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Abstract

Significant progress has been made in text-to-video generation through the use of
powerful generative models and large-scale internet data. However, substantial
challenges remain in precisely controlling individual concepts within the generated
video, such as the motion and appearance of specific characters and the movement
of viewpoints. In this work, we propose a novel paradigm that generates each
concept in 3D representation separately and then composes them with priors from
Large Language Models (LLM) and 2D diffusion models. Specifically, given an
input textual prompt, our scheme consists of three stages: 1) We leverage LLM
as the director to first decompose the complex query into several sub-prompts
that indicate individual concepts within the video (e.g., scene, objects, motions),
then we let LLM to invoke pre-trained expert models to obtain corresponding
3D representations of concepts. 2) To compose these representations, we prompt
multi-modal LLM to produce coarse guidance on the scales and coordinates of
trajectories for the objects. 3) To make the generated frames adhere to natural image
distribution, we further leverage 2D diffusion priors and use Score Distillation
Sampling to refine the composition. Extensive experiments demonstrate that our
method can generate high-fidelity videos from text with diverse motion and flexible
control over each concept. Project page: https://aka.ms/c3v.

1 Introduction

Benefitting from large-scale data and the advancement of the generative models [1, 2], we have
witnessed plenty of astonishing results across a wide array of tasks. For example, Large Language
Models (LLM) pre-trained on web-scale datasets are revolutionizing machine learning with strong
capability of zero-shot learning [3] and planning [4, 5], while diffusion models [6] empower text-to-
image generation with a rapid surge in both quality and diversity [7–9].

To harness the power of text-to-image models in text-to-video generation, modern solutions directly
view video as multiple images. In this way, tremendous efforts have been dedicated to extending
text-to-image models with temporal interaction to ensure consistency between frames [10–17].
However, generating visual content conditioned on the textual prompt alone struggles to express
multiple concepts with precise spatial layout control [18–20]. To tackle this issue, LVD [21] and
VideoDirectorGPT [22] propose to first generate spatiotemporal bounding boxes of each object based
on the textual prompt with LLM, and then condition the video generation on the obtained layouts.
Although rough layout control can be realized, they still have inherent limitations for detailed concept
control, e.g., the motion and appearance of specific characters, and the movement of viewpoints.
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In nature, our understanding of the world is compositional [23, 24, 20], and the interaction with the
world takes place in a 3D. Motivated by this, in contrast to the prior endeavors that implicitly learn
different concepts in 2D space, we are interested in exploring an alternative solution that explicitly
composes concepts in 3D space for video generation. To this end, we in particular identify two key
technical challenges: 1) Since a textual prompt contains multiple concepts, how to coordinate the
generation of various concepts? 2) Given the generated concepts, how to compose them to follow
common sense in the real world?

In this work, we introduce text-guided compositional 3D-aware video generation (C3V), a novel
paradigm that regards LLM as director and 3D as structural representation for video generation. C3V
consists of three main stages: 1) Given a textual prompt, to coordinate the generation of various
concepts, we leverage LLM to disassemble the input prompt into sub-prompts, where each sub-
prompt describes an individual concept, e.g., the scene, objects, and motion. For each concept, a
pre-trained expert model is assigned by LLM to generate its corresponding 3D representation (e.g.,
3D Gaussians [25], SMPL parameters [26]) according to the textual description. 2) To provide coarse
instruction for composition (i.e., the scale and trajectory of each object in the scene), we further resort
to the priors in multi-modal LLM by querying it with the rendered scene image and the textual goals.
However, directly instructing multi-modal LLM to return the scale and trajectory of each object leads
to unexpected results, as it is challenging for LLM to estimate visual dynamics. Therefore, we follow
a step-by-step reasoning philosophy [27] by representing the object with the bounding boxes and
dividing the trajectory estimation into sub-tasks, i.e., estimating the starting points, ending points, and
trajectories step-by-step. 3) After obtaining the coarse trajectories from the language space, we also
propose to refine the scales, rotations, and exact locations with priors from large-scale visual data.
Specifically, taking inspiration from DreamFusion [28], which proposes to distill generative priors
from pre-trained image diffusion models into 3D objects, we employ Score Distillation Sampling
(SDS) [28] to optimize the transformation matrix of each object in 3D space.

