The generalized normalized cut of the partition A1, . . . , Ak is: gcut= 1
2

∑k
t=1

Ct

Vt
.

In particular, Ratio Cut, and Normalized Cut, are obtained from the normalizations in Definition 1.

Algorithm 1: Classical Spectral Clustering
Input: A graph G with n vertices and m nodes to be clustered into k clusters. A choice of P .
Output: The k clusters.

1. Compute the normalized Laplacian L̃=P−1/2LP−1/2.
2. Compute u0, . . . , uk−1, the k eigenvectors of L̃ corresponding to its k smallest eigenvalues. Set

U=(u0, . . . , uk−1). U is n×k. Normalize each row of U to a unit vector.
3. Consider the nomalized rows of U as n points in Rk. Use the k-means algorithm to cluster

these points into k clusters. Return these k clusters as output.

The reason that Algorithm 1 works is that it minimizes normalized cuts. The proof of this fact relies
on the following theorem:

Theorem 1. Let A1, . . . , Ak be a disjoint partition of the graph nodes. Then there are k cluster
indicator vectors q1, . . . , qk such that:

gcut(A1, . . . , Ak)=

k∑
j=1

qTj L̃qj

qTj qj
(1)

For the proof see von Luxburg (2007).

Indicator vectors have the same value for coordinates inside the cluster, and another value for coor-
dinates outside the cluster. Minimizing Equation (1) for such discrete values is NP-hard (e.g., Shi &
Malik (2000)), but if it is relaxed to real values, then from the Courant Fischer theorem the global
minimum is obtained with the k eigenvectors used in Algorithm 1. Therefore, the eigenvectors
computed in Algorithm 1 should be approximate linear combinations of indicator vectors, which
indicates that they should have approximately the same value over each cluster. In such a case the
clustering should be recoverable by k-means.

In summary, the classical spectral clustering algorithm performs well minimizing normalized cuts
because it finds the globally optimal solution of a relaxed problem.

1.2 PREVIOUS STUDIES

Algorithm 1 is easy to implement since eigenvalue routines and k-means implementations are readily
available. However, direct implementations may be very slow when applied to large graphs. Much
of the research in this area, including our result, is aimed at improving the running time.
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Table 1: Complexity of several spectral clustering algorithms

Line Citations Running time Memory Notes
1 Ng et al. (2001) O(nmk) O(n2)
2 Fowlkes et al. (2004) O(m+nlk+l3) O(nl) l ≥ k
3 Li et al. (2011) O(m+nlk) O(nk) l ≥ k
4 Cai & Chen (2015) O(m+nl2) O(nk) l ≥ k
5 Wang et al. (2021) O(m+ nlk) O(n2) l ≥ k
6 Hai Zhang & Chang (2022) O(n2l) O(nl) l ≥ k
7 Chen et al. (2023) O(m+nk2) O(nk)
8 Macgregor (2023) O(m+nk log k) O(n log k)
9 Our Algorithm O(m logm) / O(m logm log n) O(m)

10 Our Algorithm, multiview O(m logm+v(n−k) log n) O(m)

1.2.1 SINGLE VIEW SPECTRAL CLUSTERING

Deep learning approaches to spectral clustering attempt to infer the graph from the data, and combine
this with steps 1,2 of the algorithm. Examples of this approach include SpectralNet of Shaham et al.
(2018), DivClust of Metaxas et al. (2023), and the dual aoutoencoder network of Yang et al. (2019).
See also the overview by Wei et al. (2024).

These deep learning approaches cannot be directly compared to the conventional approaches because
they have a different input. In terms of running time they do better than the conventional “old”
algorithms (see Table 1), but do not seem to be competitive with the more recent fast clustering
methods described in this section,

There is a very large number of studies on various aspects of traditional spectral clustering. We
are mostly interested in the running time, which is the focus of most current research. Table 1
lists several algorithms with their time and space complexity. With the exception of our algorithm,
all others can be viewed as modifications of Algorithm 1. The older algorithms are dominated by
the complexity of computing the k eigenvectors, while the running time of the newer algorithms
approaches the running time of the k-means step.