Our system has three main advantages: 1) Because each concept is represented by individual 3D
representations, it naturally supports flexible control and interaction of each concept. 2) It inherently
excels at synthesizing complex and long videos such as drama, etc. 3) The viewpoint is controllable.

Extensive experiments demonstrate that our proposed method can generate 3D-aware videos with
diverse motion and high visual quality, even from complex queries that contain multiple concepts and
relationships. We also illustrate the flexibility of C3V by editing various concepts of the generated
videos. The generated videos are presented on our project page. To the best of our knowledge, we
make the first attempt towards text-guided compositional 3D-aware video generation. We hope it can
inspire further explorations on the interplay between video and 3D generation.

2 Related Works

2.1 Video Generation with LLM

Recently, there have been substantial efforts in training text-to-video models on large-scale datasets
with autoregressive Transformer [29, 30, 17] or diffusion models [10–13, 16]. A prominent approach
for text-to-video generation is to extend a pre-trained text-to-image model by inserting temporal
layers into its architecture, and fine-tuning models on video data. However, although effective,
it remains challenging to generate objects with specific attributes or positions. To address this
challenge, a series of studies proposed to exploit knowledge from LLM [31, 32] to achieve controllable
generation [21, 19, 22, 33–35], zero-shot generation [36–39], or long video generation [40]. For
example, Free-Bloom [36] and DirecT2V [38] used LLM to transform the input textual prompt
into a sequence of sub-prompts that describe each frame. LVD [21] and VideoDirectorGPT [22]
employed LLM to generate spatiotemporal bounding boxes to control the object-level dynamics in
video generation.

In light of the above success of exploiting LLM to direct video generation in 2D space, we view LLM
as a director in 3D, which differs from previous methods not only in terms of technical route but also
in benefits: providing free interaction with individual concepts and flexible viewpoint control.
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2.2 Compositional 3D Generation

Generating 3D assets from textual prompt has garnered significant attention owing to its promising
applications in various fields such as AR [41], VR [42], and autonomous driving [43]. However, due
to the lack of large-scale 3D data, it is challenging to apply 2D generative models to 3D directly.
Therefore, building upon Dream Fields [44], DreamFusion introduced the Score Distillation Sampling
(SDS) [28], a technique enhancing 3D generation by distilling 2D diffusion priors from pre-trained
text-to-image generative models. Motivated by the success of DreamFusion [28], dedicated efforts
have been made to improve SDS [45–47]. Though achieving remarkable results, these methods
struggle to generate scenes with multiple distinct elements. To mitigate this issue, several techniques
was proposed to guide 3D generation with additional conditions like layout priors, which we refer to
as compositional 3D generation [48–50]. However, these works still focus on static compositional
3D generation and lack visual dynamic modeling.

Recently, two concurrent works Comp4D [51] and TC4D [52] also achieved compositional 4D
generation (i.e., dynamic 3D generation). However, they only considered composition between
objects, and the trajectory of these methods is either formulated by kinematics-based equations or
pre-defined by users. Differently, we explore 3D-aware video generation with integrated 3D scenes
and compose various concepts with priors from both LLM and 2D diffusion models.

3 Preliminaries

3.1 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [25] has been attracting a lot of interest for novel view synthesis,
due to its photorealistic visual quality and real-time rendering. 3DGS utilizes a set of anisotropic
ellipsoids (i.e., 3D Gaussians) to encode 3D properties, in which each Gaussian is parameterized by
position µ ∈ R3, covariance Σ ∈ R3×3 (obtained from scale s ∈ R3 and rotation r ∈ R3), opacity
α ∈ R, and color c ∈ R3.

To render a novel view, 3DGS adopts a tile-based rasterization, where 3D Gaussians are projected
onto the image plane as 2D Gaussians. The final color c(p) of pixel p is denoted as:

c(p) =
∑

ĉσ̂
∏

(1− σ̂), (1)

where ĉ and σ̂ represent the individual color and opacity values of a series of 2D Gaussians con-
tributing to this pixel. 3DGS are then optimized using L1 loss and SSIM [53] loss in a per-view
optimization manner. Thanks to the nature of modeling 3D scenes explicitly, optimized 3D Gaussians
can be easily controlled and edited.

3.2 Score Distillation Sampling

Different from text-to-image generation which benefits from a large number of text-image pairs
available, text-to-3D generation suffers from a severe lack of data. To mitigate this issue, Score
Distillation Sampling (SDS) [28] was proposed to distill generative priors from pretrained diffusion-
based text-to-image models ϕ. Specifically, for a 3D representation parameterized by θ, SDS is
served as a way to measure the similarity between the rendered images x = g(θ) and the given textual
prompts y, where g represents the rendering operation. As a result, the gradients used to update θ are
computed as follows:

∇θLSDS(ϕ, x = g(θ)) = Et,ϵ[w(t)(ϵ̂ϕ(xt; y, t)− ϵ)], (2)

where t is the noise level, ϵ is the ground-truth noise, w(t) is a weighting function, ϵ̂ϕ is the estimated
noise given noised images xt with text embeddings y. Please refer to DreamFusion [28] for details.

4 Method

Overview. To achieve text-guided compositional 3D-aware video generation (C3V), we regard
LLM as director and 3D as structural representation. To this end, our method consists of three stages.
To begin with, we utilize LLMs to decompose the input textual prompts into three sub-prompts, each
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Multimodal Large Language Model 

Task Decomposer

3D Scene 
Generation

Object 
Generation

Motion 
Generation

Complex query into sub-prompts

Trajectory Generator

Scale and trajectory estimation

Step-by-Step 
Estimation

Composition with 2D Diffusion Priors

2D Diffusion 
Priors

Refinement

Scale

Location

Rotation

Splatting

Splatting

Score 
Distillation 
Sampling

In a Magician's magical cabin alone in a serene forest, an alien walking on the floor, starting from the cabin’s door to the mow 
near the bottom right corner of this image.

a Magician’s ... forest

an alien 

walking on the floor

Q: Please give me a trajectory represents 
that an alien walking on the floor, starting 
from the cabin’s door to the mow near 
the bottom right corner of this image.

A: 
Scale: 0.33
Start:      
    (380,450)
End:
    (704,652)
Trajectory: 
    (380,450)
    (408,461)
    (439,475)
         …
    (624,580) 
    (666,608)
    (704,652)

"In a Magician’s 
...of this image."

Figure 1: Illustration of our method. It consists of three stages: 1) The input textual prompt is
decomposed into individual concepts by the LLM. Then we generate each concept in the form of
3D with the corresponding pre-trained expert model (left & Sec. 4.1). 2) We leverage knowledge
in multi-modal LLM to estimate the 2D trajectory of objects step-by-step (middle & Sec. 4.2). 3)
After lifting the estimated 2D trajectory into 3D as initialization, we refine the scales, locations, and
rotations of objects within the 3D scene using 2D diffusion priors (right & Sec. 4.3).

of which provides a description for generating a corresponding concept (i.e., scene, object, motion,
etc.) respectively (Sec. 4.1). Subsequently, we leverage multi-modal LLM to obtain coarse-grained
scales and trajectories for each animatable object (Sec. 4.2). Finally, we employ 2D diffusion priors
to refine the objects’ location, scale, and rotation for a fine-grained composition (Sec. 4.3).

4.1 Task Decomposition with LLM

Task Instructions. Given a textual prompt, we invoke LLM (e.g., GPT-4V [32]) to decompose it
into several sub-prompts. Each sub-prompt describes an individual concept such as the scene, object,
and motion. Specifically, for an input prompt y, we query LLM with the instruction like: "Please
decompose this prompt into several sub-prompts, each describing the scene, objects in the scene, and
the objects’ motion.", from which we obtain the corresponding sub-prompts.

3D Representation. After obtaining the sub-prompt for each concept, we aim to generate its
corresponding 3D representations using the pre-trained expert models. In this work, we build
structural representation on 3DGS [25], which is an explicit form and therefore flexible enough to
compose or animate. Concerning concepts like motion, our framework can generalize to arbitrary
animatable 3D Gaussian-based objects. For simplicity, we take human motion as an instantiation
because it is general for various scenarios. In order to obtain diverse human motions, we take a
retrieval-augmented approach [54] to acquire motion in the form of SMPL-X parameters [55] from
large motion libraries [56] according to the motion-related sub-prompt.