Line 1 of Table 1 corresponds to he original spectral clustering algorithm. With an efficient eigen-
value routine its running time is O(nmk), which is considered impractical for many applications.
The algorithms cited in lines 2, 3 select l random columns and approximate eigenvectors from the
n×l sample matrix. A different sampling technique is used with the algorithm cited in Line 4,
which uses k-means (with large k) to find the sampled columns. These and other algorithms that
follow similar ideas can be found in a review paper by Tremblay & Loukas (2020). The paper cited
in Line 5 suggests an alternative to k means, which can be implemented with roughly the same
cost. The papers cited on lines 6,7 apply recently developed randomized techniques to compute the
eigenvectors.

A very recent algorithm, cited in Line 8, comes with an even lower running time. The main idea
is to use only log k eigenvectors (or other equivalent vectors). This reduces the complexity of the
k-means step to O(nk log k), which dominates the complexity of the algorithm.

The complexity of the algorithm we propose is shown in Line 9. Its running time is data dependent.
The worst case running time is O(m logm log n), but the expected time is O(m logm), For sparse
graphs, where m=O(n), our algorithm is much faster than the others, especially for large k values.
Even when compared to Macregor’s algorithm shown in Line 8, our algorithm is faster for large k
and sparse graphs. A detailed experimental comparison is given in Section 3.

1.2.2 MULTI-VIEW CLUSTERING

When given multiple graphs as distinct views of the data, multi-view clustering attempts to dis-
cover node clustering that is good “on the average”, where the average is taken over the multiple
views. The traditional approaches attempt to compute averages of properties that can be extracted
from the single view graphs, and then compute the clustering from these averages. For example,
the “Co-regularized Multi-view Spectral Clustering” algorithm of Kumar et al. (2011) attempts to
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average cluster indicator matrices computed from the views. Zhong & Pun (2022) computes relaxed
clustering from each view and then attempts to average them to obtain a single view.

Unlike the single view case, multi-view clustering algorithms do not solve optimally a relaxed con-
tinuous problem. We point out that the typical running time of current multi-view techniques can be
significantly higher than a similar single-view problem. By contrast, the algorithm we propose has
roughly the same complexity for both single and multiple views.

1.3 OUR APPROACH

The current state of the art spectral clustering algorithms may be too slow for “massive graphs” that
appear in many current applications. See Bader (2022) for a variety of practical problems involving
graphs with billions of nodes. Our goal in this study is to improve the current state of the art in terms
of speed, without significantly reducing accuracy. We describe a very fast clustering algorithm for
minimizing ratio criteria (see Definition 2), which can be directly compared with traditional spectral
clustering algorithms.

The basic algorithm. We propose a greedy procedure for minimizing cuts, showing how to obtain
k-clustering from k+1-clustering. Applying this recursively (n−k times) produces k-clustering
from the initial (trivial) n-clustering. The same approach can be used, with minimal changes, in the
multi-view case.

Improving the speed. The greedy approach described above is not fast enough, resulting in al-
gorithms with running time proportional to mn. Examining Table 1 it is clear that this running
time is not competitive. Our main result is a reduction of this running time to O(m logm) on the
average, O(m logm log n) worst case. The key idea is the observation that large portions of the
calculations in the greedy algorithm need not be carried out at all. We note that for sparse graphs
O(m logm log n) running time is faster than a single iteration of k-means for sufficiently large k.

Randomization. The next issue that we investigate is how to randomize the algorithm. The ran-
domization produces an algorithm that is no longer greedy. The challenge that we solve in Sec-
tion 2.3 is how to obtain such randomization without significantly reducing the running time. The
randomization improves the algorithm accuracy and allows several extensions.

Several top solutions. A simple extension of the randomized algorithm produces as output several
top solutions that were obtained during the multiple runs. For a different method of producing
multiple solutions see, e.g. Guedes et al. (2016).

Cheeger and linfcut criteria. The randomized algorithm enables evaluating various clustering cri-
teria. We describe experiments with the generalized Cheeger criterion e.g., Lee et al. (2014), and
propose a new criterion that we call linfcut.