Instantiation. To illustrate the scheme formally, consider the following example. We have sub-
prompts y1, y2 and y3 that describe scene, object, and motion respectively. Additionally, we have
corresponding pre-trained text-guided expert models ϕ1, ϕ2, and ϕ3 that are selected by the LLM.
The concept generation can be formulated as follows:

G1 = ϕ1(y1), G2 = ϕ2(y2,M), M = ϕ3(y3), (3)
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Figure 2: Illustration of coarse-grained trajectory generation with LLM. Instead of querying multi-
modal LLM to estimate dynamic trajectory directly, we generate trajectory in a step-by-step manner:
estimating the locations of starting and ending points first, then reasoning the path between them.

where G1 and G2 represent the 3D Gaussians, and M means the motions used to drive G2. In the
following sections, we will provide details on the composition of the generated concepts.

4.2 Coarse-grained Trajectory Generation with LLM

Given the generated concepts, we aim to compose them into a dynamic 3D representation to render
videos that align with the input textual prompt. Achieving this requires scales and trajectories of the
objects to indicate their sizes and locations within the scene. To this end, we propose to leverage
knowledge encoded in multi-modal LLMs (i.e., GPT-4V [32]) to provide priors.

For the scale of the object, we find that directly querying GPT-4V with the input prompt and rendered
scene image can yield a reasonable estimation of its resolution (H2D and W2D). However, this is not
the case for trajectory estimation. As demonstrated in Fig. 2, directly querying GPT-4V for trajectory
will lead to a result that deviates conspicuously from common sense. Based on this observation, we
conclude two issues: 1) it is too difficult for GPT-4V to generate the trajectory within a single query,
as it lacks priors on visual dynamics; 2) since GPT-4V is trained to generate text, it has limitations on
imagining visual content.

To mitigate this, we introduce two simple yet effective techniques. 1) Although GPT-4V lacks visual
knowledge of the object, we can alleviate this by representing the object as a bounding box with
the estimated resolution. 2) We follow a step-by-step reasoning philosophy [27] and propose to let
GPT-4V estimate the locations of starting and ending points first, then reason the path between them.

Overall, we can formulate the above process as follows:

{Li
p}Ni=1 = Φ(yp, I, S, Ls, Le),

S =Φ(y, I), Ls = Φ(ys, I), Le = Φ(ye, I),
(4)

where Φ represents the multi-modal LLM (i.e., GPT-4V), I denotes the rendered scene image, S
represents the estimated scale of the object given textual prompt y and I , Ls and Le represent the
locations of starting and ending points respectively, {Li

p}Ni=1 represent N locations indicating the
path between Ls and Le. Notably, all locations (i.e., Ls, Le,{Li

p}Ni=1 ) are represented by 2D pixel
coordinates on I .

4.3 Fine-grained Composition with 2D Diffusion Priors

Lift Trajectory from 2D to 3D. In Sec. 4.2, we obtain the 2D pixel coordinates Li
p = (pix, p

i
y)

of the estimated trajectory. However, 2D trajectory is not enough for composition in 3D space.
Therefore, we convert it into corresponding 3D world coordinate Li

3D = (xi, yi, zi). Specifically, we
first predict the depth map D of the rendered scene image with a monocular depth estimator [57].
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Then, we use the depth value of the center point of the lower boundary of the bounding box as the
trajectory’s depth. As a result, we can transform 2D trajectory into 3D:

(xi, yi, zi, 1)T = R−1K−1[(pix +
H2D

2
, piy, 1)

T ·D(pix +
H2D

2
, piy)]− (

H3D

2
, 0, 0, 0)T , (5)

where R and K represent camera extrinsic and intrinsic respectively, H2D and W2D represent the
resolution of the 2D bounding box. H3D represent the actual height of the 3D bounding box of this
object within the scene.