We summarize below our main contributions:

• An O(m logm)(expected) clustering algorithms that minimizes the same criteria as classi-
cal spectral clustering algorithms.

• An O(m logm) (expected) multi-view spectral clustering algorithm.
• Randomized variants of these algorithms that can produce several top solutions.
• Randomized variants of the above algorithms that can optimize various clustering criteria.
• The discovery of linfcut, a new clustering criterion that appears to have an advantage over

previously proposed criteria, as judged by a human observer.

2 THE PROPOSED ALGORITHM

Recall Definition 2 where the generalized cut of the graph partition A1, . . . , Ak is computed by a
sum over the partition subsets. It can also be expressed by a sum over all edges as follows:

gcut=
1

2

k∑
t=1

Ct

Vt
=

∑
edge (i,j,w)

h(i, j, w), where: h(i, j, w)=

{
0 A(i)=A(j)

wij(
1

V (i)+
1

V (j) ) A(i) 6=A(j) (2)

Here A(i) is the partition of i, and V (i) is the volume of A(i).
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Suppose we are given a partition into k+1 subsets. It can be reduced to a partition of k subsets by
merging two subsets. Examining Equation (2) suggests the following simple greedy heuristic:

Heuristic 1: Merge the subsets connected by i and j that maximize h(i, j, w).

Heuristic 1 can be used to design a k-clustering algorithm. The algorithm starts with the n clustering
obtained by considering each node as a cluster, and applies the heuristic n−k times. It is shown
below as Algorithm 2.

Algorithm 2: A greedy algorithm for k-clustering
Input: The m edges (i, j, wij). The normalization values p1, . . . , pn. (See Definition 1.)
Output: The k clusters.
Initialization: Create the initial clustering as the n subsets A0

1, . . . , A
0
n, where A0

i = {i}.
Set the initial cluster volumes V 0

1 , . . . , V
0
n as: V 0

i = pi.
Iteration: For t = 0, . . . , n−k−1:

1. Compute the value h(i, j, wij) for all edges using Equation (2).
2. Select the edge (i∗, j∗, w∗) such that: h(i∗, j∗, w∗) = maxi,j h(i, j, w).
3. Remove the subsets At(i∗), At(j∗), replacing then with the subset:

At
∗ = At(i∗) ∪At(j∗), and set V t

∗ = V t(i∗) + V t(j∗).
4. Rename the subsets At+1

1 . . . , At+1
n−(t+1), and their corresponding volumes.

Termination: Produce as output the subsets An−k
1 , . . . An−k

k .

In the algorithm description we write A(i) for the subset that contains i. This is typically called a
“find” operation. The cost of naive implementations of the “union” in Step 3, and the “find” op-
erations in Step 1 may overwhelm the algorithm complexity. However, using the classical “Union-
Find” data structure reduces the cost of each “Union” to log n, and the cost of each “find” operation
to (almost) a constant. See, e.g. Cormen et al. (1992). With this implementation the complexity of
Algorithm 2 is O(m(n−k)). Still, according to Table 1 this is not competitive.

We proceed to describe our main result, a fast implementation of Algorithm 2. This is accomplished
using a binary heap. Recall that max-heap is a data structure that provides fast implementation of the
following operations (among others): Make Heap -O(m), Insert Element -O(logm), View Max
- O(1), Extract Max- O(logm). The implementation is shown in Algorithm 3.

Algorithm 3: Fast graph clustering
Input: The m edges (i, j, wij). The normalization values p1, . . . , pn. (See Definition 1.) k - the

desired number of clusters.
Output: The clusters.
Initialization: Create the initial clustering as the n subsets A1, . . . , An, where Ai={i}.

Set the corresponding volumes V1, . . . , Vn. Vi=pi.
Insert the subsets and their volumes into a Union-Find.
Compute the value h(i, j, wij) for all edges using Equation (2).
Make Heap from the edges with their corresponding h values.

Iteration: Repeat until n−k edges are selected:
1. Extract Max to obtain the edge e1=(i1, j1, w1) with the value h1 old
2. Update the value of h1 old using Equation (2) with the most current clustering

information in Union-Find. Denote the new value h1 new.
3. View Max on the heap (after e1 extraction) to obtain the edge e2 with value h2 old.
4. If h1 new ≥ h2 old perform Union(A(i1), A(j1)). Otherwise

Insert Element(e1, h1 new).
Termination: The output is the subsets in the Union-Find data structure.

2.1 ANALYSIS OF ALGORITHM 3

An edge can be extracted (in Line 1 of the Iteration), then updated (in Line 2), and then re-inserted
(in Line 4). An important observation is that the edge value cannot increase in this cycle.
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Proposition 1. The value associated with an edge in the heap cannot increase.

Proof: According to Equation (2) the value of h(i, j, w) is inversely related to V (i), V (j). The
proof follows from the observation that during the run of the algorithm these volumes can only grow,
but never shrink.

Observe that an edge is only evaluated after it is extracted in Line 1 of the iteration. Most edges
are not fully evaluated with the clustering produced as output. They are typically evaluated with
clustering obtained early in the computation. Still, we prove that when Algorithm 3 terminates
successfully its output is the same as that of Algorithm 2.

Theorem 2. If ties in Algorithm 3 are resolved in the same way as in Algorithm 2 then its clustering
output is the same as the output of Algorithm 2.

Proof: The proof is by induction on the number of clusters.

It is easy to verify that for k=n both algorithms return n clusters, each consisting of a single node.
Now suppose the theorem is true for k and prove its correctness for k−1. From the inductive as-
sumption both algorithms have the same k-clustering in the Union-Find data structure. Algorithm 2
selects the next edge as the one with the largest h value computed from these volumes. We need to
show that Algorithm 3 selects the same edge.

The edge selected by by Algorithm 3 is e1 satisfying the condition h1 new ≥ h2 old (ineq 1). We need
to prove h1 new ≥ ht new (ineq 2), where t ranges over all the edges in the heap, and the “new”
indicates that they are computed from the volumes in the k-clustering. From the max-heap property
we have: h2 old ≥ ht old (ineq 3) for all t in the heap, and from Proposition 1 we have ht old ≥ ht new
(ineq 4) for all t in the heap. The proof follows by observing that concatenating ineq 1,3,4 gives
ineq 2.

Complexity. The space complexity is the amount of memory needed for the heap and for the Union-
Find. The heap requires O(m), and the Union-Find takes O(n). Therefore, the amount of memory
required by the algorithm is O(m).

The running time is affected by the heap calculations and by the Union-Find calculations. The heap
calculations take O(xm logm), where xm is the number of Extract Max calls. The Union-Find
takesO((n−k) log n). Therefore the running time complexity isO(xm logm). We proceed to show
that x is bounded by log n. Experiments described in Section 3 show that x is almost always a small
constant.
Lemma 1. The number of Extract Max calls in Algorithm 3 is at most log2 n.

Proof sketch: We first observe that the worst case is the complete graph with equal weights. Con-
sider the special case where the graph is partitioned into c clusters of equal size. It can be shown
that after an additional selection of c/2 edges the graph will be partitioned into c/2 clusters of ap-
proximately the same size. The worst case is when all c/2 clusters are of exactly the same size. It can
further be shown that while these edges were selected, the number of edges that were extracted and
then put back into the heap is: α(c) = n2(c−2)/(2c) ≤ n2(n−2)/(2n) = n(n−2)/2. Therefore,
the total number of extractions in this worst case is:

α(n) + α(n/2) + α(n/4) + . . .+ α(2) ≤ (log2 n)n(n−2)/2
This gives:

x = number of extractions/m ≤ (log2 n)n(n−2)/n(n−1) < log2 n

Our experiments show that the worst case considered in the proof of Lemma 1 significantly overes-
timates typical values obtained on real data. See Section 3.3.