Composition Refinement with 2D Diffusion Priors. With the lifted 3D trajectory, we then
integrate the object into the scene. However, the trajectory estimated by LLM is still rough and may
not obey natural image distribution. To address this, we propose to further refine the object’s scale,
location, and rotation by distilling generative priors from pre-trained image diffusion models [7]
into 3D space. Specifically, we treat the parameters for these attributes as optimizable variables and
use SDS (Eq. 2) to improve the fidelity of rendered images. As a result, scale refinement can be
formulated as follows:

∇ŜL
Scale
SDS = Et,ϵ[w(t)(ϵ̂ϕ(xt(L

1
3D, (S + σ(Ŝ) · τs −

τs
2
) ·G2); y, t)− ϵ)], (6)

where Ŝ represents the optimizable variable, S represents the scale estimated by GPT-4(V), σ means
the Sigmoid function, τs is a threshold, G2 represents the 3D gaussians of the object, and xt is the
noised 2D image given Li

3D and scaled G2.

After obtaining a more precise scale, we then refine the locations of the estimated 3D trajectory
similarly, where the location refinement is denoted as:

∇
L̂iLLocation

SDS = Et,ϵ[w(t)(ϵ̂ϕ(xt(L
i
3D+σ(L̂i) ·τL−

τL
2
, (S+σ(Ŝ) ·τs−

τs
2
) ·G2); y, t)−ϵ)], (7)

where L̂i represents the optimizable variable, τL is a threshold.

For the rotation of the object at different timesteps, we can directly compute the corresponding
rotation matrix, based on the assumption that the object at the current time step should face the
location of the object at the next time step. As a result, the rotation matrix R̂i at time step i can be
computed using the following equation:

R̂i =

 tx2 + c txy − zs txz + ys
txy + zs ty2 + c tyz − xs
txz − ys tyz + xs tz2 + c

 ,

t = 1− c, c = cos(θ), s = sin(θ),u = (x, y, z)T

(8)

where θ and u represent the rotation angle and axis obtained through the cross product of (Li+1
3D +

σ( ˆLi+1) · τL − Li
3D − σ(L̂i) · τL) and (0, 0, 1)T .

Inference. After obtaining individual concepts in the form of 3D and the optimized parameters that
indicate how to compose various concepts, we can render the 3D representation into 2D video with
flexible camera control in real time [25].

5 Experiments

In this section, we instantiate C3V with three concepts: scene, humanoid object, and human motion,
to generate 3D-aware video from text. We compare our proposed method with state-of-the-art text-to-
4D models (4D-FY [58]), compositional 4D generation models (Comp4D [51]) and text-to-video
models (VideoCrafter2 [59]). Videos are available on our anonymous project page.

Implementation Details. We use LucidDreamer [60], HumanGaussian [61] and Motion-X [56] to
generate 3D scenes, humanoid objects and motions respectively. To realize SDS, we utilize Stable
Diffusion [7] as the image diffusion model. All the videos of our proposed method are rendered at a
resolution of 512× 512 in real time. Please refer to the appendix for more details.
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(a) Text prompt: "In a Magician’s magical cabin alone in a serene forest, an alien walking on the floor, starting
from the cabin’s door to the mow near the bottom right corner of this image".
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(b) Text prompt: "Four characters stood on the stage. In front of the stage, a man and a woman are performing
Kung Fu and dancing respectively. On the right side of the stage, a skeleton man is dancing, and behind them, a
clown is performing".

Figure 3: Qualitative comparisons with baselines. When prompting complex queries, the baseline
methods fail to follow the queries in terms of the number of objects and the corresponding motion. In
contrast, our method excels in yielding both diverse motion and high visual quality.

Metrics. Following Comp4D [51], we choose Q-Align [62] as the referee to measure the quality
and aesthetics of the video. The Q-Align score is a number ranging from 1 (worst) to 5 (best) where
a higher score indicates a better performance. We also report the CLIP score [63] to measure the
alignment between the generated videos and the input texts.

5.1 Comparison with Competitors

In Fig. 3, we conduct a comparative analysis of our method against 4D-FY [58], Comp4D [51], and
VideoCrafter2 [59] with the same textual prompt. It can be observed that all three baselines fail to
provide diverse motion from the textual prompt, while our method excels in yielding large motion
and high visual quality. For example, our scheme successfully obeys the complex query in terms of
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Table 1: Quantative comparisons with competitors. Our method consistently outperforms all baseline
methods in terms of both the video quality and the alignment with textual prompts.