2.2 MULTI-VIEW CLUSTERING

As discussed in Section 1.2.2 multi-view clustering computes clustering of several graphs sharing
the same set of nodes. The most straightforward clustering criteria are obtained from sum / or
average of single view criteria. Specifically, the multi-view equivalent of gcut would be:
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mvgcut= 1
2

∑v
z=1

∑k
t=1

Cz
t

V z
t

. In this formula v is the number of views, and Cz
t , V

z
t are the cut and

the volume of cluster t in view z. The equivalent of Equation (2) is given by:

mvgcut=
1

2

v∑
z=1

k∑
t=1

Cz
t

V z
t

=

v∑
z=1

∑
(i,j,wz)

h(i, j, wz) =
∑
(i,j)

v∑
z=1

h(i, j, wz) =
∑
(i,j)

hmv(i, j) (3)

hmv(i, j) =

v∑
z=1

h(i, j, wz), h(i, j, wz) is defined in Equation (2). (4)

Algorithm 3 can be easily modified for handling multi-view clustering. The differences are as fol-
lows.

• Input: v graphs on the same set of vertices.
• Data Structures: The algorithm maintains one heap and v Union-Find instances.
• Edge h value: The formula for the h value of an edge is given by Equation (4).

Complexity. The space complexity is the amount of memory needed for the heap and for v Union-
Find instances. The heap requires O(mv), and each the Union-Find takes O(n). Therefore, the
amount of memory required by the algorithm is O(mv).

The running time is affected by the heap calculations, and by the Union-Find calculations. The
heap calculations take O(xm logm) and the Union-Find takes O(v(n−k) log n). Since x is taken
as a small constant, the running time complexity is O(m logm+v(n−k) log n).

2.3 RANDOMIZATION

In this section we describe a randomized implementation of Algorithm 3. The randomized algorithm
is more accurate than the greedy version, and can be used to compute clustering according to various
criteria. The main idea is straightforward: instead of using the “h” values to select an edge, select
an edge at random with probability proportional to h. A direct implementation of this idea requires
computing the h values for all edges, which we consider too slow. Instead, we describe a solution
that can be implemented with a minor change to Algorithm 3.

The key is the classical algorithm of Eframidis & Spirakis (2006). Consider a subset of m elements
and their associated nonnegative h values. Let ht be the value associated with element t.

Eframidis and Spirakis show that a random selection of an elements with probability proportional
to h can be achieved by selecting the element with the largest rand h value, defined by: rand ht =
r
1/ht

t , where rt is selected uniformly at random from the range [0, 1]. The implementation of this
idea is shown as Algorithm 4. It uses the following definition:

if h(i, j, w)=0 then h(i, j, w, r)=0, otherwise h(i, j, w, r)=r1/h(i,j,w).

h(i, j, w) is computed from Equation (2).
(5)

Correctness. The internal iteration in Algorithm 4 runs identical to Algorithm 3, but with rand h,
as computed in Equation (5), instead of h, as computed in Equation (2). The proof of Theorem 2
relied on the monotonicity of h. We need to show that rand h is also monotonic. To see this it is
enough to notice that from Equation (5) h(i, j, w, r)=r1/h(i,j,w), so that h(i, j, w, r) is monotonic in
h(i, j, w). We point out that this property holds because we keep the random value r fixed for each
edge during a random iteration. This is essential for the correctness of the randomized algorithm.

Extensions:

• Algorithm 4 can be generalized to the multi-view case using the same procedure as the exten-
sion of Algorithm 2 to the multi-view case. We skip the details.
• Instead of returning the “single best” solution as the output of Algorithm 4 one can retain

several top solutions.
• Different criteria for evaluating the output and determining top solutions.
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Algorithm 4: Randomized fast graph clustering
Input: The m edges (i, j, wij). The normalization values p1, . . . , pn. (See Definition 1.)

k - the desired number of clusters.
riters - number of random iterations.
Criterion- the clustering criterion (e.g., ncut)

Random iterations: iterate for s = 1, . . . , riters:
1. Select m random values r1, . . . , rm uniformly from [0, 1].
2. Create the initial clustering Ai={i}, Vi=pi, for i=1, . . . , n.

Insert these subsets and their volumes into a Union-Find.
3. For each edge s compute the value rand h(i, j, w, rs) according to Equation (5).

Make Heap from the edges with their corresponding rand h values.
Iteration: Repeat until n−k edges are selected:

1. Extract Max to obtain the edge e1=(i1, j1, w1), with the value h1 old
2. Update the value of h1 old using Equation (5) with the most current clustering in

Union-Find. Denote the new value h1 new.
3. View Max on the heap (after e1 extraction) to obtain the edge e2 with value h2 old.
4. If h1 new ≥ h2 old perform Union(A(i1), A(j1)).

Otherwise Insert Element(e1, h1 new).
End of random iteration: Retain the subsets in Union-Find with their Criterion value.

Output: The retained solution with the best criterion value.

3 EXPERIMENTAL RESULTS

Clustering criteria. As discussed in Section 1.1 classical spectral clustering optimizes normalized
cuts, which leads to ncut and rcut. The explicit formula as given in Definition 2 is: gcut= 1

2

∑k
t=1

Ct

Vt
.

Thus, minimizing gcut gives a minimization on the average of Ct

Vt
, but no guarantees on any partic-

ular cluster. An alternative is the generalized Cheeger criterion given by:

Cheeger = max
t

Ct

Vt
. (6)

See, e.g. Lee et al. (2014). As in the case of generalized cuts this formula specifies two crite-
ria, depending on the normalization. We refer to them as CheegerNcut and CheegerRcut. In our
experiments we use CheegerNcut which appears to be the most common.

As pointed out in Equation (2) the formula for gcut can also be written as:
gcut=

∑
cut edges (i,j,w) w(1/V (i)+1/V (j)). Therefore, gcut can also be viewed as minimiz-

ing the average w(1/V (i)+1/V (j)) over all cut edges. As in the Cheeger case, minimizing the
average does not guarantee anything about a single edge. We propose the following measure that
does give such guarantees:

linfcut = max
cut edges (i,j,w)

w(1/V (i)+1/V (j)) (7)

As in the other cases this gives two criteria depending depending on the normalization. We refer to
them as linfcutNcut and linfcutRcut. In our experiments we use linfcutNcut.

Evaluation criteria. There are two families of evaluation criteria for the result of clustering. The
first is based on external criteria, and requires ground truth, and the second is based on internal
criteria, that can be determined from the data itself.

3.1 CLUSTERING QUALITY AND SPEED

Single view, internal criterion. This experiment was performed with the following 4 algorithms:
Classical is a direct implementation of Algorithm 1. FastSimple is the Macgregor algorithm. Heap
is the implementation of Algorithm 3. Heap20 is the implementation of Algorithm 4 with 20 random
iterations. The graph was computed from an image obtained from the Coil dataset(see Nene et al.
(1996)).
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Algorithm k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
ncut values

Classical 0.0039 0.0077 0.0112 0.0133 0.0247 0.0332 0.0372 0.0526
FastSimple 0.0421 0.0956 0.1601 0.2202 0.2739 0.3254 0.4701 0.4697
Heap 0.0031 0.0071 0.0102 0.0148 0.0193 0.0295 0.0390 0.0555
Heap20 0.0021 0.0059 0.0088 0.0140 0.0193 0.0295 0.0390 0.0555

running time
Classical 12.7011 9.3243 7.4482 6.4024 6.3571 6.0650 5.4394 5.4563
FastSimple 0.1666 0.2054 0.2055 0.2146 0.2020 0.2163 0.2033 0.2409
Heap 0.286 0.277 0.285 0.282 0.261 0.272 0.261 0.247
Heap20 0.837 0.811 0.832 0.86 0.829 0.814 0.824 0.828

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 3 k = 3

Classical FastSimple Heap Heap20 Classical FastSimple Heap Heap20

Figure 1: Clustering experiment with obj43 from the COIL dataset

Table 2: Clustering experiment, external criteria, single view

criterion Algorithm k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

ARI
Classical 1 0.5135 0.5757 0.5481 0.5878 0.5476 0.4388
FastSimple 0.4748 0.06144 0.0966 0.0801 0.053 0.0465 0.0585
Heap 1 0.5082 0.4579 0.4918 0.512 0.4807 0.5239

NMI
Classical 1 0.5787 0.6248 0.6079 0.6404 0.6272 0.5712
FastSimple 0.3942 0.0701 0.1313 0.1292 0.1026 0.0970 0.1305
Heap 1 0.5890 0.5390 0.5630 0.6130 0.5450 0.6080

The experimental results are shown in Figure 1. The top performers in terms of ncut values are
clearly “Heap20” and “Classical”. The results of “FastSimple” are quite bad. The running time
shows a clear advantage of “FastSimple”, with our “Heap” algorithm coming second.