Metric 4D-FY [58] Comp4D [51] VideoCrafter2 [59] Ours

QAlign-img-quality ↑ [62] 1.681 1.687 3.839 4.030
QAlign-img-aesthetic↑ [62] 1.475 1.258 3.199 3.471
QAlign-vid-quality↑ [62] 2.154 2.142 3.868 4.112
QAlign-vid-aesthetic↑ [62] 1.580 1.425 3.159 3.723

CLIP Score↑ [63] 30.47 27.50 35.20 38.36

(I) Direct trajectory 

estimation.

(II)  Trajectory estimation with 

bounding box indicating objects.

(III)  Trajectory estimation in a 

step-by-step manner.
(IV) Ours.

(I) Without SDS refinement. (II) With scale refinement. (III) With trajectory refinement. (IV) With rotation refinement.

(a) Ablation studies on trajectory estimation with multi-modal LLM.

(b) Ablation studies on composition with 2D diffusion models.

Figure 4: Ablation studies on framework design. Each ablation is prompted with the same text.

the number of objects and the corresponding motion. In addition, since 4D-FY and Comp4D focus
on object-centric generation, they fail to generate videos with natural backgrounds. In Tab. 3, we
perform quantitative comparisons by utilizing Q-Align Score [62] and CLIP Score [63] to assess
the quality of generated videos. Our method consistently outperforms the baseline models in terms
of both the video quality and the alignment with textual prompts. More results are available in the
appendix.

5.2 Ablation Studies

Ablations on Trajectory Estimation with Multi-modal LLM. As shown in Fig. 4(a)(I), a direct
prompt of GPT-4V will lead to obvious unsatisfactory trajectory estimation. When only depending
on bounding boxes to indicate the location of objects within the scene (Fig. 4(a)(II)), though a
roughly better trajectory can be achieved, it still leads to unreasonable results, such as several floating
bounding boxes. Similarly, using only the step-by-step estimation strategy described in Sec. 4.2
typically results in a trajectory that is merely a simple straight line connecting the starting and ending
points (Fig. 4(a)(III)). With both of the two techniques, we can achieve the best performance, with a
more reasonable and smooth trajectory (Fig. 4(a)(IV)).

Ablations on Composition with 2D Diffusion Models. To figure out whether it is necessary to
conduct fine-grained composition with 2D generative priors, we gradually refine the scales, locations,
and rotations with SDS and visualize the results in Fig. 4(b). All results are generated with the same
textual prompt: "An alien walking on the floor in front of the cabin’s door.". It shows that when we
optimize the attributes with SDS, we can obtain consistently improved performance with a reasonable
scale (Fig. 4(b)(II), accurate locations that are aligned with the input prompt (Fig. 4(b)(III), and
orientation that accords with common sense (Fig. 4(b)(IV)).
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Figure 5: Our method offers flexible control of individual concepts. We demonstrate this by editing
different concepts: the appearance and motion of the actors, and the scenes.

Table 2: Quantative comparisons of ablation studies on trajectory estimation with multi-modal LLM.

Methods Direct Estimation. Estimation using
bounding box. Step-by-step estimation. Ours

QAlign-img-quality ↑ [62] 2.056 2.894 3.752 4.030
QAlign-img-aesthetic ↑ [62] 1.568 2.156 3.047 3.471
QAlign-vid-quality ↑ [62] 2.178 3.043 3.904 4.112
QAlign-vid-aesthetic ↑ [62] 1.680 2.346 3.342 3.723

CLIP Score ↑ [63] 25.68 29.84 36.73 38.36

5.3 Applications on Controllable Generation

Due to our underlying 3D structural representation, our scheme has the natural merits of editing
individual concepts. We illustrate this character in Fig. 5 by editing three different concepts: the
appearance and motion of the actors, and the scenes. For the appearance and motion of the actor,
we can seamlessly replace them in a zero-shot manner according to the textual prompt (Fig.5(a)(b)),
while this is still challenging for implicit models [64, 65]. For scene editing, to ensure a smooth
composition of objects within the target scene, we re-estimate the trajectory of the objects given the
target scene. Kindly refer to appendix for more results.

6 Conclusion

In this paper, we present a novel paradigm for 3D-aware video generation by conceptualizing videos
as compositions of independent concepts represented in 3D space. To this end, we leverage LLM as
director to decompose the input textual prompts into individual concepts and then invoke pre-trained
expert models to generate them separately. To compose various concepts, we first prompt multi-modal
LLM in a step-by-step manner to provide coarse guidance on the scale and trajectory of objects,
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Table 3: Quantative comparisons of ablation studies on composition with 2D diffusion models.
Methods Without SDS. With scale refinement. With trajectory refinement. Ours

QAlign-img-quality ↑ [62] 3.045 3.674 3.826 4.030
QAlign-img-aesthetic ↑ [62] 2.752 3.046 3.341 3.471
QAlign-vid-quality ↑ [62] 3.129 3.794 3.983 4.112
QAlign-vid-aesthetic ↑ [62] 2.704 3.468 3.603 3.723

CLIP Score ↑ [63] 31.35 35.27 37.04 38.36

then refine the composition with 2D generative priors. We verify our scheme in different scenarios,
demonstrating its superiority over the baseline methods.

Limitations and Future Works. Although we demonstrate promising results in 3D-aware video
generation, there still are limitations to be improved in the future. First, our framework is instantiated
with limited concepts in this work, i.e., scene, humanoid object, and human motion. It is exciting
to generalize the framework to more concepts like animals, vehicles, etc. Second, the composition
between concepts is conducted with priors from LLM and 2D diffusion priors in our method. However,
it is still interesting to introduce physically grounded dynamics into 3D representation [66]. Third,
though our method is naturally suitable for maintaining the consistency of actors across different
scenes, it still needs further exploration on long video generation with multiple scenes, e.g., a
full-length film.

Ethics Statement. C3V is exclusively a research initiative with no current plans for product
integration or public access. We are committed to adhering to Microsoft AI principles during the
ongoing development of our models. The model is trained on AI-generated content, which has
been thoroughly reviewed to ensure that they do not include personally identifiable information or
offensive content. Nonetheless, as these generated data are sourced from the Internet, there may still
be inherent biases. To address this, we have implemented a rigorous filtering process on the data to
minimize the potential for the model to generate inappropriate content.
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A Implementation Details

A.1 Experimental Settings

During the process of multi-modal LLMs-based trajectory estimation, we use 20 locations by default
to indicate the trajectory between the starting point and the ending point, (i.e., N = 20 in Eq. 4),
where the path between adjacent locations is assumed as a straight line. For scale refinement (Eq. 6),
τs is set to 0.1. For location refinement (Eq. 7), we apply it to refine all the twenty locations. The
training iterations for each location is 1000 and τL is set to 0.1. All experiments are conducted using
a single NVIDIA A100 GPU.

A.2 Pre-trained Expert Models

LucidDreamer [60]. As a powerful 3D scene generation method, LucidDreamer adopts an iterative
view generation strategy, where a series of views are dreamed and aligned via depth-warping based
inpainting networks. After obtaining these multiview-consistent images, 3D gaussians are optimized
to construct a high-quality 3D scene, by means of typical training pipeline of 3DGS.

HumanGaussian [61]. We choose HumanGaussian as the method for human generation due to
its capability of producing drivable avatars on the basis of 3DGS. Specifically, HumanGaussian
starts with SMPL-X prior to densely sample Gaussians on the human mesh surface as initial center
positions, followed by a texture-structure joint model and an annealed negative prompt guidance
strategy to obtain high-fidelity outputs.

Motion-X [56]. Motion-X is a large-scale 3D expressive whole-body human motion dataset which
comprises 15.6M precise 3D whole-body pose annotations (i.e., SMPL-X) covering 81.1K motion
sequences from massive scenes with sequence-level semantic labels. By calculating the similarity
of text embeddings between the motion-related sub-prompt and sequence labels, we find the most
matching sequence and acquire motion data in the form of SMPL-X parameters [55].