Single view, external criterion. For this experiment we use the “Multiple Features” dataset from
the UC Irvine Repository. The ground truth is available, and the measures that we use are the
ARI and the NMI. The three algorithms that were compared are the Classical, the FastSimple of
Macgregor, and Algorithm 3 that we call the “Heap”. The results are shown in Table 2. Here the
results of our algorithm are clearly below “Classical”, but clearly superior to “FastSimple”.

Multi-view. Experiments with multi-view spectral clustering are shown in Table 3. The comparison
is with Kumar et al. (2011) that we call CoReg, and with Kumar & III (2011) that we call CoTrain.
The graph was generated from a small image taken from the SF-MASK dataset. The results show
that our algorithm is competitive in terms of quality.

3.2 HUMAN EVALUATION OF CLUSTERING CRITERIA

Examining the results of clustering on many images we come to the conclusion that in most cases
the LinfCut criterion is superior to both Ncut and Cheeger. We were not able to distinguish between
Ncut and Cheeger based on quality. One example is shown below:

9



Under review as a conference paper at ICLR 2024

Table 3: Multi-view clustering experiment using ncut

Algorithm k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

CoTrain 0.0014 0.0035 0.0110 0.0229 0.0265 0.0925 0.0611 0.0903
CoReg 0.0014 0.0022 0.0039 0.0381 0.0527 0.0626 0.0741 0.1146
Heap 0.0005 0.0031 0.0046 0.0092 0.0141 0.0194 0.0307 0.0405

Table 4: Amortized number of extractions
Data Algorithm k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

medium image

Single View 4.65 4.64 4.64 4.63 4.63 4.61 4.59
Multi View 3.68 3.67 3.66 3.66 3.65 3.65 3.65
n 16384 16384 16384 16384 16384 16384 16384
log2 n 14.00 14.00 14.00 14.00 14.00 14.00 14.00

small image

Single View 3.36 3.32 3.3 3.25 3.21 3.19 3.18
Multi View 2.46 2.46 2.43 2.41 2.39 2.38 2.36
n 690 690 690 690 690 690 690
log2 n 9.43 9.43 9.43 9.43 9.43 9.43 9.43

UCI

Single View 6.33 6.34 6.47 6.58 6.61 6.62 6.59
Multi View 5.48 6.09 6.32 6.4 6.48 6.42 6.44
n 600 800 1000 1200 1400 1600 1800
log2 n 9.22 9.64 9.96 10.23 10.45 10.64 10.81

linf, k=2 Ncut, k=2 Cheeger,k=2 linf, k=3 Ncut, k=3 Cheeger,k=3

linf, k=4 Ncut, k=4 Cheeger,k=4 linf, k=5 Ncut, k=5 Cheeger,k=5

3.3 THE NUMBER OF EXTRACTIONS

Lemma 1 showed that the number of amortized extractions during the run of the algorithm is
bounded by log n. Table 4 shows the values obtained when the algorithm is applied to real data.
Observe that typically the amortized value is significantly smaller than log2 n.

4 CONCLUDING REMARKS

Most spectral clustering algorithms are developed as variants of Algorithm 1. Our approach is
different. We take a traditional computer science approach, looking for a solution by a greedy-
search algorithm and improving it by randomization. With the exception of Macgregor’s algorithm,
our algorithm is the fastest. Macgregor’s algorithm is sometimes faster, but typically less accurate.

The speed of our algorithm allows us to run a randomized variant, and evaluate clustering criteria that
were not previously evaluated experimentally. While there is theoretical work on the importance of
the Cheeger criterion, we are not aware of any experimental comparison between it and other criteria.
The reason might be that there were no sufficiently fast algorithms for computing clustering with
the Cheeger criterion. We suggest the linfcut criterion, which appears better to a human observer.
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