A.3 Metrics

Given the lack of ground truth videos for specific text queries, we utilize pre-trained quality-
assessment models to evaluate the generated videos and their individual frames. In line with
Comp4D [51], we employ Q-Align [62] as the benchmarking tool to assess the quality and aes-
thetics of the videos. The Q-Align rating, which ranges from 1 (worst) to 5 (best), is considered
state-of-the-art, closely aligning with human judgments across established quality assessment bench-
marks. Additionally, we include the CLIP score [63] to measure the alignment between the generated
videos and the input texts, where higher scores signify better alignment.

B Results of Different Stages

As shown in Fig. 6, Fig. 7 and Fig. 8, we provide a detailed visualization of results obtained during
different stages, including results of LLM-based task decomposition, results of coarse-grained
trajectory generation with GPT-4V, and results of the final rendered videos.

C More Results of Controllable Generation

In this section, we present additional results on controllable generation. As demonstrated in Fig. 9,
Fig. 10 and Fig. 11, we can achieve fine-grained control of the target without affecting other concepts
in the 3D space.
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Prompt: In a Magician's magical cabin alone in a serene forest, an alien walking on the floor, 

starting from the cabin’s door to the mow near the bottom right corner of this image.

a Magician's 

magical 

cabin alone 

in a serene 

forest

an alien 

walking on 

the floor

Use a bounding box to represent 

the cabin's door, what is the pixel 

coordinate of the center of the 

bounding box?

Use a bounding box to represent 

the mow near the bottom right 

corner of this image, what is the 

pixel coordinate of the center of 

the bounding box?
Estimated trajectory

+

Task Decomposition with LLM

Trajectory Generation with LLM

Rendered Video

Figure 6: Results of different stages given the textual prompt: "In a Magician’s magical cabin alone
in a serene forest, an alien walking on the floor, starting from the cabin’s door to the mow near the
bottom right corner of this image.".
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Prompt: Inside a cozy livingroom in Christmas, a astrologer performing ballet  on the floor, 

starting from wooden floor behind the red armchair near the bottom left of this image to the sofa 

in the bottom right corner of this image.

a cozy 

livingroom in 

Christmas

a astrologer 

performing 

ballet  on 

the floor

Use a bounding box to represent wooden 

floor behind the red armchair near the 

bottom left of this image, what is the 

pixel coordinate of the center of the 

bounding box?

Use a bounding box to represent  

the sofa in the bottom right corner 

of this image, what is the pixel 

coordinate of the center of the 

bounding box?
Estimated trajectory

+

Task Decomposition with LLM

Trajectory Generation with LLM

Rendered Video

Figure 7: Results of different stages given the textual prompt: "Inside a cozy livingroom in Christmas,
a astrologer performing ballet on the floor, starting from wooden floor behind the red armchair near
the bottom left of this image to the sofa in the bottom right corner of this image.".
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Prompt: On a simple stage, a man with a black fedora and a denim jacket and a woman wearing ski 

clothes are performing Kungfu and dancing respectively, on the left side and right side of this stage.

a simple 

stage

a man with a black 

fedora and a 

denim jacket 

performing 

Kungfu

a woman wearing 

ski clothes

dancing

Use a bounding box to 

represent left side of the stage 

in this image, what is the pixel 

coordinate of the center of the 

bounding box?

Use a bounding box to 

represent  right side of the stage 

in this image, what is the pixel 

coordinate of the center of the 

bounding box?
Estimated trajectory

+

Task Decomposition with LLM

Trajectory Generation with LLM

Rendered Video

Figure 8: Results of different stages given the textual prompt: "On a simple stage, a man with a black
fedora and a denim jacket and a woman wearing ski clothes are performing Kungfu and dancing
respectively, on the left side and right side of this stage.".
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Figure 9: Results of actor’s appearance editing.

Figure 10: Results of actor’s motion editing
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(a) Prompt: A revenant dancing Daily Lovedive in a ultra-modern mega villa by the 

sea with swimming pool.

(b) Prompt: Turn the scene into a long anime-style road with 

anime-blocks and little anime-grass.

(c) Prompt: Turn the character into a postapocalyptic city in desert.

Figure 11: Results of scene editing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clarify our contributions in Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clarify our limitations in Sec. 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation details in Sec. 5 and Sec. A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We do not provide open access to the data and code in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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